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ABSTRACT 

Estrogen receptor alpha (ERα) plays a crucial role in reproductive function 
in both sexes. It also mediates cellular responses to estrogens in multiple 
nonreproductive organ systems, many of which regulate systemic 
metabolic homeostasis and inflammatory processes in mammals. The loss 
of estrogens and/or ERα agonism during aging is associated with the 
emergence of several comorbid conditions, particularly in females 
undergoing the menopausal transition. Emerging data also suggests that 
male mammals likely benefit from ERα agonism if done in a way that 
circumvents feminizing characteristics. This has led us, and others, to 
speculate that tissue-specific ERα agonism may hold therapeutic potential 
for curtailing aging and chronic disease burden in males and females that 
are at high-risk of cancer and/or cardiovascular events with traditional 
estrogen replacement therapies. In this mini-review, we emphasize the 
role of ERα in the brain and liver, summarizing recent evidence that 
indicates these two organs systems mediate the beneficial effects of 
estrogens on metabolism and inflammation during aging. We also discuss 
how 17α-estradiol administration elicits health benefits in an ERα-
dependent manner, which provides proof-of-concept that ERα may be a 
druggable target for attenuating aging and age-related disease burden. 

KEYWORDS: 17α-estradiol; hypothalamus; HPG axis; liver; metabolism; 
neuroinflammation 

INTRODUCTION 

Signaling through estrogen receptor alpha (ERα) is required for normal 
reproductive function in mammals. ERα also mediates estrogenic cellular 
responses in a wide range of nonreproductive organ systems, many of 
which regulate systemic metabolic homeostasis and inflammatory 
processes that underlie chronic disease onset. For example, specific 
mutations and polymorphisms in Esr1, the gene that encodes ERα, have 
been associated with greater body mass and adiposity [1,2], in addition to 
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infertility in both sexes [3,4]. Other Esr1 mutations have been linked to 
osteoporosis, breast cancer, and Alzheimer’s disease (AD) in females [5,6]. 
Similarly, the global ablation of ERα in mice increases adiposity and 
reduces insulin sensitivity in both sexes [7], which further supports the 
role of ERα in controlling metabolic processes. ERα possesses both genomic 
(nuclear hormone) and nongenomic (membrane-associated) capabilities 
[8], which underlies its ability to exert metabolic control in numerous 
organ systems. It is also noteworthy that numerous Esr1 splice variants 
have been identified, several of which are translated into ERα proteins 
with different molecular weights and functional domains [9]. However, 
the physiological function of these truncated ERα isoforms remain 
unknown, particularly with regard to regulating metabolic homeostasis 
and inflammatory processes. Conversely, many of the truncated ERα 
isoforms have been associated with tumor cell activity in a variety of 
cancers [10], which is outside the scope of this mini-review. Despite actions 
in a variety of metabolically active tissues, the goal of this mini-review is 
to summarize how ERα modulates metabolism and chronic disease 
progression through actions in the brain and liver, which we postulate is 
closely related to the control of systemic aging processes.   

