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ABSTRACT  

It is predicted that the growth in the U.S. elderly population alongside 
continued growth in chronic disease prevalence will further strain an 
already overburdened healthcare system and could compromise the 
delivery of equitable care. Current trends in technology are demonstrating 
successful application of artificial intelligence (AI) and machine learning 
(ML) to biomarkers of cardiovascular disease (CVD) using longitudinal 
data collected passively from internet-of-things (IoT) platforms deployed 
among the elderly population. These systems are growing in sophistication 
and deployed across evermore use-cases, presenting new opportunities 
and challenges for innovators and caregivers alike. IoT sensor 
development that incorporates greater levels of passivity will increase the 
likelihood of continued growth in device adoption among the geriatric 
population for longitudinal health data collection which will benefit a 
variety of CVD applications. This growth in IoT sensor development and 
longitudinal data acquisition is paralleled by the growth in ML approaches 
that continue to provide promising avenues for better geriatric care 
through higher personalization, more real-time feedback, and prognostic 
insights that may help prevent downstream complications and relieve 
strain on the healthcare system overall. However, findings that identify 
differences in longitudinal biomarker interpretations between elderly 
populations and relatively younger populations highlights the necessity 
that ML approaches that use data from newly developed passive IoT 
systems should collect more data on this target population and more 
clinical trials will help elucidate the extent of benefits and risks from these 
data driven approaches to remote care. 
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ECG, Electrocardiography; 
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HIPAA, Health Insurance Portability and Accountability Act; 
HRV, Heart rate variability; 
IoT, Internet of things 
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INTRODUCTION  

Age is arguably among the most significant health determinants and is 
a risk factor for various human pathologies, especially those concerning 
the heart. Cardiovascular Diseases (CVD), which includes coronary heart 
disease, stroke, heart failure and peripheral artery disease, are leading 
causes of morbidity and mortality in U.S. adults and is expected to 
continue to rise in the future [1]. During this same projected timeframe, 
the U.S. Census Bureau estimates that the elderly population, those aged 
65 and older, will rise from roughly 15% of the population today to nearly 
25% by 2060 [2]. This age demographic once accounted for 23% of the total 
disease burden across the globe with approximately half of that burden 
belonging to high-income countries such as the U.S. [3]. This rise will strain 
an already burdened healthcare system that is struggling to provide 
equitable care across the population and meet this growing demand [4]. 

Technological advantages within the category of “Internet-of-Things” 
(IoT) has enabled passive and remote monitoring of data collected across 
various industries and applications due to ubiquitous internet 
connectivity, advances in the miniaturization of wireless hardware 
technologies, and improvements in a wide variety of sensor technologies. 
Naturally, these advancements have started to emerge in healthcare-
specific applications [5]. These technologies offer the potential for a variety 
of applications such as lifestyle management and disease prevention, 
disease screening, disease diagnosis, and treatment management. IoT 
technologies have promise in personalized and preventive care because 
they are capable of collecting health data at a much higher frequency than 
during bespoke doctor visits. The increasing trend of passivity among IoT 
devices, whereby data is collected “in the background” and does not require 
user input, greatly increases both adoption and quantity of health data [6]. 
Subsequently, as more data becomes available, machine learning (ML) 
approaches become useful for applying that data towards new and 
improved healthcare management tools [7].  

The adoption of home health technologies among the elderly 
population has been increasing in recent years [8]. This is due to several 
factors such as the aging population, advancements in technology, and the 
need to reduce healthcare costs. According to a survey conducted in 2023 
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by Rock Health [8], the use of telemedicine among older adults has 
increased by 12% in the past year to 76% while 21% of older adults 
reported they use wearable technology to manage their health, following 
a steady increase year over year from 13% in 2019. Nevertheless, there are 
still barriers to adoption for some older adults, such as lack of access to 
technology, lack of digital literacy, and lack of trust in technology.  

