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ABSTRACT 

Background: Frailty and cardiovascular disease (CVD) share common 
pathophysiology in their progression. Declines in bone health often occur 
concomitantly with frailty and CVD. Therefore, analytes of bone 
metabolism may be useful biomarkers of pre-frailty and CVD risk. The aim 
of this study was to identify the effects of pre-frailty and CVD risk on the 
systemic concentrations of bone metabolism and inflammatory analytes 
in middle-aged and older females. 

Method: This case-control study is a secondary analysis of data from 1030 
females with no self-reported history of CVD. Frailty was measured using 
the Fried Criteria, and females were stratified into low and elevated CVD 
risk using the Framingham risk score. Greedy matching with pre-frailty as 
the exposure variable identified 26 matched pairs in the low and elevated 
CVD risk groups for a total of 104 females. Factorial ANOVA compared 
differences in the log transformed concentrations of 15 bone metabolism 
analytes based on pre-frailty status, CVD risk, and the interaction. 

Results: Differences in the systemic concentrations of IL-6 (5.25 ± 14.30 vs 
1.35 ± 1.74 pg/mL, p = 0.001), TNFα (1.41 ± 1.83 vs 0.89 ± 0.40 pg/mL, p = 
0.06), and leptin (12628.48 ± 10472.90 vs 7562.96 ± 4972.25 pg/mL, p = 0.023) 
were found in elevated CVD risk status compared to low. No differences in 
the concentrations of bone metabolism analytes were found based on pre-
frailty status, nor were any interaction effects. 

Conclusion: Differences were found in the concentrations of cytokines 
involved in bone metabolism based on CVD risk; however, no differences 
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were found based on pre-frailty status. IL-6, TNFα, and leptin may act as 
biomarkers of CVD risk, but this study does not support the use of the 
examined analytes involved in bone metabolism as biomarkers of pre-frailty. 

KEYWORDS: frailty; cardiovascular disease; bone; bone metabolism 
analytes; biomarkers; females; aging 

ABBREVIATIONS 

CVD, cardiovascular disease; FRS, Framingham risk score; PHIN; Personal 
Health Identification Number; FC, Fried Criteria; HDL, high-density 
lipoprotein; ACTH; adrenocorticotropic hormone; DKK1, Dickkopf WNT 
signaling pathway inhibitor 1; IL-6, interleukin-6; TNFα, tumor necrosis factor 
α; OPG, osteoprotegrin; OC, osteocalcin; OPN, osteopontin; IL-1β, interleukin-
1 β; PTH, parathyroid hormone; FGF23, fibroblast growth factor 23 

INTRODUCTION 

The population of Canada is aging rapidly. Currently, 17% of the 
population is 65 and older [1], and this proportion is expected to reach 25% 
by 2036 [2]. From a public health perspective, this is likely to result in 
increasing prevalence of both frailty [3] and cardiovascular disease (CVD) 
[4] as the presence of these conditions is associated with age. 

Frailty is characterized by a state of increased vulnerability to health 
stressors resulting from the dysregulation of multiple physiological 
systems [5]. This leads to a reduction in physiological reserve and an 
impaired ability to respond to adverse health events [6]. Pre-frailty is an 
intermediary stage preceding frailty that increases risk of frailty 
progression [6]. Individuals who are pre-frail are able to respond to health 
stressors [7], but are still at increased risk for disability, mortality, and 
morbidities, including CVD [6,8].  

Frailty and CVD share similar risk factors and pathophysiological 
progression [9]. Sarcopenia and osteoporosis, as well as chronic 
inflammation [10] are often associated with both conditions. As a result, 
the presence of frailty and CVD are thought to exacerbate each other [11]. 
Recently, large pooled data sets have identified that frail individuals are at 
increased risk for CVD [12,13] and this increased risk is apparent in the 
earlier pre-frail stage [13–15]. This relationship is also bidirectional as 
individuals with a high CVD risk had an increased risk for incident frailty 
over a 4 year period (OR 2.15; 95% CI 1.68–2.75) [16].  