MODULATION OF THE HPG AXIS BY ERα 

The hypothalamic-pituitary-gonadal (HPG) axis plays a vital role in 
controlling reproduction, metabolism, and immune function. 
Gonadotropin-releasing hormone (GnRH) secreted from the 
hypothalamus serves to stimulate the production and secretion of follicle-
stimulating hormone (FSH) and luteinizing hormone (LH) from the 
anterior pituitary, which in turn stimulates the production and release of 
sex hormones from the gonads. These sex hormones, predominantly 17β-
estradiol (17β-E2) and progesterone in females [11,12] and testosterone in 
males [13,14], signal in the hypothalamus and pituitary to suppress the 
production of GnRH and FSH/LH, respectively, as part of the HPG negative 
feedback loop (Figure 1). 17β-E2 can also signal in males to dampen 
gonadotropin production, most of which occurs following the 
aromatization of testosterone to 17β-E2 [15,16]. The aforementioned 
hormonal cycles regulate germ cell release in females, and germ cell 
creation in males, therefore the HPG axis is relevant to aging and chronic 
disease burden because it plays a major role in the established tradeoff 
effects between reproduction and longevity [17]. With advancing age, 
gonadal and neuroendocrine changes occur that result in declines in sex 
hormone production [18], and thus, declines in negative feedback within 
the HPG axis [19,20]. Age-related hormonal declines are more rapid in 
females because 17β-E2 production is directly linked to ovarian follicular 
depletion [21,22]. The reduction in sex hormones leads to elevated 
production and secretion of GnRH, LH, and FSH, which have been linked 
to the aging process and a variety of comorbid conditions in sex-specific 
manners [23–27]. In fact, after menopause, females are confronted with 
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greater risk for numerous age-related diseases with a metabolic and/or 
proinflammatory underpinning [28–37], several of which rise to 
incidences commonly observed in males [38]. 

ERα is the primary receptor involved in 17β-E2-mediated suppression 
of gonadotropin release in both sexes [39,40], although other receptors, 
including estrogen receptor beta (ERβ) and G protein-coupled estrogen 
receptor (GPER), have also been reported to play a role in this process) [41], 
but are outside the scope of this mini-review. Several different neuronal 
populations have been implicated in the 17β-E2 negative feedback 
mechanism [11,42,43]. GABAergic neurons in the preoptic area (POA) are 
believed to provide input to the GnRH negative feedback system [42,44]. 
There is also evidence that ERα is expressed in a subset of GnRH neurons 
within the POA, which suggests the possibility of direct regulation of GnRH 
production by ERα [45]. Further investigation has revealed a functional 
hierarchy among the various possible mechanisms involved in the HPG 
feedback process. ERα expression in the arcuate nucleus (ARN) has been 
demonstrated to be crucial to maintaining reproductive function and E2-
dependent negative feedback [46,47]. Although selective knockdown of 
ERα in kisspeptin neurons within the ARN was found to have no effect on 
LH secretion [48], these mice exhibited GnRH pulse activity similar to that 
of gonadectomized mice with high frequency, low amplitude LH pulses 
[49]. These results suggest 17β-E2 signaling through ERα in kisspeptin 
neurons in the ARN is the principal mechanism responsible for controlling 
GnRH pulsatility in mice. Interestingly, ERα in the pituitary has also been 
implicated in 17β-E2 feedback, and its ablation causes infertility in female 
mice [50]. Collectively, the findings outlined above indicate that ERα plays 
a major role in controlling HPG activity, which could conceivably make it 
a pharmacological target within the hypothalamus and/or pituitary for 
attenuating aging and chronic disease burden. For instance, agonizing ERα 
in a manner that curtails age-related increases in GnRH, LH, and FSH 
production could potentially blunt mechanisms that promote arthritis, 
kidney disease, obesity, metabolic dysfunction, and neuroinflammation in 
a sex-specific manner [23–27].  
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Figure 1. Gonadotropin-releasing hormone (GnRH) is secreted by the hypothalamus and stimulates the 
production and secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) from the 
anterior pituitary, which in turn stimulates the production and release of 17β-estradiol (17β-E2), 
progesterone, and testosterone from the gonads. The release of these hormones controls the production of 
GnRH and FSH/LH in a negative feedback loop. This figure was created with BioRender.com. 

ROLE OF ERα IN NEUROINFLAMMATION 

Estrogens are known to exert anti-inflammatory and neuroprotective 
effects by agonizing ERα. Interestingly, ERα in microglia have been shown 
to temper pro-inflammatory processes in both female and male rodents 
(Figure 2) [51–54]. Microglia are brain-resident immune cells that serve 
diverse functions across the lifespan, including debris clearance, synaptic 
pruning, and response to infectious agents [55–57]. In vivo and in vitro 
studies show that ERα agonism limits the transition of microglia toward 
pro-inflammatory phenotypes when challenged with noxious stimuli such 
as bacteria [58] and viruses [59]. Furthermore, synthetic ligands for ERα 
have also been shown to attenuate the production of tumor necrosis factor 
α (TNFα), interleukin-1β (IL-1β), and macrophage inflammation protein-2 
(MIP2) in primary microglial cultures [60].  
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Figure 2. Prior studies show that ERα agonism on microglia, the brain-resident immune cells, limits their 
transition towards a pro-inflammatory phenotype which has been linked to neuroprotection. This figure 
was created with BioRender.com. 

