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ABSTRACT 

Sjögren’s syndrome (SS) is a chronic autoimmune disease characterized by 
inflammatory cell infiltration of the salivary and lacrimal glands, resulting 
in acinar epithelial cell atrophy, cell death, and loss of exocrine function. 
At least half of SS patients develop extraglandular inflammatory disease 
and have a wide range of systemic clinical manifestations that can affect 
any organ system, including connective tissues. As many as 3.1 million 
people in the U.S. suffer from SS, a disease that causes severe impairment. 
Women are nine times more likely than men to be affected by this 
condition. Unfortunately, there is currently no effective treatment for SS, 
and the available options only provide partial relief. Treatment involves 
using replacement therapies such as artificial saliva and eye lubricants, or 
immunosuppressive agents that have limited efficacy. The medical 
community recognizes that there is a significant need for more effective 
treatments for SS. Increasing evidence demonstrates the links between the 
dysfunction of the human microbial community and the onset and 
development of many human diseases, signifying the potential use of 
microorganisms as an alternative strategy to conquer these issues. The 
role of the microbiome in controlling immune function of the human host 
in the context of autoimmune diseases like SS is now becoming better 
understood and may help to enable new drug development strategies. 
Natural probiotics and synthetic biology applications hold promise for 
novel treatment approaches to solve the encryption of many complex and 
multifactorial immune disorders, like SS. 

KEYWORDS: Sjögren’s syndrome; microbiome 

THE ROLE OF THE IMMUNE RESPONSE IN SS 

Sjögren syndrome (SS) is an autoimmune disease characterized by 
ocular and oral dryness resulting from lacrimal and salivary gland 
dysfunction [1,2]. The dryness also affects other mucosal surfaces such as 
the airways, digestive tract, and vagina, resulting in the clinical picture of 
“sicca syndrome” or “sicca complex” [3,4]. SS can affect the secretory 
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function specifically, defined as primary SS, or the disease can involve 
virtually any organ system, leading to extremely pleomorphic clinical 
manifestations associated with systemic autoimmune rheumatic diseases 
(secondary SS) [5]. This classification is somewhat historical as more 
recently the disease is described as either a standalone disorder or 
associated with other autoimmune complications to account for the fact 
that patients can develop other autoimmune diseases subsequent to SS 
[6,7]. The severity of SS is quite broad, spanning mild glandular dryness 
and constitutional symptoms to severe glandular involvement and a 
variety of extraglandular manifestations and systemic autoimmune 
features. This creates challenges in establishing the diagnosis, 
differentiating the condition from other systemic autoimmune disorders 
or causes of salivary gland enlargement [8,9]. There is no single diagnostic 
test for SS and more sophisticated assays are needed to catch patients early 
on during disease onset and start treatments sooner. 

SS mainly affects middle-aged women, with an average female to male 
ratio 9:1 [3], with an incidence of 6.92 per 100,000 people/year, and a 
prevalence of 60.82 per 100,000 people [10,11]. Because of the 
heterogeneity of the clinical manifestations, in many cases, SS can go 
undiagnosed. Patients may start to experience symptoms well before a 
formal diagnosis is made. Aspects of disease including autoantibodies 
and/or laboratory features (such as hypergammaglobulinemia and 
lymphopenia) can present years before diagnosis [12]. Around 60% of 
people with SS develop the disease as a secondary condition to an existing 
underlying autoimmune disorder such as rheumatoid arthritis (RA), 
systemic lupus erythematosus (SLE), or multiple sclerosis. [13]. Currently, 
there is no cure for SS, and the treatment options are extremely limited for 
a disease that significantly alters the quality of life [14]. Dryness in the 
mouth can significantly impact essential everyday activities including 
eating, speaking, and sleeping. When the saliva production decreases, the 
antibacterial properties of the oral cavity decrease, increasing the risk of 
infections, tooth decay, and periodontal disease [15]. Patient suffering 
from SS also commonly experience complications of the eye such as 
itching, soreness, grittiness, and dryness, even though the eyes appear 
normal. This is due to a decrease in tear production, which can cause 
chronic irritation and damage to the corneal and bulbar conjunctival 
epithelium, known as keratoconjunctivitis sicca. In addition, SS increases 
the risk of mortality by 50% [16].  