The digitization and consumerization of healthcare is taking disease 
management along a new paradigm, whereby advanced data analysis 
techniques that use ML enable more personalized and real-time lifestyle 
and disease management care in addition to new applications altogether 
like predictive insights of pending events. These advances come as a 
consequence of an increase in device connectivity, portability, and 
tracking passivity which leads to an increase in more data followed an 
increase in ML capabilities and model training across wider healthcare 
applications (Figure 1). For example, the Apple Watch’s continuous 
accelerometer data was recently used and FDA-cleared for monitoring 
tremors and dyskinesia in Parkinson’s patients [9], and the Whoop 
wristband recently demonstrated the ability to predict preterm birth using 
heart rate variability (HRV) data [10]. The application of these ML 
algorithms require large, personalized datasets. These datasets are best 
acquired through continuous patient monitoring using passive collection 
techniques that minimize or eliminate user collection burden. This mini-
review aims to highlight the recent developments in passive, IoT-based 
biomarker data collection that targets the elderly population’s needs 
within the context of CVD. We will address the opportunities and 
challenges that emerge at the intersection of IoT technologies and 
healthcare needs. 

 

Figure 1. Timeline history of the progression of medical device products. *Image credit (left to right): 
National Museum of American History; Life Alert Emergency Response Inc.; Alphabet Inc.; CellScope Inc.; 
Nokia Inc.; Medtronic Inc.; Abbott Inc.; Apple Inc., Oura Inc.  

PASSIVE IoT MONITORING FOR ELDER CARE 

Dynamic, Non-Invasive CVD Biomarkers 

Primary risk factors for CVD include diabetes, dyslipidemia, 
hypertension, and obesity [1]. The prevalence of hypertension alone is 
estimated to be roughly 75% for adults over the age of 60 [11]. Measuring 
and monitoring hypertension is typically done through the use of 
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traditional biomarkers such as blood pressure, heart rate, and cholesterol 
levels. Some examples of emerging biomarkers for measuring and 
monitoring hypertension, CVD events, and CVD progression over time that 
are the target of IoT technologies include analytes of interest within 
physiological fluids like blood, plasma, urine, sweat, saliva, and tears such 
as N-terminal pro-B-type natriuretic peptide (NT-proBNP) [12], high-
sensitivity troponin (hsTnT) [13], C-reactive protein (CRP), interleukin-6 
(IL-6) [14], urine albumin and creatinine [15], urine sodium and potassium 
[16], urine cystatin-C [17], and an array of microRNAs have all been found 
to be associated with hypertension and cardiovascular disease [14]; aortic 
stiffness which can be measured through pulse wave velocity [18]; and an 
ever-growing array of digital biomarkers derived from new algorithms 
that interpret existing data in new ways, such as the use of HRV, BCG 
variability, and glucose variability and their correlations to hypertension 
and heart failure, among others [19–22]. 

Passive Sensor Technologies  

Sensor passivity refers to the degree to which sensors can collect data 
without user intervention and can range from items with small active 
interventions like stepping on a scale (whereby longitudinal data is 
processed in the background) to devices that have eliminated user 
intervention such as mains-powered connected smart furniture. This mini 
review examines the passivity of IoT technologies because the high-
frequency, long-term data collection advantages of passive devices enable 
more sophisticated ML approaches to biomarker discovery and support 
throughout the treatment journey, especially among the geriatric 
population where active use of technology can be more challenging [23].  

Wearable technologies are now available with a wide array of 
miniaturized sensors that are capable of collecting high-frequency data 
and used for CVD risk classification, prevention, diagnosis, and treatment 
management [24] and have advantages over traditional heart monitoring 
methods due to their ability to be integrated into passive frameworks and 
provide continuous monitoring [25]. Photoplethysmography (PPG) is a 
non-invasive optical technique used in most wrist-based wearable devices 
that measures changes in light absorption or reflection as a result of blood 
volume changes in the microvascular bed of tissues [26]. 
Electrocardiography (ECG) is a medical test that measures the electrical 
activity of the heart and is obtained by placing electrodes on the skin. 
Ballistocardiography (BCG) is a non-invasive measurement technique that 
has been used to measure the mechanical forces generated by the beating 
of the heart, breathing activity, and sleep [27], and accelerometers and 
gyroscopes collect motion data that has been linked to CVD risk [28].  