Interestingly, ovariectomy (OVX) increases a large number of markers 
associated with microglial reactivity, including the recognition of 
inflammatory stimuli and phagocytosis in female rodents [61]. The 
administration of 17β-E2 in the setting of OVX prevents microglia 
phenotypic switching, suggesting that ERα agonism plays a critical role in 
regulating microglia homeostasis [53,61–63]. ERα density within the 
mouse hippocampus is dramatically reduced with advancing age in 
female mice [64,65], suggesting that ERα in the aging brain is associated 
with impaired anti-inflammatory activity and microglial-mediated 
neurotoxicity. In support of this, global ERα knockout (ERαKO) mice 
display increased hippocampal expression of IL-1β, interleukin-6 (IL-6), 
and interleukin-12p40 (IL-12p40), all of which are linked to neurotoxicity 
[66]. Conversely, chronic treatment with 17β-E2 or selective estrogen 
receptor modulators (SERMs) in OVX females significantly reduces the 
number of microglial within the hippocampus [64,67]. This further 
implicates ERα agonism in neuroprotection during aging and disease 
processes. Similarly, ERα agonism suppresses microglial 
neuroinflammation in traumatic brain injury (TBI)-induced male mice by 
attenuating the decrease in neuronal ERα expression in the ischemic 
cortex [68]. It should be noted, however, that females generally display a 
greater prevalence of neurodegenerative diseases, such as AD, and are 
burdened with more severe pathology and greater cognitive declines than 
their male counterparts, which worsens following menopause [69,70]. 
Although definitive mechanisms underlying the aforementioned 
observations remain unresolved, some reports suggest that declines in 
ERα agonism during the menopausal transition is a major contributor to 
female-dominant cognitive declines [71–73], which is further supported by 
the fact that females receiving estrogen replacement therapies have 
decreased risk for onset and/or development of AD [74]. If this is indeed 
proven to be the case, it suggests that ERα plays a greater role in 
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modulating female brain diseases than it does in males, which provides 
support for the overall goal of developing ERα agonists for treating disease 
burden in a sex-specific manner. An interesting caveat to the 
aforementioned findings is the discovery that the maintenance of 
hippocampal ERα expression, even in the absence of estrogen signaling, is 
associated with improved cognition in rodents [75,76]. Emerging evidence 
suggests that ligand-independent activation of ERα, potentially by insulin-
like growth factor 1, can affect the transcriptional activity of ERα in a way 
that improves memory [77]; thereby suggesting that just maintaining ERα 
expression may be at least partially beneficial for neurocognitive declines. 

