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ABSTRACT 

Grain yield is the primary target for increasing soft red winter wheat 
production in the United States. Genome wide association studies were 
performed for yield-related traits using field-based evaluation of 270 elite 
breeding lines. Yield ranged from 3.9 to 7.5 tons·ha−1. The effect of 
genotype by year interaction was significant for most traits. Heritability 
estimates ranged from 0.21 for biomass to 0.84 for plant height. Biomass, 
kernel weight, and grain weight per spike were positively correlated with 
grain yield while days to heading and maturity were negatively correlated 
with grain yield. We used FarmCPU method and 45K markers to identify 
marker-trait associations. Fifty-nine MTAs were identified based on two-
year phenotypic estimates. An association for grain yield on chromosome 
7D showed a −logP value of 16.35 and explained 18% of the phenotypic 
variation. Associations were identified at −logP values of 6.30 and 4.08 on 
chromosomes 5A for thousand kernel weight and grain per spike that 
explained 10% and 6% of phenotypic variations, respectively. Grain yield 
and days to heading data from previous trials in other states were used to 
validate and evaluate the transferability of associations. We observed that 
for grain yield, only 7 out of 28 associations and for days to heading, only 
8 out of 47 associations were validated across seemingly homogenous 
environments, indicating the majority of associations are not stable QTL 
across environments. This study suggests that achieving genetic gains 
appears to require utilizing genotype by environment interaction and 
local field based germplasm testing. 
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INTRODUCTION 

Over 35% of the world’s population relies on wheat as a main source of 
food [1] Wheat is widely cultivated around the world for its adaptability to 
diverse growing regions and environmental conditions. The United States 
produced 51.3 million metric tons of wheat during the 2018-19 season [2], 
where most wheat harvested occurs west of the Mississippi River and in 
the Great Plains [3]. However, soft red winter (SRW) wheat is grown 
mainly in the Midwestern and eastern United States, accounting for 15–
20% of US wheat production [2]. Specifically, the growing region extends 
from 30° N to 45° N in latitude and about 73° E to 96° W in longitude [4]. In 
the Midwest and eastern wheat region, grain yield and resistance to 
Fusarium head blight disease are the underlying traits for profitability. 
The soft wheat products require minimal gluten protein, and lower 
protein levels than hard wheats [5]. Therefore, producing more grain is 
the first focus of most SRW wheat breeding programs.  

Wheat provides approximately 20% of the protein and calories for 
human consumption worldwide [6]. In order to meet the needs of the 
growing population, food supplies from major cereals such as maize, rice 
and wheat will need to increase by 2–3% annually, and wheat has shown 
the lowest rate of increases [7]. Ray et al. [8] estimated wheat yields are 
increasing at 0.9% per year, much less than the 2.4% required to double 
global production by 2050. With future food security and climate 
challenges ahead, wheat breeding efficiency and genetic gains must 
improve significantly to develop stable, adapted, and high-yielding wheat 
varieties. 

Global demand for wheat is growing faster than genetic gains in yield 
potential [9]. In the Great Plains region, the annual rate of genetic gain was 
estimated at 0.44%, mainly due to traits contributing to an increase in 
grain number [10]. The USDA winter wheat regional performance 
nurseries for the Great Plains region displayed similar results over a 50-
year period, with estimated genetic gain for grain yield at 0.79% per year. 
From 1919 to 2008, the genetic gains in SRW wheat in multiple 
environments ranged from 0.56% to 1.41% [11].  

Much of hereto forth yield increases were due to increases in the 
number of spikes per area, the number of seeds per spike and spikelet, and 
harvest index—producing more grain from increasing yield components 
but maintaining the same biomass [11]. With harvest index approaching 
its theoretical maximum biologic limits [12], increasing biomass can 
provide an opportunity to increase the photosynthetic tissues for fixing 
carbon and a productive canopy to capture radiation energy and convert 
it into dry matter. Reynolds et al. [13] reported that an increase in 
radiation use efficiency, grain number, and grain yield were positively 
associated with an increase in above ground plant biomass.  