Central to the pathophysiology of SS is a chronic immune system 
stimulation [17]. In primary SS, mononuclear inflammatory infiltrates and 
IgG plasma cells that infiltrate the salivary and lacrimal glands contribute 
to damage and ultimately irreversible destruction of the glandular tissue 
[18]. While the processes that underlie the humoral and cellular 
autoimmune reactions observed in patients with SS are not known, B cells 
play a central role in the immunopathogenesis and exhibit signs of 
hyperactivity [19]. Hyperactivity of B cells results in secretion of 
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autoantibodies and production of various cytokines, including type I IFN, 
BAFF, IL-6, and IL-21 [20]. T lymphocytes are also involved in the disease 
etiopathogenesis [21]. Helper T cell subsets converge at different stages of 
the disease and contribute to pro-inflammatory cytokine secretion in 
target tissues. Accumulation of immunomodulatory T cell-derived factors, 
such as IL-17, IFN-γ, or IL-21, not only preserve the inflammatory 
environment, but also favor strong B cell and T follicular helper (Tfh) cells 
activation [22]. Lymphocytic infiltration of the salivary and lacrimal 
glands is characterized by a presence of CD4+ T cells at the early stages of 
the disease, followed by B cell accumulation at later stages [23]. 

The etiology of SS is unknown and may include exposure to specific 
environmental factors in genetically susceptible individuals [24,25]. 
Among environmental factors, the gut microbiome is emerging as a 
potential contributor to the disease etiopathogenesis.  

THE IMMUNOMODULATORY ROLE OF THE GUT MICROBIOME 

Over the last ten years, there has been a significant increase in research 
related to the microbiome, revealing an important relationship between 
gut bacteria and their human hosts. The gut microbiota is now recognized 
as a critical factor in regulating overall host health [26]. The gut bacteria 
have been acknowledged for their role in aiding digestion, producing 
essential nutrients such as vitamins, and protecting the body from 
harmful pathogens. Microbial profiles correlate to immune competence, 
metabolic activities, neurologic and cardiovascular functions, and cancer 
risk. Moreover, there is a connection between the disturbance of the 
natural microbiota and various human ailments. Deviations in the gut 
microbiota have been linked to numerous health conditions, such as 
obesity, type 2 diabetes, hepatic steatosis, intestinal bowel diseases (IBDs), 
and multiple types of cancer [27].  

The central role of the gut microbiome in health and disease stems from 
the complex interplay of the microbiome with the host immune system. 
The gut microbiome plays a critical role in training and development of 
the host’s immune system. Microbiota and innate immunity are engaged 
in an extensive bidirectional communication that is the results of specific 
signaling molecules produced by the host as well as the gut bacteria that 
culminate in the activation of monocytes, macrophages, and Innate 
lymphoid cells (ILCs) that lie the gut endothelial barrier [28–30]. 
Particularly important is the relationship between the microbiota and 
tissue-resident dendritic cells (DCs), which are central to the development 
of immune memory and tolerance [31,32]. Recent studies have revealed 
mechanisms that regulate the mutualistic relationship between the 
microbiome and the adaptive immune system, in addition to their impact 
on innate immune function. Crosstalk between gut microbes and B cells, 
via IgA production, facilitates the expansion of Foxp3+ regulatory T cells 
(Tregs) [33,34] and the interaction with colonic regulatory CD4+ T cells 
supports gut homeostasis [35,36]. The microbiome regulation of adoptive 
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T cell responses involves CD8+ (cytotoxic) T cells, which works in the 
elimination of intracellular pathogens and cancer cells. An important 
microbiome-host interaction is between gut bacteria and Tfh cells, which 
are specialized to assist B cells, and are implicated in maintenance of 
microbiota homeostasis [37–39]. 