Continuous glucose monitors are growing in use among individuals 
with diabetes as a means for passive blood sampling and have improved 
care for many Type 1 and Type 2 diabetics [29]. However, in addition to 
applications in diabetes, glucose variability is correlated to CVD-related 
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biomarkers of arterial stiffness and micro- and macrovascular 
complications [30-32] along with blood pressure variability [21,22]. A 
variety of analyte-specific biochemical analysis techniques, often employing 
electrochemical sensing, are also being miniaturized and becoming 
internet-connected and housed within passive testing systems [33].   

Passive IoT Integration 

Smartwatches and other wrist-borne devices offer some of the most 
widely tested and adopted technologies for health and wellness monitoring 
[34]. In addition to acute care applications like fall detection, CVD biomarker 
monitoring applications are emerging. For example, accelerometer-based 
activity monitoring has shown to be useful for predicting total CVD 
incidence, stroke, and coronary heart disease among adults with 
hypertension [28] as well as heart failure and Type 2 diabetes incidence [35]. 
Patch-like wearables worn on the skin collecting ECG data offer high-quality 
cardiac monitoring for a variety of arrhythmias [36], but heart rate 
monitoring capabilities of smartwatches are improving quickly and in use 
for detection of atrial fibrillation and preferred over patch-based systems 
among older adults [37]. HRV has grown in use for wellness and fitness 
applications but is also emerging as a potential tool for chronic disease 
monitoring. HRV provides a potential biomarker for hypertension and CVD 
risk and treatment monitoring [38]. Yet, as some studies still demonstrate, 
digital biomarkers derived from heart rate and HRV data must be taken 
from the elderly populations as age-related differences are likely [39].  

Clothing represents an opportunity for passive monitoring and can 
provide localized sensor placement beyond the wrist. For example, smart 
socks have been tested for peripheral neuropathy [40], as well as shoe 
insoles that passively and continuously measure temperature and 
pressure [41]. More recently, the application of ML classification 
algorithms for the purpose of predicting risk of diabetic foot ulcers has 
been used on this data for real-time risk assessment with high levels of 
accuracy [42]. heart rate monitoring technologies have been similarly 
explored among socks as well as shirts and other garments [43]. These 
implementations still face barriers to adoption, however, because they are 
often still overly bulky, require frequent battery recharging, and have 
relatively high costs [23,37,43].  

Integrating sensors into furniture and other structures used within the 
home is another increasingly explored area of passive IoT biomarker 
monitoring with significant potential for CVD monitoring. For example, 
chair-shaped systems that measure blood pressure biomarkers using 
similar technologies in smartwatch systems have been prototyped and 
tested [44]. Sleep monitoring using microwave based detection sensors 
placed under the bed sheet are advantageous in that they do not require 
contact with skin [45], while Gleichauf, et al. combined both microwave 
radar sensors and time-of-flight distance sensors for evaluating breathing 
rates in neonatal environments [46]. Pressure sensors have similarly been 
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used to detect disordered breathing during sleep [47], and BCG signals 
have been used to assess sleep apnea [48]. Bed-integrated BCG sensors can 
also help detect cardiac arrhythmias [49] and have been explored for 
identifying reduced cardiac function in impending heart failure in an 
elderly patient [50]. Toilet seats with integrated ECG, PPG, and BCG sensors 
have been explored for accurate blood pressure, stroke volume, and blood 
oxygenation monitoring [51,52]. These systems aim to take advantage of 
frequent use and skin contact without requiring a wearable to collect 
longitudinal data for real-time CVD monitoring with future interests in 
heart failure patients. Toilets also open the possibility of passive urine 
testing and have already been explored within urinals [53]. As the 
urinalysis capabilities of these systems improve, broader CVD-monitoring 
applications arise. For example, the ability to measure urine sodium 
routinely not only may help assess CVD risk [16], but longitudinal profiling 
may provide prognostic information on pending heart failure 
compilations [54] as well as help assess treatment efficacy [55]. However, 
a recent clinical trial highlights the need for more research to reach the 
levels of consistency needed for clinical applications [56]. Though often 
more difficult with regards to signal analysis, an increasing use of deep 
learning models to analyze bio-signals from ECG, PPG, and BCG, instead of 
manually extracting features, are providing superior approaches to 
extracting personalized CVD signals in these increasingly demanding 
environments [57]. Table 1 summarizes these passive, dynamic 
biomarkers for CVD applications and their benefits and shortcomings. 