Biomarkers of both frailty and CVD are beginning to be examined with 
the goal of accurately identifying at-risk individuals earlier in downward 
health trajectory [17,18]. For example, blood-based biomarkers of 
inflammation have been studied as biomarkers of frailty in the younger-
old and the very-old [19]. Given the related pathophysiology of frailty and 
CVD [9,20], these conditions may share common biomarkers.  
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Bone and muscle are both highly dynamic organs which secrete 
cytokines that act throughout the body [21–24]. The cross-talk between 
bone and muscle is receiving increased attention as it may have a role in 
health maintenance and decline [24–25]. Dysregulation in bone-muscle 
cross-talk can influence the progression of osteoporosis and sarcopenia 
[26] conditions often seen in frailty [27,28]. Pre-frail and frail individuals 
are at increased risk for osteoporotic fracture [29,30] and have been 
shown to present with reduced bone health [31,32]. Bone and 
cardiovascular health are also suggested to be linked, since reduced bone 
health is associated with increased risk for CVD, and vice versa [33,34], 
potentially implicating this same dysregulated cross-talk in CVD 
progression. Specifically, females who are post-menopause may be at 
increased risk for frailty-related reductions in bone and cardiovascular 
health, as hormonal changes post-menopause increase risk for both 
osteoporosis and CVD [35,36]. Bone metabolism analytes have previously 
been measured in the systemic circulation as a means of assessing bone 
health [22,37]. Given the relevance of bone metabolism and bone-muscle 
cross-talk to frailty characteristics and cardiovascular health, it is possible 
that these analytes may act as biomarkers of frailty and CVD. 

The objective of this study was to identify the main and interaction 
effects of pre-frailty and CVD risk on the systemic concentrations of bone 
metabolism and inflammatory analytes in middle-aged and older females. 
Reduced bone health can occur concomitantly with frailty and CVD; 
therefore, bone metabolism analytes may be useful biomarkers of pre-
frailty and CVD risk. The identification of biomarkers in the early pre-
frailty stage could allow for easier detection and tracking of frailty 
progression [28]. 

MATERIALS AND METHODS 

Study Design 

The Strengthening the Reporting of Observational Studies in Epidemiology 
(STROBE) Statement guidelines for case-control studies were adhered to in the 
development of this manuscript [38]. This case-control study was a secondary 
analysis of data previously collected from an observational cohort study [39] 
approved by the University of Manitoba Health Research Ethics Board on 
September 29, 2014 (H2014:224) and the St-Boniface Hospital Research 
Review Committee on March 13, 2015 (RRC/2014/1417). The initial study 
examined the sensitivity and specificity of novel CVD risk assessment 
methods for predicting CVD events, such as the standardized Fried Criteria 
(FC) [40] and the Rasmussen Disease Score [41], as compared to established 
approaches, such as the Framingham Risk Score (FRS) [42].  

Participants 

The initial observational cohort study was conducted in Winnipeg, 
Manitoba, Canada and recruited 1030 females using radio and media ads. 
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Participants were included if they were a female aged 55 years or older 
with no previous self-reported CVD, had a Personal Health Information 
Number (PHIN), and if informed consent was obtained. Participants were 
excluded if they had been previously hospitalized for CVD, as described in 
the protocol paper [40]. Propensity matching with pre-frailty as the 
exposure variable was then used to identify a top set of 26 matched pairs 
in the low and elevated CVD risk groups for a total of 104 females to better 
control for potential confounding variables (Figure 1). 

 

Figure 1. Study Flow Diagram. 

Assessments 

The FC was used to assess the frailty phenotype [6]. The FC assesses the 
presence of five criteria: (1) low physical activity levels; (2) slow walking 
speed; (3) muscle weakness (grip strength); (4) self-reported exhaustion; 
and (5) unintentional weight loss. Frailty status is determined using the 
number of criteria present (i.e., 0 = robust, 1-2 = pre-frail, ≥3 = frail). The 
cut-offs demarcating the presence or absence of the criteria were based on 
those of Fried et al [6].  

Participants were instructed to fast for 12 h pre-appointment. Fasted 
blood samples were collected from all 1030 females. Immediately 
following sample collection, blood was centrifuged at 2000× g for 10 min 
at 4 °C. Plasma was then aliquoted into microcentrifuge tubes and stored 
at −80 °C for future analyses. 