Given the complex and wide interaction between the gut microbes and 
the host immune system, imbalances in microbiota community can 
contribute to the pathogenesis of a multitude of immune-mediated 
disorders. Environmental factors such as changes in diet, geography, or 
the use of antibiotics can disrupt the gut microbiome, impair host-
microbiome interfaces, or alter the immune function leading to an 
abnormal immune response. The interactions between the microbiome 
and the immune system are associated with several gastrointestinal 
diseases such as IBD and celiac disease, as well as non-gastrointestinal 
disorders like rheumatoid arthritis, metabolic syndrome, CNS disorders, 
and cancer [40–45]. 

IMPLICATIONS OF GUT, ORAL, AND OCULAR MICROBIOME 
DYSBIOSIS IN SS 

As microbiota diversity is essential to maintain the stability and 
homeostasis of the gut, microbiome alterations can result in imbalance of 
the immune response leading to chronic disorders. Growing evidence has 
shown that SS is also characterized by microbial perturbations [46–48] 
(Figure 1). Several studies have demonstrated that SS patients present 
significant gut dysbiosis. In these studies, gut dysbiosis is correlated with 
disease severity [47,49–51]. As an example, in a study of 42 SS patients, 
severe dysbiosis was more prevalent in SS patients and more severe 
dysbiosis correlated with higher disease activity as evaluated by the 
ESSDAI total score and the ClinESSDAI total score, as well as higher levels 
of fecal calprotectin [51]. The gut microbiome of SS patients is positively 
associated with the richness of Enterobacter, while negatively associated 
with the abundance of Lachnospira, Roseburia, Bifidobacterium, 
Ruminococcus, Blautia, and Roseburia [47,50,52]. Dysbiosis observed in 
autoimmune disease such as SS is associated with systemic inflammation 
[53,54]. The levels of certain proinflammatory factors such as IL-6, IL-12, 
IL-17, and TNF-α are associated with changes in the gut microbiome. 
Interestingly, germ-free mice colonized with human intestinal microbiota 
from SS patients showed a reduced frequency of CD4+ FOXP3+ Tregs 
further strengthening the link between gut dysbiosis and SS [49]. The gut 
microbiome dysbiosis can modulate systemic inflammation which in turn 
can diminish beneficial gut bacteria [50,55]. As we are gaining more 
information on the alterations of the gut microbiome in SS patients, 
causality studies are still needed to better understand the disease 
etiopathogenesis. Moreover, microbiota alterations do not only refer to 
changes in bacteria diversity and richness, but also perturbation in their 
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metabolites, which can also be implicated in SS disease onset and 
progression. 

Microbiota diversity is essential to maintain the stability and efficiency 
of the body. In addition to the gut, microbial dysbiosis is observed in SS 
patients in the oral cavity and eyes, and they may all contribute to the 
development of SS [48]. The relationship of the so-called gut-ocular-oral 
axis has been addressed by several studies [46,47,56,57]. In both animal 
models and human studies, dysbiosis of the gut microbiota was shown to 
partly correlate with changes in the oral and ocular microbiome. 
Therefore, it is plausible that there is a link between oral/ocular and gut 
bacteria but the related mechanism is still unknown. Understanding the 
causality relationship could be challenging since decreased salivary and 
lacrimal flows severely impact the bacteria species inhabiting those 
tissues, hence changes in the ocular/oral microbiome could be more a 
consequence rather than a cause of the disease.  