The molecular mechanisms responsible for ERα-mediated anti-
inflammatory effects in the aging brain remain unclear [55]. One potential 
mechanism is the ERα-mediated regulation of Toll-like receptor (TLR) 
signaling in myeloid-lineage cells, which has been linked to reduced 
inflammatory responses [78,79]. Murine and human studies demonstrate 
that activation of ERα inhibits TLR4 signaling in macrophages and reduces 
inflammation [80–82]. In addition, ERα interactions with the 
phosphatidylinositol 3-kinase (PI3K) p85 subunit and AP-1 promoter sites 
may be involved in blocking TLR4 signaling in macrophages [55]. Another 
potential mechanism by which ERα agonism may attenuate inflammatory 
cytokine production following TLR activation is through the inhibition of 
NF-kB, which has been shown to occur through direct and indirect 
mechanisms [83,84]. Recent reports have also proposed that 17β-E2 
regulates the transition of macrophages into different activation states in 
an ERα-dependent manner [55]. For example, quantification of 
inflammatory cytokine production during time-lapse microscopy 
demonstrated that 17β-E2 inhibits IL-1β and increases interleukin-10 (IL-
10) expression, the latter of which is an anti-inflammatory cytokine, 
during acute lipopolysaccharide exposure [85]. These effects were 
mediated by suppressor of cytokine signaling 3 (SOCS3), a transcription 
factor that is partially regulated by ERα, which provided the ability of 
macrophages to terminate the pro-inflammatory phase [55,86]. 
Collectively, ERα agonism facilitates intrinsic and extrinsic macrophage 
programming that allows for the resolution of inflammation. It should be 
noted that ERα actions in astrocytes have also been shown to provide 
neuroprotective effects in the brain [87], however discussion of these 
actions is beyond the scope of this review. 

In addition to the role of ERα in modulating chronic brain 
inflammation, neuronal injury, and neurodegeneration through actions in 
the hippocampus, amygdala, and cortex [54,88–90], it also plays a major 
role in regulating pro-inflammatory processes in the hypothalamus [91]. 
The hypothalamus is one of the most important brain regions involved in 
the control of feeding behavior, energy expenditure, and systemic glucose 
homeostasis in both sexes [92]. In the setting of obesity and advancing age, 
microglia activation is commonly observed in the hypothalamus [93,94], 
which has been linked to neuronal endoplasmic reticulum stress, declines 

Adv Geriatr Med Res. 2023;5(2):e230005. https://doi.org/10.20900/agmr20230005 

https://doi.org/10.20900/agmr20230005


 
Advances in Geriatric Medicine and Research 7 of 22 

in insulin and leptin sensitivity, and faster aging in male and female mice 
[93,95,96]. These events promote hyperphagia and the diminished control 
of hepatic gluconeogenesis [97], which further exacerbates metabolic 
dysfunction and the aging process. ERα activity in the hypothalamus has 
been linked to the aforementioned decline in metabolic function and 
mechanisms that promote aging, which occurs through actions on both 
microglia and neurons [53,91,98]. These observations provide additional 
support for the idea that tissue-specific ERα agonism may serve as a target 
for delaying the aging process and chronic disease onset.  

ROLE OF ERα IN METABOLIC PLASTICITY 

There is abundant data demonstrating that ERα is a major regulator of 
systemic metabolic parameters through actions in the brain and liver [99-
101]. ERα has also been implicated in the control of skeletal muscle 
metabolism by regulating mitochondrial function and quality [102], but 
this is outside the scope of the current mini-review. 17β-E2 acts through 
ERα in brain and/or liver to regulate glucose homeostasis, lipid 
distribution, thermogenesis, and hypothalamic anorexigenic pathways 
(Figure 3) [57,99,103]. The loss of endogenous estrogen actions after 
menopause in humans or OVX in mice eliminates these beneficial effects 
and elicits metabolic perturbations [104] that are nearly identical to those 
seen in global ERαKO mice [7,105]. Estrogen replacement therapies in both 
humans and mice reverses the adverse metabolic effects associated with 
menopause [106,107] and OVX [108]. Most of the prior studies that have 
evaluated the effects of ERα on metabolic readouts have been done in 
female mammals, although more recent work has demonstrated that ERα 
also plays a critical role in modulating metabolism in male mammals. For 
example, Allard et al. recently reported that genomic actions of ERα 
regulate systemic glucose homeostasis in mice of both sexes and insulin 
production and release in males [109]. Other reports have also shown that 
hepatic steatosis, insulin sensitivity, and the control of hepatic 
gluconeogenesis are regulated through FOXO1 in an ERα-dependent 
manner in male mice [110]. Lastly, ERα ablation in hepatocytes abrogates 
similar estrogen-mediated metabolic benefits [111–113]. Interestingly, 
ligand-independent activation of ERα in human hepatocytes has been 
reported to modulate the expression of several cytochrome P450 genes 
[114], although the role this may play in modulating systemic physiological 
parameters remains unknown.  
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Figure 3. 17β-E2 acts through ERα in brain and liver to regulate systemic metabolism by controlling feeding 
neurocircuitry and macronutrient utilization. All the communication pathways between the two organ 
systems are still being elucidated. This figure was created with BioRender.com. 