Table 1. Summary of passive, dynamic biomarkers under IoT exploration. 

Biomarker 
Medium 

Passive Sensor 
Technologies 

IoT 
Integrations 

Benefits Shortcomings/Technical 
Barriers 

Blood Electrochemical; 
Spectroscopic 

Continuous 
glucose 

monitors 

A large variety of clinically 
validated biomarkers 

available 

Still relatively bulky; frequent 
need to replace; direct skin 

contact; can still require direct 
contact with blood; limited 

validated biomarker detection 
platforms 

Urine Electrochemical; 
Spectroscopic  

Toilets; urinals Noninvasive; wide variety 
of validated biomarkers 

available; integration into 
act of daily living 

Limited clinical validation of IoT 
integrated platforms; some 

integrated systems are viewed as 
too obtrusive 

Heart rate 
and HRV 

PPG; ECG; BCG Watches; toilet 
seats; chairs; 

beds; clothing 

Noninvasive; potentially 
seamless integration into 
daily living; several CVD 

applications 

Most available approaches use 
watches which not everyone 

prefers; clothing and furniture 
integrations introduce more 
complexity in signal analysis 

Pulse and 
blood 

pressure 

PPG; ECG; BCG Watches Valuable CVD biomarkers 
and potential for increased 

testing compliance from 
passive testing framework 

Blood pressure and blood 
pressure variability still require 

more clinical validation as signal 
processing is still largely in R&D 

Adv Geriatr Med Res. 2023;5(1):e230002. https://doi.org/10.20900/agmr20230002 

https://doi.org/10.20900/agmr20230002


 
Advances in Geriatric Medicine and Research 7 of 20 

LEARNING HEALTH TRAJECTORIES OF GERIATRIC PATIENTS FROM 

LONGITUDINAL DATA 

In this section, we will explore the prevalent techniques used in 
analyzing longitudinal health trajectories of geriatric patients, which 
involves examining patient data during extended durations of time to 
identify patterns and forecast health trends. Within the context of CVD and 
hypertension prevention, we will discuss how artificial intelligence (AI) 
and ML techniques can be used to extract meaningful insights from 
observed data, and the implications of data security and ownership. This 
is typically viewed through a 4-layer IoT architecture model whereby the 
perception layer is responsible for collecting data from sensors and 
devices, the transport layer moves the data from the perception layer to 
the processing layer, the processing layer is where the data is analyzed 
and transformed into useful insights, which are then made available to 
end-users through the application layer (Figure 2). Additionally, we’ll 
consider the importance of user experience in designing health technology 
platforms that appropriately leverage user interfaces that enhance the 
tech adoption rate among elderly populations.   

 

Figure 2. The 4-layer IoT architecture consists of the perception layer, transport layer, processing layer, and 
application layer.  

Machine Learning and Artificial Intelligence  

Integrating AI and ML with IoT has greatly impacted the way passive 
monitoring of older populations is conducted. AI and ML algorithms can 
analyze large amounts of data generated by wearable devices, sensors, 
and health records to identify patterns and predict the onset of disease [58]. 
This has led to increasingly more accurate and efficient monitoring that 
leads to earlier detection and prevention of chronic conditions. For 
example, the digital twin-enabled Twin Precision Treatment Program 
performed a 3 month study on 64 individuals using CGMs, Digital Twin 
technology, ML algorithms, and precision nutrition to aid treatment of 
patients with Type 2 diabetes which resulted in a significant reduction in 
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blood pressure and a decrease in the percent of patients taking 
antihypertensive medications from 35.9% at baseline to 4.7% at 90 days 
[59]. Other applications can be viewed in Table 2. ML algorithms deployed 
on wireless, wearable ECG monitor data have been shown to be 
significantly accurate at automatically classifying cardiac anomalies 
among the elderly population [60]. The growth in these opportunities has 
largely stemmed from advancements in the processing power of 
computers that has allowed faster and more complex calculations on 
larger datasets [61]; widespread cloud computing services that enable 
efficient and safe storage and sharing of vast amounts of data [62]; 
widespread availability of high-speed internet connectivity [63]; 
widespread adoption of powerful mobile devices [64]; IoT devices used to 
monitor patients' health in real-time and provide personalized 
recommendations and interventions [65]; and blockchain technologies 
working towards enabling authentic data sharing and interoperability 
across healthcare organizations [66]. These advancements have led to 
increased use of the following ML algorithms within IoT systems for 
tracking CVD biomarkers among the elderly: 