The FRS was determined based on the model of D’Agostino et al. [42]. 
High-density lipoprotein (HDL) and total cholesterol were measured using 
the collected plasma. Resting blood pressure was measured in a supine 
position, following 10 minutes of rest, in a calm environment at room 
temperature. Resting blood pressure was measured using the 
HD/PulseWaveTM CR-2000 Research CardioVascular Profiling System 
(Hypertension Diagnostics, Minneapolis, MN, USA). Participant sex, age, 
smoking status, diabetes status, and blood pressure treatment status were 
collected from participant questionnaires.  

The systemic concentrations of bone metabolism analytes were 
measured with a EMD Millipore MILLIPLEX® Map Human Bone Magnetic 
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Bead Panel—Bone Metabolism Multiplex Assay (EMD Millipore, 
Burlington, MA, USA) [43]. This multiplex assay allows for the concurrent 
quantification of adrenocorticotropic hormone (ACTH), Dickkopf WNT 
signaling pathway inhibitor 1 (DKK1), interleukin-6 (IL-6), insulin, tumor 
necrosis factor α (TNFα), leptin, osteoprotegrin (OPG), osteocalcin (OC), 
osteopontin (OPN), interleukin-1 β (IL-1β), parathyroid hormone (PTH), 
and fibroblast growth factor 23 (FGF23). These analytes were selected due 
to their roles in bone metabolism, amongst others. Plasma samples used in 
the analysis of the analytes were collected simultaneously as the plasma 
samples used in the FRS analysis.  

Statistical Analysis 

Participants were classified as low CVD risk (FRS < 10%) or elevated CVD 
risk (FRS ≥ 10%). Propensity scores based on a greedy match were calculated 
for the low and elevated CVD risk participants with the exposure variable of 
pre-frailty status, creating a case-control design with four groups: (1) Low 
FRS-Robust; (2) Elevated FRS-Robust; (3) Low FRS-Pre-frail, and; (4) Elevated 
FRS-Pre-frail. Propensity scores matched females for age, body mass index, 
continuous FRS, smoking status, and the number of currently prescribed 
medications. The analyte concentrations were log transformed to adjust for 
skewness and reduce variability in the data set. Factorial ANOVA compared 
the main and interaction effects of pre-frailty and CVD risk on the log-
transformed systemic plasma concentration of 12 bone metabolism analytes. 
A Tukey post-hoc test was used to compare means where significant 
difference (p-value ≤ 0.05) was found. The study was powered using the 
concentration of the inflammatory cytokine IL-6 from a similarly aged 
cohort [44] (distribution of 9.5 ± 2.5 pg/mL (Mean ± SD)), a total sample size 
of 80 (20 in each group) was calculated to detect a 25% difference between 
groups (80% power; two-tailed alpha = 0.05). All statistical calculations were 
made using SPSS version 26 (IBM Corporation, Armonk, NY, USA). 

RESULTS 

Descriptive Data 

Characteristics of the low and elevated CVD risk propensity matched 
groups were similar (Table 1). Mean age was lower in the robust group as 
compared to the pre-frail group in females of low CVD risk (62.92 ± 4.89 vs 
65.58 ± 7.10 years, p = 0.02). Differences were found in the prevalence of 
post-secondary education (22 (84.6%) vs 15 (57.7%), p = 0.03), HDL 
cholesterol (1.63 ± 0.43 vs 1.88 ± 0.61 mmol, p = 0.04) and small artery 
compliance (3.80 ± 2.44 vs 2.62 ± 1.13 mL/mmHg×10, p = 0.01) between 
females who were robust and females who were pre-frail in the elevated 
CVD risk group. All females were post-menopause.  
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Table 1. Characteristics of participants by CVD risk and frailty status. 
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Characteristics Robust (n = 26) Pre-frail (n = 26) p-value 