Breeding methodologies and techniques have changed drastically over 
the years. Further advances in statistical methodology and molecular 
markers led to the construction of genetic maps, evaluating complex traits, 
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and associating the phenotypic variation with molecular markers [14,15]. 
The genetic maps facilitated the identification of quantitative trait loci 
(QTL)—the genomic region responsible for trait variation [16]. In wheat, 
QTL mapping has been performed for traits including yield components 
[17], plant height [18], heat tolerance [19], grain quality [20], and disease 
tolerance [21–23], among others. The identification of QTL has led to the 
use of molecular markers in screening germplasm for trait improvement 
[24,25]. Bi-parental mapping is a powerful tool. However, the limited 
number of recombination events in bi-parental populations restricts the 
phenotypic diversity [16,26] and leads to a low mapping resolution [27]. 

The need to dissect complex traits within a large, diverse population led 
to the development of statistical methods that gave rise to genome-wide 
association studies (GWAS). Unlike bi-parental mapping, GWAS consists of 
genetically diverse germplasm that harbor many historical and ancestral 
recombination events. GWAS is based on the strength of linkage 
disequilibrium (LD) between the markers and the observable phenotypes 
in a population [27,28]. The statistical power to detect causal 
polymorphisms is based on the extension of LD in the population [29]. 
Wheat, being a self-pollinating species, experiences relatively slow LD 
decay. Selection on wheat, as is practiced in breeding programs, leads to 
relatively slower rates of LD decay, as Liu et al. [30] displayed that the 
extent of high LD islands is much greater in cultivars (1053 kb) than 
landraces (785 kb) due to the effect of artificial selection.  

GWAS has been used previously to study wheat kernel size and milling 
quality [31–33], spike traits [30], root traits [34], and grain yield and yield 
components traits [35,36]. These studies implemented the various GWAS 
mapping approaches such as mixed linear model (MLM) [37] and 
compressed mixed linear model (CMLM) [38] to appropriately account for 
the underlying population structure and kinship. Recent studies have 
shown that single locus models, such as MLM and CMLM, generate more 
false negatives due to overfitting [39,40]. The multi-locus Fixed and 
Random Model Circulating Probability Unification (FarmCPU) model was 
shown to better control false positives and false negatives [39,41], 
improving statistical power to identify true marker trait associations 
(MTAs).  

In this study, our goal was to identify MTAs for yield and yield 
component traits in an elite SRW wheat population developed by eastern 
and midwestern public breeding programs. Previous work by Gaire et al. 
[33] in this population identified MTAs concerning SRW wheat end use 
quality traits in this population, but no work to date has explored yield 
related traits in the context of GWAS. We achieve this goal by field-based 
phenotyping and high-throughput genotyping.  

MATERIALS AND METHODS 

Experimental design. The Triticeae Coordinated Agricultural Project 
(TCAP) population consists of lines developed from breeding programs in 
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Illinois, Kentucky, Maryland, Missouri, New York, Ohio, Indiana, and 
Virginia. The pedigree of lines are detailed in Huang et al. [42]. The 
germplasm were grown in two growing seasons 2016-17 (WL17) and 2017-
18 (WL18) at the Purdue Agronomy Center for Research and Education 
(ACRE) in West Lafayette, IN (40.43° N, 86.99° W) after a previous soybean 
crop. Similar field layouts and germplasm were planted in both years. 
Trials were planted in late September and harvest in late June of the 
following year. The experiments were planted using a Hege 
(Wintersteiger, Australia) drill planter and harvested with a Wintersteiger 
plot harvester at physiological maturity. In each year, two replications 
were planted. Each replicate was a 13-row × 24-column layout, consisting 
of eight incomplete blocks, each accommodating 39 plots. Each plot 
measured 1.22 m × 1.22 m and we planted 20 grams seed per plot, which 
amounts to approximately plant density of 370–420 seeds per square 
meter. Before planting, 336 kg·ha−1 of mono-ammonium phosphate (11-52-
0) was applied. A spring nitrogen top-dress application of 112 kg·ha−1 in 
the form of liquid urea ammonium nitrate (28-0-0) was applied as 
recommended by crop management practices in the region. Trials were 
rainfed and did not rely on any form of irrigation. Monthly precipitation 
and temperature obtained from iClimate (2019) are detailed in 
Supplementary Table S1. 