● Supervised learning: This type of algorithm can be used to predict 
the onset of chronic diseases and heart issues based on patterns in 
physiological biomarker data that is pre-labeled before training [67]. For 
example, a comprehensive review published in the Computational and 
Structural Biotechnology Journal [68] presented models that use supervised 
learning algorithms (e.g., Random Forest, Naïve Bayes, Support vector 
machine, and Decision tree) to predict and assess heart failure in the adult 
population based on their HRV, blood pressure, and body mass index. 
● Unsupervised learning: Unsupervised learning algorithms are more 
exploratory (e.g., K-means clustering). They can be used to identify 
patterns, clusters, and anomalies in unlabeled physiological biomarker 
datasets that may indicate the onset of a chronic disease or heart issue. In 
European Heart Journal - Digital Health [69], a review study presented 
analyses of unsupervised ML being used on 1693 patients hospitalized 
with Heart failure to reveal 6 disparate phenogroups common 
comorbidities in the older populations: coronary artery disease, valvular 
heart disease, atrial fibrillation, chronic obstructive pulmonary disease 
(COPD), obstructive sleep apnea (OSA), or few comorbidities. 
● Reinforcement learning (RL): An RL algorithm learns to make 
decisions based on feedback from the environment. The algorithm 
interacts with the environment and learns by receiving rewards or 
penalties based on its actions [70]. The goal is to maximize the total reward 
over time. RL algorithms can be used to develop personalized treatment 
plans for elderly individuals based on their collected data sources. One 
example of RL used in practice by [71] showed how sedentary type 2 
diabetic patients use data from their smartphone’s pedometer and to assist 
them in adhering to an exercise regimen that improved their glycemic 
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control. RL algorithms in this scenario are able to learn over time and 
adjust the exercise plan to optimize the individual's health outcomes. 
● Semi-supervised learning: This type of algorithm combines 
elements of supervised and unsupervised learning and can be used to 
make predictions based on a combination of labeled and unlabeled data. 
Semi-supervised learning has proven to be useful in medical imaging 
analysis where data availability is often sparse (access to a large amount 
of unlabeled data, but a small amount of labeled data) [72]. 
● Transformers: Transformers are a type of deep learning algorithm 
designed to analyze and process large amounts of sequential data, such as 
natural language text and physiological biomarker data. Transformers use 
an attention mechanism to focus on different parts of the input sequence 
when processing each element in the sequence. This allows the model to 
capture long-range dependencies and relationships between words in a 
sentence or words in different sentences. Some well-known applications 
include language translation, question answering, and sentiment analysis. 
A study published in the IEEE Journal of Biomedical and Health 
Informatics [73] used a Transformer-based risk model to analyze 
electronic health records and subsequently provide explainability of 
predictions made for over 100,000 heart failure patients.  

Table 2. Machine Learning Applications in IoT Platforms. 