Age (years) 62.92 ± 4.89 65.58 ± 7.10 0.02 

BMI (kg/m2) 25.44 ± 4.14 24.92 ± 3.39 0.53 

Post-secondary education (% yes) 21 (80.8%) 18 (69.2%) 0.34 

Ex/Current smoker (% yes) 7 (26.9%) 10 (38.5%) 0.38 

FRS (%) 6.44 ± 2.12 6.92 ± 1.98 0.58 

Fried frailty score 0 ± 0 1.15 ± 0.37 <0.001 

Medication(s) # 0.42 ± 0.70 0.54 ± 0.81 0.50 

Hypertension medication(s) (n) 1 (0.04%) 5 (19.2%) 0.08 

Diabetes medication(s) (n) 0 (0%) 0 (0%) - 

Lipid medication(s) (n) 5 (19.2%) 4 (15.4%) 0.71 

HDL cholesterol (mmol/L) 1.92 ± 0.53 2.06 ± 0.44 0.36 

LDL cholesterol (mmol/L) 3.48 ± 0.67 3.62 ± 0.95 0.07 

Total cholesterol (mmol/L) 5.46 ± 0.75 5.74 ± 1.00 0.07 

Triglycerides (mmol/L) 1.13 ± 0.65 1.06 ± 0.40 0.10 

Blood glucose (mmol/L) 5.49 ± 0.72 5.28 ± 0.52 0.16 

Systolic blood pressure (mmHg) 124.15 ± 14.46 122.65 ± 10.93 0.64 

Diastolic blood pressure (mmHg) 70.35 ± 9.85 69.04 ± 8.05 0.39 

Small artery compliance (mL/mmHgx10) 4.10 ± 3.17 4.52 ± 2.80 0.96 

Large artery compliance (mL/mmHgx10) 12.41 ± 4.23 12.54 ± 4.48 0.58 

Grip strength (kg) 25.73 ± 2.74 23.27 ± 6.15 <0.001 

Walking speed (sec) 3.84 ± 0.53 4.15 ± 0.67 0.49 

6MWT (m)  580.11 ± 62.97 548.27 ± 73.09 0.19 

Total MVPA/week (mins) 613.20 ± 2156.80 313.18 ± 346.41 0.36 
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Characteristics Robust (n = 26) Pre-frail (n = 26) p-value 

Age (years) 67.92 ± 6.91 69.54 ± 5.23 0.09 

BMI (kg/m2) 28.29 ± 3.67 27.01 ± 4.74 0.08 

Post-secondary education (% yes) 22 (84.6%) 15 (57.7%) 0.03 

Ex/Current smoker (% yes) 12 (46.2%) 13 (50.0%) 0.78 

FRS (%) 16.51 ± 5.88 16.29 ± 4.36 0.29 

Fried frailty score 0 ± 0 1.15 ± 0.37 <0.001 

Medication(s) # 1.31 ± 1.38 1.54 ± 1.39 0.95 

Hypertension medication(s) (n) 15 (57.7%) 16 (61.5%) 0.78 

Diabetes medication(s) (n) 3 (11.5%) 4 (15.4%) 0.69 

Lipid medication(s) (n) 5 (19.2%) 7 (26.9%) 0.51 

HDL cholesterol (mmol/L) 1.63 ± 0.43 1.88 ± 0.61 0.04 

LDL cholesterol (mmol/L) 3.91 ± 0.80 3.64 ± 1.19 0.23 

Total cholesterol (mmol/L) 5.84 ± 0.84 5.73 ± 1.26 0.26 

Triglycerides (mmol/L) 1.60 ± 0.71 1.23 ± 0.56 0.16 

Blood glucose (mmol/L) 6.29 ± 2.39 6.09 ± 1.74 0.61 

Systolic blood pressure (mmHg) 143.65 ± 15.51 146.27 ± 10.12 0.15 

Diastolic blood pressure (mmHg) 76.50 ± 7.75 77.73 ± 6.66 0.84 

Small artery compliance (mL/mmHgx10) 3.80 ± 2.44 2.62 ± 1.13 0.01 

Large artery compliance (mL/mmHgx10) 10.63 ± 3.04 9.85 ± 2.71 0.50 

Grip strength (kg) 25.23 ± 3.54 21.62 ± 6.46 0.03 

Walking speed (sec) 4.20 ± 0.58 4.48 ± 0.96 0.34 

6MWT (m) 527.31 ± 59.20 509.79 ± 62.99 0.22 

Total MVPA/week (mins) 339.96 ± 391.82 201.60 ± 266.50 0.87 

Continuous variables expressed as mean ± standard deviation and compared using T-test. CVD, cardiovascular disease; BMI, body mass index; 