Trait measurements. We measured grain yield (YLD), days to heading 
(HD), days to maturity (MD), thousand kernel weight (TKW), biomass 
(BIO), number of spikes per area (NS), number of grains per spike (GPS), 
grain weight per spike (GWS), and plant height (PH). YLD was measured at 
harvest, adjusted for 13% seed moisture, and was expressed as kg·ha−1. HD 
was determined by complete emergence of heads (Feekes 10.5, Zadoks 58) 
in more than 50% of individual plants in a plot and expressed as the 
number of days after January 1st. Similarly, MD was determined when 
more than 50% of plot reached physiological maturity (Feekes 11.3, Zadoks 
91) and expressed as the number of days after January 1st. At maturity, PH 
was recorded by four random measurements per plot, from the ground to 
the top spikelet, excluding the awns, and expressed in centimeter (cm). 
Yield components were evaluated by measuring traits from an area of 0.25 
m × 0.3048 m that was cut from the ground level after physiological 
maturity. First aboveground BIO was dried to constant weight, measured 
and expressed in grams (g). Next effective tiller numbers per unit area 
were counted from the cut sample and represented as number of spikes 
(NS). Then, five random spikes were randomly sampled from the total cut 
area to measure the number of grains per spike (GPS), and grain weight 
per spikes (GWS)—also expressed in grams. TKW was measured by 
counting and weighing 1000 kernels, which was expressed in grams. 

Description of genotypic data. This population was initially 
genotyped by using the 90K SNP chip array [43], and the marker density 
was later increased by completing genotyping-by-sequencing method, as 
explained in Poland et al. [44]. Briefly, reduced genomic libraries were 
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created using Pst1-Msp1 restriction enzyme combination consistent with 
Poland et al. [44]. The samples were pooled together at 96-plex to create 
libraries and each library was sequenced on a single lane of Illumina Hi-
Seq 2500 (Illumina, San Diego, USA). Variant calling was performed using 
the TASSEL 5 GBSv2 pipeline [45] with 64 base k-mer length and minimum 
k-mer count of five. Reads were aligned to the wheat genome sequence 
assembly IWGSCv1.0 [46], using aln method of Burrows-Wheeler aligner 
(BWA) version 0.7.10 [47]. For filtering of both 90K SNP chip array and GBS 
markers, we excluded any markers missing ≥10% data and those with 
minor allele frequency less than 0.05. We then used Linkage 
Disequilibrium K-number neighbor imputation (LD-kNNi) algorithm [48] 
implemented in TASSEL 5 [45] to impute the missing markers. Markers 
that were not mapped to any specific chromosome were excluded from 
further analysis. The final genotypic dataset that was used in this study 
consisted of 45K variants of which 13K were produced from the 90K SNP 
chip array pipeline and 32K were produced from GBS pipeline. 

Statistical analysis of phenotypic data. In order to test the 
significance of genotypes, year, and genotype × year interaction, analysis 
of variance (ANOVA) was performed in R environment [49]. For each trait, 
the following ANOVA model was fitted: 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝐺𝐺𝑖𝑖 + 𝑌𝑌𝑌𝑌𝑖𝑖 + 𝑅𝑅𝑖𝑖�𝑌𝑌𝑌𝑌𝑖𝑖� + 𝐺𝐺𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖 + 𝐵𝐵𝑖𝑖�𝑅𝑅𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖� + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  (1) 

Where the response variable 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is the observed phenotypic value of the 
ith genotype, in the jth year, in the kth replicate, and the lth incomplete 
block; 𝜇𝜇 is the overall mean, 𝐺𝐺𝑖𝑖 is the effect of the ith genotype, 𝑌𝑌𝑌𝑌𝑖𝑖 is the 
effect of the jth year, 𝑅𝑅𝑖𝑖�𝑌𝑌𝑌𝑌𝑖𝑖� is the effect of the kth replicate within the jth 
year, 𝐺𝐺𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖 is the interaction effect of the ith genotype by the jth year, and 
𝐵𝐵𝑖𝑖�𝑅𝑅𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖� is the effect of the lth incomplete block within the kth replicate 
and the jth year. The 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  represents the residual error. 