 

Figure 1. Gut microbiome changes in SS patients. SS patients present an altered gut microbiome 
characterized by (1) a reduction of bacteria richness and appearance of pathobionts; (2) expansion of 
effector (Teff), CD4+ and CD8+ T cells to the detriment of regulatory T cells (Tregs); (3) an increase in 
proinflammatory cytokines, replacing the anti-inflammatory signals; and (4) disruption of the intestinal 
epithelial cell integrity. 
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Alterations of the gut microbiome in SS patients can also affect the 
brain via the gut-brain axis. Depression is quite prevalent in SS patients 
and recent evidence suggest a crucial role of the gut microbiome, as also 
recently confirmed in animal models [58–60]. In addition to depression, 
fatigue, fibromyalgia, and lung manifestations are also common in SS 
patients [61–63]. These complications are associated with an impaired gut 
microbiome as well [64–66]. 

While it is clear that microbiome alterations have an effect on the 
pathogenesis of SS and potentially the onset of secondary complications, 
the causality is still incompletely understood.  

LEVERAGING THE GUT MICROBIOME-HOST IMMUNE SYSTEM TO 
IMPROVE SS 

Based upon our understanding of the role of dysbiosis in the onset and 
progression of autoimmunity, a provocative new strategy to intervene in 
diseases such as SS is to alter the gut microbiome to modulate the host 
immune response. Thus far, only a few studies have addressed 
microbiome interventions to modify the disease severity of SS (Table 1). 

Table 1. Human studies using microbiome interventions. 

Conditions Intervention Results ref 

immune-mediated dry 
eye (DE) 

FMT Safety confirmed 
Partial disease improvement observed 

[53] 

dry eye  Prebiotics and 
probiotics 

Improved ocular surface disease index  [67]  

SS Probiotics Reduction of the candida load but no significant 
changes compared to placebo 

[68] 

SS Probiotics No beneficial effects noted [69] 

One potential intervention is fecal microbiota transplantation (FMT), 
which refers to a method by which donor gut microbiota is transferred 
into the digestive tract of the recipient, aiming to restore gut microbial 
imbalance [70]. FMT has been used as a core therapy for treating dysbiosis-
related diseases as indicated by more than 700 studies in 85 different 
diseases [71], which culminated with the approval of FMT as treatment for 
recurrent Clostridioides difficile infection (CDI). There is only one FMT 
study reported in individuals with immune-mediated dry eye (DE) 
symptoms, meeting criteria for SS [72]. In this open-label, nonrandomized 
clinical trial, 10 individuals received 2 FMTs from a single healthy donor 
delivered via enema, 1 week apart. The study confirmed the safety of FMT 
and the potential beneficial impact as half of the subjects reported 
improved DE symptoms, despite no donor-bacteria engraftment observed 
in the gut microbiota of recipients. More FMT studies carried out in a 
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randomized, placebo-control manner are needed to confirm whether FMT 
could be a strategy to ameliorate SS. 

Another intervention consists in using prebiotics and probiotics, which 
are now at the fore center of a new wave of medications aimed at 
reshaping the host microbiome. Probiotics are live microorganisms which 
confer a health benefit to the host [73]. Prebiotics are oligosaccharides that 
are fermentable and non-digestible, which may modify the composition 
and/or function of the gut microbiota [74,75]. There is now great interest 
in the therapeutic potential of probiotics and prebiotics-based strategies 
for a range of autoimmune disorders, which has been corroborated in 
several studies [73,76–78]. Probiotics play a role in regulating the host 
innate and adaptive immune responses by modulating the functions of 
dendritic cells, macrophages, and T and B lymphocytes [79,80]. The 
immune response modulation by probiotics is strain specific and can 
results in shifting the TH1/TH2 balance with upregulation of certain 
cytokines and enhancement of the natural killer cells, as showed in human 
studies [81]. An important focus has been on the role of Tregs, which play 
a crucial role in maintaining immune homeostasis, and their levels are 
reduced in patients with autoimmune disorders, including SS [67,68,82]. 
Animal models have shown that certain probiotic strains can induce Treg 
expansion and downregulate effector T cells and proinflammatory 
cytokines [69,78,83,84]. Probiotics can stimulate regulatory dendritic cells 
expressing IL-10, TGF-β, COX-2, and indoleamine 2,3-dioxygenase, which 
in turn promote the generation of CD4+Foxp3+ Tregs [83]. The therapeutic 
potential of probiotics and prebiotics approaches regarding autoimmune 
diseases would represent a more natural way to master the autoimmune 
response and avoid the typical side effects of immunosuppressive drugs. 