FRS, Framingham Risk Score; 6MWT, 6-minute walk test; MVPA, moderate-to-vigorous physical activity.  
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Main Results 

The main effects for pre-frailty and CVD risk status and their 
interaction effects are found in Table 2. ACTH and PTH were not included 
in the final analysis as concentrations in the majority of the samples 
measured below detectable limits for the assay. Significantly higher 
concentrations were present in females of elevated CVD risk, as compared 
to those of low CVD risk for IL-6 (5.25 ± 14.30 vs 1.35 ± 1.74 pg/mL, p = 0.001), 
TNFα (1.41± 1.83 vs 0.89 ± 0.40 pg/mL, p = 0.006), and leptin (12628.48 ± 
10472.90 vs 7562.96 ± 4972.25 pg/mL, p = 0.023). No differences in the 
concentrations of bone metabolism analytes were found based on pre-
frailty status. No interaction effects between pre-frailty status and CVD 
risk were found. 

Table 2. Concentrations of Systemic Bone Metabolism Analytes by Frailty and CVD Risk. 

Biomarker 
(pg/mL) 

Robust  
(n = 52) 

Pre-frail  
(n = 52) 

Main Effect of 
Pre-frailty  
(p-value) ǂ 

Main Effect of 
CVD Risk 

(p-value) ǂ 

Interaction Effect 
(p-value) ǂ 

DKK1 

Low CVD Risk 

156.34 

(40.27) 

164.00 

(69.01) 
0.778 0.138 0.944 

Elevated CVD 

Risk 

145.61 

(53.28) 

147.97 

(52.20) 

IL-6 

Low CVD Risk 1.27 (1.71) 1.43 (1.80) 

0.183 0.001 0.476 Elevated CVD 

Risk 
5.34 (17.99) 5.17 (9.66) 

Insulin 

Low CVD Risk 

346.39 

(281.18) 

274.54 

(227.39) 
0.173 0.228 0.942 

Elevated CVD 

Risk 

457.90 

(581.96) 

358.42 

(324.19) 

TNF⍺ 

Low CVD Risk 0.83 (0.42) 0.95 (.38) 

0.546 0.006 0.320 Elevated CVD 

Risk 
1.55 (2.45) 1.27 (.88) 

Leptin 

Low CVD Risk 

7179.27 

(4087.90) 

7946.64 

(5780.87) 
0.177 0.023 0.138 

Elevated CVD 

Risk 

13730.65 

(9171.93) 

11526.31 

(11708.94) 
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Table 2. Cont. 

Biomarker 
(pg/mL) 

Robust  
(n = 52) 

Pre-frail  
(n = 52) 

Main Effect of 
Pre-frailty  
(p-value) ǂ 

Main Effect of 
CVD Risk 

(p-value) ǂ 

Interaction Effect 
(p-value) ǂ 

OPG 

Low CVD Risk 

203.15 

(72.24) 

216.11 

(66.55) 
0.069 0.151 0.311 

Elevated CVD 

Risk 

220.54 

(109.24) 

366.81 

(570.78) 

OC 

Low CVD Risk 

9215.50 

(3723.66) 

9805 

(4801.35) 
0.985 0.153 0.900 

Elevated CVD 

Risk 

8688.65 

(4758.53) 

8791.65 

(5299.55) 

OPN 

Low CVD Risk 

5373.76 

(4408.36) 

6339.46 

(2996.10) 
0.361 0.755 0.218 

Elevated CVD 

Risk 

6521.58 

(4391.42) 

6956.11 

(6994.28) 

IL-1β 

Low CVD Risk 

862.38 

(448.86) 

767.30 

(443.73) 
0.669 0.132 0.812 

Elevated CVD 

Risk 

714.70 

(559.30) 

745.80 

(616.32) 