To produce phenotypic values of each line for GWAS analysis, the best 
linear unbiased estimate (BLUE) values were derived by implementing a 
mixed model [37] using the “lme4” package [50] in R environment [49] in 
equation [1], where genotype was considered as fixed effect and other 
terms were considered as random effects. The Pearson correlation 
coefficient was calculated by cor function in R by using BLUE values. Path 
analysis was performed on BLUE values by using the latent variable 
analysis “lavaan” package [51] in R environment [49]. 

Estimating heritability estimates. Estimation of heritability based on 
experimental design requires a balanced design where all experimental 
entries are included in each replicate. Therefore, for producing variance 
components for estimating the broad sense heritability (H2), we used a 
reduced model as follows: 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝐺𝐺𝑖𝑖 + 𝑌𝑌𝑌𝑌𝑖𝑖 + 𝑅𝑅𝑖𝑖�𝑌𝑌𝑌𝑌𝑖𝑖� + 𝐺𝐺𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (2) 

Where the response variable 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is the observed phenotypic value of the 
ith genotype, in the jth year, in the kth replicate, and the lth incomplete 
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block; 𝜇𝜇 is the overall mean, 𝐺𝐺𝑖𝑖 is the effect of the ith genotype, 𝑌𝑌𝑌𝑌𝑖𝑖 is the 
effect of the jth year, 𝑅𝑅𝑖𝑖�𝑌𝑌𝑌𝑌𝑖𝑖� is the effect of the kth replicate within the jth 
year, and 𝐺𝐺𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖  is the interaction effect of the ith genotype by the jth year. 
The 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  represents the residual error. In this model all terms were 
considered as random effect. The broad sense heritability (H2) on an entry-
mean basis was estimated following the equation [52,53]:  

𝐻𝐻2 =
𝜎𝜎𝑔𝑔2

𝜎𝜎𝑔𝑔2 + 𝜎𝜎𝑔𝑔𝑔𝑔/𝑔𝑔
2 + 𝜎𝜎𝜀𝜀/𝑔𝑔𝑦𝑦

2  (3) 

where 𝜎𝜎𝑔𝑔2  is the genetic variance, 𝜎𝜎𝜀𝜀2  is the error variance, and y is the 
number of years (𝑦𝑦 = 2), and 𝑌𝑌 is the number of replications per year (𝑌𝑌 =
2).  

Genome-wide association studies (GWAS). Principal component 
analysis (PCA) of marker data was used to visualize the underlying 
population structure. We used the first three principal components (PCs) 
to produce a 3D scatter plot. Pair-wise LD estimates between adjacent 
markers were calculated, as the squared coefficient of correlation (r2), 
using TASSEL 5 [45] with a sliding window of 1000 markers. The pairwise 
LD estimates were plotted against the physical distance to determine the 
decay of LD against physical range on each chromosome, and in particular 
around the regions, where marker-trait associations were identified in 
GWAS. LD decay plots generated in R using the Hill and Weir [54] method 
and loess regression with assessment at r2 value of 0.2 [55,56].  

GWAS was performed using the GAPIT software [57] in R for each trait 
using the Fixed and Random Model Circulating Probability Unification 
(FarmCPU) model [41] and first 3 PCs were used to control the population 
structure [58]. We reported MTAs that were identified at −logP > 4.0 (p-
value < 0.0001). If a genomic region was identified with multiple MTAs 
close to each other, we only report a representative MTA. We also 
identified MTAs that passed a 5% false discovery rate (FDR) for controlling 
multiple testing [59]. The coefficient of determination (R2) for each 
identified MTA was determined by fitting a linear model in R environment 
with the contrasting alleles of the marker and the 3 PCs as the covariates 
using an ordinary least squares regression. 