ML Category ML Processing  Condition Data Acquisition 
Platform (IoT 
application) 

Data Input Data Output 

Supervised 
Learning [74] 

K-Nearest Neighbor, 
Multilayer Perceptron, 
Linear-Support Vector 

Machine  

Heart disease diagnoses Patient data is 
deployed and stored on 

a cloud server 

Body sensors 92.3% prognosis rate and 
77.37% accuracy 

Supervised 
Learning [75] 

Support Vector 
Machines, Naïve Bayes, 
Random forest, Multi-

layer perceptron 

Hybrid recommender 
system for CVD 

Wireless bio-sensor 
networks forwarding 

data to the cloud server 

Heartbeat rhythm 
and ECG readings 

Diagnose and classify 8 
classes of CVD. Provides 

physical and dietary 
recommendations 

according to gender and 
age groups 

Unsupervised 
Learning [76] 

Density-based Spatial 
Clustering of 

Applications with Noise 

Activity recognition 
monitoring 

Time-based records of 
events 

Daily behavioral 
and homecare 
sequence data 

Detect the implicit 
irregularity of elderly 

health conditions 
Reinforcement 
Learning [77] 

Deep Q-network 
(DQN) 

Lung cancer detection Imaging classification 
of lung cancer 

Pre-processed 
images 

Lung tumor localization 
and treatment 

Supervised 
Learning [78] 

Random Forest, 
Gradient Boosting, K 
Nearest Neighbors, 

Support Vector 
Machine 

Hypoglycemia detection 
system for diabetic 

patients 

Glucose Sensor and 
Smart Watch 

Heart rate, 
glucose, blood 
pressure, body 
temperature, 

shivering, and 
sweating 

Real-time system alerts 

Transformer [79] Local Recurrent 
Transformer (LRT), 

Sentence BERT 

Breathing abnormalities 
from physiological 

measurements (rate, 
pitch, depth) 

Digital sound recorders Breathing sounds Prediction for breath sounds 
of the common cold, 

influenza, pneumonia, and 
bronchitis 
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User Experience (UX) and User Interface (UI)  

The elderly population is particularly vulnerable to having difficulty 
adopting new technologies due to their age-related physical and cognitive 
impairments [80]. Reduced dexterity and vision quality can impair their 
ability to operate small interfaces and touch screens, while reduced 
hearing quality may hinder their ability to understand auditory cues and 
signals, such as emergency medical alerts. Thus, unfamiliar technologies 
like wearables are often disliked and viewed as cumbersome [81]. 
Additionally, older individuals face obstacles such as lower awareness of 
new technological advances, limited access to digital literacy support, and 
financial constraints that all make it difficult to keep up with modern 
trends in consumer tech and digital health advancements. Efforts in 
making passive monitoring more pervasive to alleviate the elderly’s 
interface issues must consider design practices and the consequences of 
human-computer interaction [82].  

Acquisition, Security, Ownership, and Safety of Big Data 

With the rise of remote care services, connected devices, and other 
digital tools that can now be used in the home setting, there is a heightened 
need for adequate data protection for seniors who might not have the 
technical knowledge necessary to safeguard their protected health 
information. While it is possible for healthcare providers to ensure patient 
data is legally secured through HIPAA (Health Insurance Portability and 
Accountability Act) compliance regulations and other standards of 
responsible practice, there are still additional risks associated with using 
home health technologies that need to be addressed. For instance, if an 
elderly patient’s personal device is hacked or stolen then their sensitive 
medical information could become compromised. Additionally, if an 
elderly person transfers ownership of their technology device or 
equipment to someone else, either intentionally or unknowingly, then 
they could lose control over who has access to their medical history which 
can result in exploitations and medical identity theft [83]. Recent data 
breaches among consumer technologies, within digital health or otherwise, 
still hurt consumer trust for digital health technologies [8]. Only through 
proactive steps such as safeguarding patient information from 
unauthorized access, staff and patient education, audits, and well-defined 
breach protocols will patients and healthcare professionals be confident 
in ensuring optimal levels of security when utilizing home health 
technologies on behalf of senior citizens. 

CHALLENGES AND OPPORTUNITIES 

Despite the many opportunities presented by IoT passive monitoring, 
there are also challenges that must be addressed. Ethical concerns related 
to data privacy and confidentiality remain one of the biggest challenges to 
IoT health data collection and use. Careful consideration must be given to 
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protect sensitive patient data collected from unauthorized access and 
breaches.  