FGF23 

Low CVD Risk 28.74 (9.83) 29.54 (9.18) 

0.786 0.167 0.530 Elevated CVD 

Risk 
41.50 (43.10) 35.38 (30.73) 

Continuous variables expressed as mean pg/mL ± standard deviation and compared using two-way ANOVA. ǂp values presented are 

based on log transformed data. DKK1, Dickkopf WNT signaling pathway inhibitor 1; IL-6, interleukin-6; TNFα, tumor necrosis factor 

α; OPG, osteoprotegrin; OC, osteocalcin; OPN, osteopontin; IL-1β, interleukin-1 β; FGF23, fibroblast growth factor 23.  

DISCUSSION 

No differences in the concentrations of the assessed bone metabolism 
analytes were found in females who were pre-frail, compared to those 
who were robust, and no interaction effects were found between pre-
frailty and CVD risk status. Based on these findings, analytes involved in 
bone metabolism may not be useful biomarkers of pre-frailty.  

Reductions in bone health may occur concomitantly with frailty [32] as 
frailty has been predictive of osteoporotic fractures [45]. There is some 
evidence to suggest changes to bone health in the earlier, pre-frail stage as 
reduced bone mineral density has been identified in pre-frail females [46], 
but this research was on a slightly older cohort (mean age = 70 years). Pre-
frail males have been found to have reduced bone health compared to frail 
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males, as assessed by quantitative ultrasound [33]. Though, the bone 
mineral density scans of these pre-frail males were not significantly 
different from the robust group, indicating only early changes to bone 
health [32]. We found no differences in the concentrations of bone 
metabolism analytes between pre-frail and robust females. This may be 
because pre-frailty is too early in frailty progression for changes in bone 
health to be detected with biomarkers associated with bone metabolism. 
As such, differences in the concentrations of bone metabolism analytes 
between these two groups may not be identifiable until later frailty stages. 
Markers of bone metabolism have been reported to be higher in females 
with established frailty [47]. Therefore, had this study utilized females 
who were frail instead of pre-frail and who were older, differences in the 
concentrations of bone metabolism analytes between groups might have 
been found. This finding could warrant the use of alternative biomarkers 
allowing for early identification and intervention prior to the onset of 
associated adverse health outcomes. Thus far, evidence suggests that 
interventions implemented in the earlier pre-frail stage are more likely to 
successfully slow or reverse frailty progression [48].  

Although no differences were found in the concentrations of bone 
metabolism analytes based on pre-frailty, differences were found based 
on CVD risk status. IL-6, TNFα, and leptin were higher in females at 
elevated CVD risk, as compared to females at low CVD risk.  

IL-6 is an inflammatory cytokine typically involved in the body’s 
immune response [49]. IL-6 has a wide range of inflammatory effects 
throughout the body [50] and it is involved in bone metabolism [51]. IL-6 
has been reported to stimulate the genesis of osteoclasts, multinucleated 
giant cells with the capacity to breakdown bone tissue [52]. Thus, 
increased inflammation is associated with reduced bone mass [53]. 
Increased inflammation is also implicated in the development of CVD [54] 
and frailty [55]. We identified higher levels of IL-6 in females at elevated 
CVD risk, however, there was no difference in IL-6 concentration between 
robust and pre-frail females. Despite this finding, increases in IL-6 have 
often been identified in pre-frail and frail individuals [56]. This discrepancy 
may have resulted from the large variations in IL-6 concentrations between 
groups which might have impacted our ability to identify higher levels of IL-
6 in pre-frail females. In relation to CVD, the higher levels of IL-6 found in 
females at elevated CVD risk status is supported by previous evidence 
identifying IL-6 as a biomarker of CVD [57].  