Transferability and validation of GWAS results. YLD and HD data 
obtained from trials conducted in previous years and other states during 
the Triticeae CAP project were used to validate the transferability in other 
environments of the MTAs we identified in Indiana. This data comes from 
diverse environments i.e., five different locations and two growing 
seasons 2011-12 and 2012-13, as described by Huang et al. [42]. These 
environments are: moderate nitrogen in Kentucky 2011-12 (KYM12), 
moderate nitrogen in Maryland 2011-12 (MDM12), moderate nitrogen in 
Missouri 2011-12 (MOM12) and 2012-13 (MOM13), low nitrogen in Ohio 
2011-12 (OWL12) and 2012-13 (OWL13), moderate nitrogen in Ohio 2011-
12 (OWM12) and 2012-13 (OWM13), low nitrogen in Virginia 2011-12 
(VAL12) and in 2012-13 (VAL13), and moderate nitrogen in Virginia 2011-
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12 (VAM12) and 2012-13 (VAM13). We abbreviated grain yield and heading 
date we obtained from our 2016-17 and 2017-18 seasons as WL17 and 
WL18. In total, we assembled data from 14 environments for validation 
and transferability examination. For WL17 and WL18 environments, we 
first accounted for incomplete block design and then included the data in 
the multi-environment data analysis. Multi-dimensional scaling and linear 
discriminant analysis were used to cluster environments into seemingly 
homogeneous groups based on YLD or HD data. Then the accuracy of 
grouping was examined by cross validation. The cmdscale function in R 
was used to perform multidimensional scaling with Euclidean distances 
extracted using the dist function. Eigenvalues from three dimensions were 
extracted and incorporated into the lda function in the MASS package [60] 
for linear discriminant analysis and cross validation by setting CV = TRUE. 
Upon confirmation of groupings, BLUEs were obtained for each 
homogeneous group following the same model [2] and GWAS analysis was 
completed for each homogeneous group. We considered a MTA as 
validated or transferable if identified with a −logP > 1.3 (p-value < 0.05) in 
another homogenous group of environments. We chose this threshold 
because for validation, we are only interested in one specific marker and 
there is no need to control for testing of multiple hypotheses.  

RESULTS 

Phenotypic analysis and relationship among traits. We evaluated 
grain yield and yield components of a soft red winter wheat population in 
West Lafayette, Indiana for two years. For all traits, the effect of genotype 
was significant at 0.001, indicating the presence of noticeable genetic 
variation in the germplasm. In addition, the effect of year, and replicate 
within years were significant at 0.001 for all traits except for GPS, where 
the effect of year, and rep within years were significant at 0.01. More 
importantly, the genotype × year interaction effect was significant at 0.001 
for YLD, BIO, PH, HD, and MD, at 0.01 for NS, and at 0.05 for GWS, but not 
significant for TKW and GPS (Table 1). The significant effect of genotype × 
year interaction will be further discussed in the GWAS section. 

Table 1. Analysis of Variance. Abbreviations as follows: GY = grain yield, TKW = thousand kernel weight, 
BIO = biomass, NS = number of spikes, GPS = grain per spike, GWS = grain weight per spike, PH = plant 
height, HD = days to heading, and MD = days to maturity. 

Source of Variance df 
Trait 

YLD TKW BIO NS GPS GWS PH HD MD 
Genotype 269 *** *** *** *** *** *** *** *** *** 

Year 1 *** *** *** *** *** *** *** *** *** 
Genotype × Year 269 *** ns *** ** ns * *** *** *** 

Rep(Year) 2 *** *** *** *** ** *** *** *** *** 
Block(Rep × Year) 28 ** ns *** *** ns ns *** *** *** 

Significant values: *** <0.001, ** <0.01, * <0.05, ns >0.05. 
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Grain yield ranged from 3900 to 7500 kg·ha−1 with a mean of 5830 
kg·ha−1 and heritability of 0.50 (Table 2). The top 10% highest yielding lines 
in the population averaged at 6940 kg·ha−1, while the 10% lowest yielding 
lines averaged 4650 kg·ha−1—a 1.5-fold difference. Not all of the 10% 
highest yielding entries were developed by one breeding program, 
indicating a potential for achieving genetic gains via germplasm exchange. 
Among these, high yielding lines developed from public breeding 
programs at Purdue (10 lines), Illinois (7 lines), Missouri (3 lines), Ohio 
State (2 lines), Kentucky (2 lines), and Maryland (2 lines) were identified.  