The scientific literature is replete with animal and human studies 
assessing the efficacy of probiotics to treat autoimmune disorders. 
Probiotic supplementation is linked to improved disease activity and 
lower inflammatory parameters in patients with rheumatoid arthritis 
(RA), which is a common comorbidity with secondary SS [85–87]. In a very 
encouraging study, 8-week probiotic supplementation in RA patients 
significantly improved RA clinical and metabolic status [85]. In the context 
of type 1 diabetes (T1D), probiotic supplementation leads to a decreased 
risk of islet β-cell autoimmunity [88–90], and it has been associated with a 
better glycemic control, increased synthesis of GLP-1 (beneficial 
insulinotropic gut hormone), and reduced TLR4 signaling (an 
inflammatory signaling) [91–93] in both adults and children [94]. 
Preliminary evidence shows the potential role of probiotics in 
ameliorating multiple sclerosis (MS), and MS patients receiving probiotics 
revealed significant beneficial effects of probiotic supplementation on 
their mental health [95,96]. 

A number of studies assessed the beneficial potential of probiotics in 
ameliorating dry eye severity, one of the most common symptoms 
associated with SS. In an experimental animal model of SS, probiotic 
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therapy with a 5-strain composition of Lactobacillus casei, Lactobacillus 
acidophilus, Lactobacillus reuteri, Bifidobacterium bifidum, and 
Streptococcus thermophilus alleviated ocular surface disease by lowering 
uveitis scores and improving tear secretion [47]. In a similar preclinical 
model, administration of Lactobacillus plantarum and Bifidobacterium 
bifidum modulated the expression of proinflammatory cytokines such as 
TNF-α and anti-inflammatory cytokines such as IL-10 and gut microbiota 
composition to improve the disease severity [97]. In yet another preclinical 
study, administration of the same 5 commensal strains (Lactobacillus 
casei, Lactobacillus acidophilus, Lactobacillus reuteri, Bifidobacterium 
bifidum, and Streptococcus thermophilus) in a SS mouse model 
significantly increased tear secretion after 3 weeks treatment by 
modulating the host immune response [98].  

These preclinical findings have prompted studies to address 
translatability of probiotic treatment strategies in humans. Participants 
with dry eyes receiving probiotic and prebiotic supplements for 4 months 
had the average Ocular Surface Disease Index score significantly 
improved compared to controls, providing evidence that prebiotics and 
probiotics might be effective in the management of dry eye disease [99]. 
Patients with SS are at a higher risk to develop oral candidiasis than the 
general population. In a clinical study, 32 SS patients were randomly 
allocated into two groups receiving either probiotic or placebo capsules 
twice a day for 5 weeks. The strains included in the probiotic capsule for 
this study were Lactobacillus acidophilus, Lactobacillus bulgaricus, 
Streptococcus thermophilus and Bifidobacterium bifidum. In the probiotic 
group, there was a statistically significant reduction of the candidal load 
from baseline to the 5th week respectively, but no significant changes 
were observed in the placebo group [100]. This result was not confirmed 
in another clinical study [101], suggesting that, while probiotics hold 
promise for treating autoimmune disease, their beneficial effects are still 
incompletely understood, and more studies are needed, especially for SS. 
Future research needs to better elucidate the mechanisms of probiotic 
function, address the person-to-person variability, and define novel 
biomarkers that can be used to assess efficacy and safety of probiotics in 
humans.  

As we move forward in harnessing the therapeutic potential of the 
microbiome, rather than using prebiotics and probiotics, novel synthetic 
biology strategies could be better deployed to develop autoimmune 
therapies that specifically target the pathways that gut bacteria engage 
with the host immune cells. 