In the brain, a variety of hypothalamic neuronal populations are 
critically important for central control of feeding and energy expenditure. 
Prior work has shown that brain-specific ERα ablation promotes obesity 
in both female and male mice [115]. This observation was associated with 
increased food intake and decreased locomotion and energy expenditure 
[115]. Other studies employing mice with conditional deletion of ERα 
indicate that 17β-E2 actions in subsets of pro-opiomelanocortin (Pomc) 
and agouti-related protein/ neuropeptide Y (AgRP/NPY) neurons within the 
ARN play critical roles in controlling feeding behavior and energy balance 
[115–118]. Pomc and AgRP/NPY neurons in the ARN receive and integrate 
hormonal (e.g., insulin, ghrelin, leptin, cholecystokinin) and nutritional 
(e.g., glucose, fatty acids) signals from the peripheral circulation as well as 
neural signals in an effort to coordinate counterregulatory metabolic 
responses [92]. As mentioned above, obesity and aging are associated with 
impaired insulin-sensitivity, leptin-sensitivity, and nutrient-sensing in 
neurons within the ARC, which promotes increased food intake, hepatic 
gluconeogenesis, and adipocyte lipolysis [92,119]. Interestingly, 17β-E2 
signaling through ERα reverses these declines and restores metabolic 
flexibility through what is currently believed to be direct interactions with 
insulin and/or leptin receptor signaling in Pomc and AgRP/NPY neurons 
[120–122]. Pomc- and AgRP/NPY-mediated control of hepatic 
gluconeogenesis is known to be regulated by sympathetic outflow to the 
liver [119,123–128], although recent reports suggest that brain-liver 
crosstalk is almost certainly a bidirectional pathway that is also controlled 
by nutrient-sensing within the gastrointestinal tract [129,130].   

The role that ERα plays in regulating the gut-brain-liver axis remains 
unresolved, although the ablation of ERα in hepatocytes has been reported 
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to adversely affect AgRP/NPY neuronal activity within the ARN of female 
mice [131]. It remains unclear if the change in AgRP/NPY activity in 
hepatocyte ERαKO mice occurs through vagal afferent signaling from the 
liver, or a change in metabolic substrates and/or endocrine factors being 
released from liver that cross the blood-brain barrier (BBB) and signal in 
the ARN. However, the authors did report that hypothalamic microglia in 
hepatocyte ERαKO mice present morphology indicative of an overt 
inflammatory phenotype [131], which led to speculation that changes in 
hepatic lipid metabolism with ERα ablation promotes the production and 
secretion of pro-inflammatory lipid moieties that cross the BBB and signal 
in the ARN. Additional studies will be needed to clearly define how hepatic 
ERα modulates Pomc and/or AgRP/NPY neuronal activity, but an emerging 
body of literature indicates that 17β-E2, likely through ERα, beneficially 
modulates vagal afferent signaling in the gut-brain-liver axis [132–135]; 
highlighting this pathway as a potential therapeutic target for mitigating 
aging and metabolic diseases. 