Table 2. Summary Statistics and Heritabilities (H2) based on WL1718.  

Trait Unit Mean SD Minimum Maximum H2 

Grain yield kg·ha−1 5827 678 3905 7500 0.50 
Thousand kernel weight grams 32 1.79 27 38 0.49 

Biomass grams 201 20 151 255 0.21 
Number of spikes count 108 13 74 152 0.48 
Grain per spike count 37 4 25 50 0.44 

Grain weight per spike grams 0.98 0.14 0.68 1.38 0.41 
Plant height centimeters 90 6 76 111 0.84 

Days to heading Julian Days (from Jan 1) 133 2.01 128 139 0.69 
Days to maturity Julian Days (from Jan 1) 171 1.28 168 175 0.62 

The traits with the greatest and significant positive phenotypic 
correlation to YLD were BIO (r = 0.29 ***), TKW (r = 0.29 ***), and GWS (r 
= 0.29 ***) (Table 3). BIO had an average of 201 grams per cut area and 
heritability of 0.21. TKW ranged from 27.8 to 38.8 grams with a mean of 
32.3 grams and heritability of 0.49 (Table 2). The three lines with the 
greatest kernel weight were MD04W249-11-7, 04702A1-18, and MD03W64-
10-3 and the three lines with the smallest kernel weight were OH08-178-
52, VA09W-188WS, and MO080584. However, looking at the top 10% high 
yielding entries, the range of thousand kernel weight was narrower (30-35 
grams), and around the average value for kernel weight. Total grain 
number in wheat is the cumulative effect of spike number per unit area 
and the number of grains per spike. The NS per cut area ranged from 74 
to 152 spikes. The lines with greatest number of spikes were OH08-172-42, 
TRIBUTE, and IL08-12174 and the lines with lowest number of spikes per 
measured area were INW1021, 0566A1-3-1-67, and 05251A1-1-136-9-5. GPS 
and GWS had a mean of ~37 grains per spike and 0.98 grams, respectively 
and similar heritability estimates (Table 2). A significant negative 
correlation (r = −0.22 ***) was observed between NS and GPS (Table 3). 
This negative correlation has been observed previously in multiple 
experiments [61,62]. PH had the highest heritability of 0.84, averaged at 90 
cm, and showed a standard deviation of 6.2 cm. The tallest lines were 
CAYUGA, MO101329, and MO100647 while the shortest lines were 
03207A1-7-3-1, 9346A1-2-5-5-2-1, and MD03W665-10-5. The height of the 
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10% shortest lines averaged 80 cm. Lastly, the HD and MD had a mean of 
133 and 171 days, respectively, and were highly correlated with one 
another (r = 0.68 ***) (Table 3). Lines that headed later (>138 days) and 
matured later (>173 days) included NY103-208-7263, NY99066-3444, 
CAYUGA, NY96009-3037, and MEDINA, all varieties developed in New York 
and adapted to the eastern climate region. Both traits were significant and 
negatively correlated with YLD (r = −0.19 **, r = −0.18 **) (Table 3) as this 
relationship has been documented previously [63].  

Table 3. Phenotypic correlations of BLUEs of nine measured traits. Abbreviations as follows: GY = grain 
yield, TKW = thousand kernel weight, BIO = biomass, NS = number of spikes, GPS = grain per spike, GWS = 
grain weight per spike, PH = plant height, HD = days to heading, and MD = days to maturity.  

Trait TKW BIO NS GPS GWS PH HD MD 

GY 0.29 *** 0.29 *** 0.04 0.07 0.29 *** 0.05 −0.19 ** −0.18 ** 

TKW  0.04 −0.18 * −0.16 ** 0.28 *** 0.01 −0.08 −0.16 ** 

BIO   0.47 *** 0.24 *** 0.22 *** 0.31 *** 0.09 0.13 * 

NS    −0.22 *** −0.31 *** −0.14 * −0.16 ** −0.10 

GPS     0.72 *** 0.28 *** 0.22 *** 0.24 *** 

GWS      0.26 *** 0.12 * 0.10 

PH       0.38 *** 0.28 *** 

HD        0.68 *** 

MD         

Significance: *** <0.001, ** <0.01, * <0.05. 