SYNTHETIC BIOLOGY FOR MICROBIOME ENGINEERING  

Human gut commensal bacteria have evolved to occupy their niches by 
modulating the host immune responses; that is, bacteria can exert either 
anti-inflammatory or proinflammatory pathways to achieve a symbiotic 
relationship with their host. Therefore, when we use bacteria “as is”, their 
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beneficial contribution could be masked by their propensity to engage a 
balanced ‘not too hot and not too cold’ Goldilocks scenario. This was first 
shown in vitro using Lactobacillus plantarum, using knock-out mutants to 
identify specific gene loci that modulate the immune response of dendritic 
cells [102], and then elegantly demonstrated in vivo by Lightfoot et al. 
where only after removing the Lactobacillus (L.) acidophilus 
proinflammatory signals, the therapeutic effects L. acidophilus strain 
became evident [103]. In this latter study, deletion of the immune 
activating cues surface layer protein (Slp) B, SlpX, and LTX, enabled 
enrichment of the anti-inflammatory signal mediated by SlpA to 
predominate, effectively improving the therapeutic activity of L. 
acidophilus to enable the synthetically engineered strain of L. acidophilus 
to treat inflammatory bowel disease in murine animal models [103].  

Recent advances in synthetic biology now allow the precise 
manipulation of bacteria for diverse functional purposes [104]. 
Importantly, now that it is possible to dissect the specific signals of bacteria 
synthetic biology can specifically overexpress those proteins in generally 
recognized as safe probiotics in the context of developing functionally-
directed probiotics [105]. Engineered bacteria can be designed to influence 
host biology in a very exquisite and directed manner, enabling precision 
targeted microbiome drug development. In this regard, the safe probiotic 
becomes the chassis to deliver the therapeutic proteins in vivo.  

Among probiotics, Lactococcus lactis has attracted significant attention 
in the engineered biotherapeutic arena [106]. Initial studies with the L. 
lactis line engineered to deliver immune regulatory molecules were 
carried out in the context of treating colitis (Table 2). A handful of Phase 1 
and Phase 2 clinical studies have been carried out using L. lactis 
engineered to express human therapeutic molecules [107]. In all these 
studies, oral delivery of the engineered L. lactis was well tolerated with no 
side effects and no systemic exposure of the engineered bacteria. While 
safe, early efficacy was demonstrated in the context of Type 1 Diabetes, 
but not for IBD or oral mucositis. While the previous studies used human 
immune regulatory proteins, our group at Rise Therapeutics, in 
collaboration with Dr. D. Pascual at University of Florida, is further 
exploiting synthetic biology to reshape the host immune repertoire via 
microbiome-associated immune regulatory molecules. We have identified 
a protein called colonization factor antigen I (CFA/I), a fimbriae from 
enterotoxigenic Escherichia coli, that can engage dendritic cells lining the 
gastrointestinal tract to elicit Treg induction via the production of 
regulatory cytokines IL-10, IL-13, IL-35, and TGF-β [108–110]. The operon 
expressing CFA/I was integrated into the genome of a natural carrier 
probiotic to create R-2487. Recent preclinical studies demonstrated that R-
2487 can induce Tregs, inhibit production of proinflammatory cytokines, 
and ameliorate clinical symptoms in the murine models of SS, as well as in 
murine models of arthritis, T1D, and multiple sclerosis [108,111–114]. In a 
murine model of SS, oral delivery of R-2487 significantly mitigated 
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autoimmune disease severity by reducing the incidence of inflammatory 
infiltration into the submandibular and lacrimal glands and increasing 
Foxp3+, IL-10- and TGF-β-producing Tregs [114]. These studies 
demonstrated that CFA/I protein induced Tregs, which are key to 
controlling inflammation by reducing T effector cells [108,109,113]. 
Further, adoptive transfer of CFA/I-induced Tregs into mice with 
autoimmune disease conferred complete protection [108,109]. Thus, we 
believe that the mucosal induction of autoantigen Tregs by R-2487 
represent an exciting, important, and safe new strategy for SS treatment. 
Moreover, our work supports the application of synthetic biology and 
development of engineered bacteria to specifically modulate the host 
immune repertoire. While pre-clinical data using engineered bacteria are 
very promising and intriguing, the clinical translation has lagged with a 
few clinical trials that ended for futility. Validation of this strategy and the 
targeted pathways in human clinical trials is needed to transform 
synthetic biology for microbiome from a promising strategy to reality. 