HEALTH BENEFITS OF AGONIZING ERα WITH 17α-ESTRADIOL 

Although estrogen replacement therapies improve a variety of 
comorbid conditions and likely elicit benefits on aging processes [136–
139], chronic administration has been linked with greater cancer and 
cardiovascular risks in some female populations [140,141]. Additionally, 
elevated serum 17β-E2 in males is associated with stroke risk [142], 
prostate cancer development [143], and feminization [144]. Therefore, the 
challenge remains of determining how best to exploit the beneficial effects 
of systemic estrogen therapies while circumventing adverse biological 
consequences. We and others have begun to address this biological 
challenge through the use of 17α-estradiol (17α-E2). 17α-E2 is a naturally-
occurring diastereomer of 17β-E2 [145,146] that is present in both 
mammalian sexes [147–149], although circulating levels are quite low. 
17α-E2 is also a minor constituent of estrogen replacement therapies [150] 
but only possesses about 3%–4% of the binding affinity to ERα that 17β-E2 
does [151]. 17α-E2 has predominantly been studied as a neuroprotective 
hormone with mild to moderate efficacy in both male and female models 
of ischemia, Alzheimer’s, and Parkinson’s diseases [147,150,152–155]. It 
was not until recently that the effects of 17α-E2 on systemic aging, 
longevity, and conditions that promote aging (e.g., obesity) were 
evaluated. The National Institute on Aging Interventions Testing Program 
has shown that 17α-E2 extends lifespan in male mice when treatment is 
initiated in mid-life [156,157] and late-life [158]. The magnitude of lifespan 
extension with 17α-E2 treatment in male mice is similar to that of calorie 
restriction [159] and rapamycin administration [160], which indicates 17α-
E2 elicits potent effects that could conceivably be translated to men. 

Our previous work has established that 17α-E2 administration reduces 
calorie intake and adiposity in conjunction with dramatic improvements 
in metabolic parameters (e.g., glucose tolerance, insulin sensitivity, ectopic 
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lipid deposition) in obese and/or aged male mice [161–165]. We surmise 
these benefits underly the lifespan-extending effects of 17α-E2. Others 
have also reported that 17α-E2 treatment elicits benefits on glucose 
tolerance, mTORC2 signaling, hepatic urea cycling, markers of 
neuroinflammation, and sarcopenia [166–170]. Importantly, male-specific 
benefits occur without overt feminization of sex hormone profiles [161] or 
reproductive function [171]. Female mice are generally unresponsive to 
17α-E2 treatment [166–170,172,173], unless subjected to chronic high-fat 
feeding over several months (unpublished observation) or following OVX 
[174]. Until recently the receptor(s) that mediate the actions of 17α-E2 were 
believed to be uncharacterized [146,148,154,175], although our recent 
report clearly demonstrated that the majority of health benefits attributed 
to 17α-E2 treatment are ERα-dependent [163]. This report also established 
that the hypothalamus and liver are the primary organ systems where 
17α-E2 signals to regulate metabolic homeostasis in male rodents. 
Additional studies are needed to determine if 17α-E2 acts predominantly 
through ERα in a cell-type-specific manner in the hypothalamus and/or 
liver to modulate not only systemic metabolic homeostasis, but also aging 
and longevity. Although not definitive, the data generated thus far 
indicates that ERα agonism by 17α-E2 in hypothalamic neurons and/or 
hepatocytes may hold therapeutic potential for attenuating mechanisms 
that promote aging and chronic disease burden in men.  

FUTURE STUDIES & CONCLUSIONS 

The possibility of developing SERMs that modulate ERα for the 
treatment of aging and age-related diseases in a sex-specific manner is 
encouraging, but important knowledge gaps remain. Given the 
widespread expression of ERα isoforms in organs systems throughout the 
mammalian system, there are opportunities to mechanistically explore the 
effects of 17α-E2 in these tissues and how they influence metabolism, 
inflammatory responses, and ultimately aging. However, given the link 
between ERα activity and cancer in females, rigorous preclinical 
evaluation of newly developed SERMs and existing ligands, including 17α-
E2, is required prior to clinical application. Additional studies that unravel 
the genomic and nongenomic actions of ERα in the context of metabolic 
and inflammatory processes are also needed because they could also 
present opportunities to develop therapies aims at treating sex-specific 
disease burden. Lastly, differences in ERα regulation between rodents and 
humans will also need to be carefully considered when attempting to 
translate newly developed SERMs or 17α-E2 into human studies. 
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