Another challenge that must be addressed is the potential for bias in 
the data collected by IoT passive monitoring systems. The data collected 
by these systems can be affected by factors such as the type of device used, 
the location of the device, and the demographics of the patient population. 
If not carefully monitored and adjusted for, this bias can result in 
inaccurate and potentially harmful healthcare decisions. Thus, it is crucial 
for healthcare providers to carefully consider the limitations of IoT 
passive monitoring systems and develop methods to mitigate these biases. 
By addressing these challenges, healthcare providers can fully realize the 
benefits of IoT passive monitoring while ensuring patient privacy and 
safety.  

IoT passive monitoring has improved healthcare and medical 
management for U.S. geriatric populations in a variety of ways that include, 
but not limited to early detection of chronic diseases, prompt medical 
assistance, telehealth visitations, and a reduction in human errors [84]. 
The trend towards increasing passivity among IoT health data collection is 
significant when it comes to compliance because the elderly population 
has barriers to independent use that can include impaired memory and 
decline in dexterity and sensory organs. Yet compliance is critical for the 
collection of longitudinal data necessary for the application of ML 
techniques to benefit CVD, including the ability to help stratify CVD risk, 
the ability to screen and diagnose for various CVD conditions, the ability 
to detect acute CVD events and alert caregivers, the ability to 
prognostically identify CVD trends and events, the ability to help 
personalize and manage chronic conditions and treatments, and even the 
ability to help motivate behavior changes that benefit CVD risk and disease 
treatment. 

RECOMMENDATIONS FOR FUTURE WORK 

There are opportunities for advancing the field of IoT passive health 
monitoring by improving the breadth of physiological biomarker 
detection technologies. The majority of data collection is performed via 
smartwatches and other wearables that all use a handful of similar sensor 
modalities. Additional sensor modalities would provide richer data that 
could improve the accuracy of existing methods or create entirely new 
applications. Increasing passivity is another significant area of 
opportunity. For example, current approaches like smartwatches may 
improve battery performance to eliminate battery recharge burden, or 
more seamless integration of IoT sensors into furniture, clothing, and 
home appliances could create more zero-burden data collection platforms. 
There are significant opportunities in the application of ML algorithms for 
both novel digital biomarker discovery and better interpretation of health 
status and personalized health trajectories. The strength and relevance of 
ML algorithms come from the datasets they are built on and emphasizes 
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the need for more data collection specifically from elderly populations. 
This will improve accuracy of models within these populations (Table 3). 

The adoption of digital health tools such as telemedicine and wearables 
among the elderly U.S. population is a positive trend that demonstrates an 
increase in perceived value among the elderly and has significant 
potential to improve remote geriatric care either directly or through 
increased datasets used for improving current and future systems that will 
result in better personalized treatments.  

Table 3. Potential discrepancies in longitudinal CVD biomarker correlations observed in the elderly. 

Biomarkers Technologies Applications Discrepancy identified between elderly and 
younger adults 

HRV ECG Hypertension  Weaker correlation between longitudinal HRV and 
hypertension risk among older adults [39]. 

Glucose 
variability 

Continuous glucose 
monitor 

Hypoglycemia 
detection and glucose 

control 

Different continuous glucose patterns, including 
higher mean CGM glucose, lower time-spent-in-
range, and high rates of hypoglycemic values in 

nondiabetic elderly [85,86].  

Longitudinal 
urine sodium 

Electrochemical Hypertension Aging has been associated with reductions in renal 
sodium excretion, and correlations between urine 

sodium and blood pressure may only be significant 
in younger adults [87]. 

Blood pressure 
variability 

Automatic electronic 
sphygmomanometer 

CVD event prediction While systolic blood pressure variability has been 
linked to stroke and coronary events in younger 
adults, some data suggests that in older subjects’ 

diastolic blood pressure variability is more strongly 
associated with coronary events and vascular or 

total mortality [88]. 

Sleep timing 
and sleep stage 

Accelerometer; PPG Sleep patterns Age-related changes in circadian and homeostatic 
sleep drives may be accompanied by different 

cognitive and chronic disease risk effects from sleep 
deprivation in older adults [89,90].  

Body 
temperature 

Temperature sensor Illness prediction Blunted or dysfunctional thermoregulatory systems 
can alter body temperature response to illness [91]. 
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