Table 2. Clinical trials with engineered L. lactis. 

Condition Intervention Phase Results ref 

Crohnʼs 
disease 

Engineered L. lactis expressing IL-10 1 Safety was 
confirmed 

[87] 

Ulcerative 
mucositis 

L. lactis expressing human trefoil 
factor 1 (hTFF1)  

1b Safety was 
confirmed 

[88] 

Ulcerative 
colitis 

Engineered L. lactis expressing IL-10 2 Primary 
endpoint not 
met 

[115]  

Ulcerative 
mucositis 

L. lactis expressing human trefoil 
factor 1 (hTFF1)  

1b Safety was 
confirmed 

[88] 

Ulcerative 
mucositis 

L. lactis expressing human trefoil 
factor 1 (hTFF1)  

2 Trial 
terminated 
due to lack of 
efficacy 

[116] 

Type 1 
Diabetes 

engineered L. lactis strain expressing 
proinsulin and IL-10 

1b  Safety was 
confirmed 
Improved C-
peptide 
stabilization 

[117]  

ADDITIONAL MICROBIOME-BASE INTERVENTIONS 

The gut microbiome of SS patients presents a high relative richness of 
pathobionts [57], which are linked to the disease severity. A novel 
approach to modulate the gut microbiome is by using bacteriophages, 
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which are viruses that specifically target and kill bacteria [118]. While 
their utilization has been focusing primarily to replace antibiotics, one can 
envision the use of bacteriophages to eradicate the pathobionts in SS 
patients with the goal of improving dysbiosis and modulating the immune 
response. Some preliminary data supporting this approach have been 
generated for gastrointestinal diseases [119]. However, only one paper 
reports the use of phages in a murine model of arthritis [120], hence much 
more work is needed to understand whether this strategy could be added 
to the therapeutic armamentarium.  

The altered microbiome in SS patients may also activate the immune 
system via molecular mimicry and metabolite changes, leading to chronic 
inflammation and damage to the exocrine glands [46,121]. Gut metabolites 
alterations are also observed in other autoimmune diseases like systemic 
lupus erythematosus and rheumatoid arthritis [122–124]. These findings 
can be used to discover novel metabolites, in addition to the classical short 
chain fatty acids [125,126], that can be used as therapeutic molecules. 
Given the paucity of data so far, a long road ahead awaits scientists to 
prove that this strategy could be beneficial in SS. 

CONCLUSIONS 

Understanding the cross-talk between the microbes inhabiting our 
body with the host is unveiling novel drug approaches that can lead to 
ground-breaking, efficacious, and safe new therapies. Novel, cutting-edge 
microbiome-based approaches with unique functional activity have the 
potential to be utilized as therapeutics, particularly in SS, a multifactorial 
disorder where classical pharmacological interventions may not be 
sufficient. Furthermore, by ‘hacking’ the microbiome genetic code and 
understanding how the microbiome controls the host immune system, we 
can also develop functionally-directed microbiome therapeutics, such as 
synthetic biology engineered bacteria, as precision targeted microbiome 
products. The initial hope for the gut microbiome as new therapeutic 
source is becoming a reality with a large number of clinical trials currently 
ongoing. These new microbiome therapeutic approaches, particularly in 
the context of regulating the immune repertoire of the host, have 
tremendous potential for application in the treatment of SS.  
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