TNFα is also an inflammatory cytokine with an important role in the 
immune response and has pleiotropic effects throughout the body [58]. 
Like IL-6, TNFα is able to induce osteoclastogenesis, leading to the 
destruction of bone tissue [59]. Additionally, TNFα is able to suppress the 
activity of osteoblasts, cells responsible for forming new bone [60], further 
reducing bone health. As such, this inflammatory cytokine is thought to be 
associated with altered bone metabolism [61]. TNFα has already been 
identified as a biomarker of CVD [62] and because of its link with 
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inflammation, evidence also supports its use as a potential biomarker of 
frailty with higher levels often being present in pre-frail and frail 
individuals [56]. Higher levels of TNFα were identified in females at 
elevated CVD risk but frailty status did not influence TNFα concentration 
in our study participants. Again, this discrepancy may be due to large 
variations in the concentration of this cytokine between groups. Past 
research supports the finding of higher levels of TNFα found in individuals 
at elevated CVD risk [63], indicating the efficacy of this cytokine in CVD 
risk assessment.  

Leptin is a hormone predominately synthesized and secreted by 
adipocytes [64]. Leptin regulates bodyweight and energy balance [65], yet 
also has a complex role in bone metabolism [66,67]. The specific effects of 
leptin on bone metabolism are difficult to summarize [68], though 
research suggests leptin is necessary for both the inhibition and 
stimulation of bone formation [69,70]. A relationship between leptin and 
CVD has been established [71] and the use of leptin as a biomarker of CVD 
is supported by clinical studies demonstrating increased concentration of 
leptin is predictive of cardiovascular events [72]. Additionally, leptin 
concentrations are higher in obesity and other metabolic disorders which 
predispose for the development of CVD [73]. Thus, the increase in leptin 
concentration present in females at elevated risk for CVD might result 
from the presence of metabolic risk factors for CVD in this group. 

Limitations 

Despite using results from a similarly aged cohort to calculate sample 
size for this study [44], large variations in the concentrations of bone 
metabolism analytes in the systemic concentration were found within 
groups. This variation may have impacted our ability to identify 
differences between groups. The specific cause of this variation is unclear, 
and improved methodological approaches are needed to address 
variability in the future [74]. The measured analytes, while selected for 
their involvement in bone metabolism, also play a variety of pleiotropic 
roles throughout the body, such as the well-known roles of IL-6 and TNFα 
in inflammation [49,58]. This makes conclusively stating which 
pathophysiological processes connect the studied analytes to outcomes 
like pre-frailty or elevated CVD risk difficult to ascertain. Further, the 
collection of bone mineral density measures and information on potential 
hormone replacement therapies in the females of this cohort could have 
provided additional information on the bone health of the participants, 
which may have assisted in explaining why the bone metabolism analytes 
were not found to be effective biomarkers of pre-frailty.  

Future Directions 

There is an increasing need to identify and validate biomarkers of pre-
frailty and frailty as current identification is based on specific criteria 
which can sometimes be inconsistent [75]. While the measurement of bone 
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metabolism analytes is effective in the monitoring of conditions like 
osteoporosis [76], bone metabolism analytes may not be useful biomarkers 
of pre-frailty as reductions in bone health may only be evident later in the 
frailty progression of most females. Additional research is necessary to (1) 
identify biomarkers of pre-frailty; (2) define the physiological ranges of 
these biomarkers; (3) identify the optimal method of assessing established 
biomarkers; and (4) examine the underlying pathophysiology connecting 
said biomarkers to frailty progression in more detail.   

These findings will support the development of novel biomarker-based 
methods of pre-frailty and CVD risk assessment. The identification of 
effective biomarkers of pre-frailty may be used to identify potential 
physiological dysfunction, facilitate early intervention, and lead to the 
development of therapeutic strategies [77]. Promising biomarkers of pre-
frailty and CVD may be identified in our cohort in 2022, following the 
completion of a 5-year follow up period [39]. 

CONCLUSIONS 

No differences were found for the concentrations of any bone 
metabolism analytes based on pre-frailty status, nor were any interaction 
effects between pre-frailty and CVD risk. It is possible these females were 
too early in the progression of frailty to have developed reductions in bone 
health that were detectable using biomarkers of bone metabolism. 
Concentrations of IL-6, TNFα, and leptin were found to be higher in 
females who were at elevated risk of developing CVD, as compared to 
females at low risk for developing CVD. This research suggests these 
cytokines involved in bone metabolism may act as potential biomarkers of 
CVD risk; however, it did not identify potential biomarkers of pre-frailty 
in middle-aged and older females. 
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