Path coefficient analysis. The correlation magnitudes were further 
broken down by using path analysis, following Dewey and Lu [64]. Path 
analysis parses out the correlation magnitude to direct and indirect 
components of influence by measuring the direct influence of one variable 
upon another [64]. In Supplementary Figure S1, the single arrow lines 
indicate direct influence as measured by path coefficients (PXX) and the 
indirect effects are the association between variables measured by 
correlation coefficients (rxx). The indirect effects are the product of the 
path coefficients and correlation coefficients. The sum of the path 
coefficients and indirect effects of correlation coefficients equal the 
phenotypic correlations, thus breaking down the reasoning for positive 
and negative correlations observed. In the a priori model, grain yield is 
directly affected by traits with significant phenotypic correlation (Table 3). 
These traits are thousand kernel weight, grain weight per spike, biomass, 
heading date, and maturity date. Biomass had the largest direct path 
coefficient of 0.27, followed by grain weight per spike and thousand kernel 
weight coefficients of 0.21, and 0.19, respectively. (Supplementary Table 

Crop Breed Genet Genom. 2020;2(3):e200013. https://doi.org/10.20900/cbgg20200013 



 
Crop Breeding, Genetics and Genomics 10 of 29 

S2). The indirect effect of thousand kernel weight on grain weight per 
spike represents almost one-sixth of the phenotypic correlation (Table 3) 
and direct path coefficient between grain weight per spike and yield 
(Supplementary Table S2). Biomass and grain weight per spike are 
correlated (r = 0.22 ***; Table 3) and positively contribute to correlations 
with grain yield. Days to heading showed a negative direct effect on grain 
yield with path coefficient of −0.15 (Supplementary Figure S1), consistent 
with its negative correlation with grain yield (r = −0.19 **; Table 3). Similar 
patterns were observed for days to maturity.  

Genome-wide association studies. The objectives of this study were 
to identify MTAs that control grain yield and other agronomic traits in this 
population in the Indiana environment and examine the transferability of 
MTA results across other environments. Of the 45K variants used in this 
study, approximately 17K, 22K, and 5.7K were located on sub-genome A, B, 
and D, respectively. The first three principal components (PCs) of all 
marker data explained 6.5%, 5.2%, and 3.8% of the total variation 
(Supplementary Figure S2). Consistent with the reports of Gaire et al. [33] 
and Huang et al. [42], PCs separated two distinct groups, which were 
previously attributed to whether germplasm is progeny, close relative, or 
descendants of the soft red winter wheat variety “Truman” or not [42]. 
Linkage disequilibrium persisted variably across different chromosomes 
and the half decay distance (in base pairs) are presented in Supplementary 
Table S3 for each chromosome. For example, LD persisted the longest 
physical range on chromosomes 2B (~125 mega base pairs:Mbp) and 7D 
(109 Mbp). In contrast, chromosomes 5D (0.74 Mbp) and 6D (0.71 Mbp) 
displayed the fastest LD decay.  

We used the first 3 PCs to account for the underlying population 
structure in GWAS analysis for all traits evaluated in West Lafayette, IN, 
USA. For GWAS we used estimates of phenotypic data based on two years 
of study i.e., WL17 and WL18, termed WL1718 throughout, and 45K 
genome-wide variants. In this study, we reported and discussed MTAs that 
were identified at –logP > 4.0 (p-value < 0.0001) threshold. A total of 62 
MTAs were identified for eight traits in WL1718 except for NS on 20 
chromosomes (all excluding 3D). Based on their physical distances and the 
LD decay, the 62 MTAs were resolved in 59 independent loci (Figure 1). Of 
the 59 loci, 11 passed the 5% FDR threshold for grain yield, days to heading, 
days to maturity, and plant height. Chromosome 3B showed the highest 
number of loci. Regions on chromosome 5A were found to be associated 
with four phenotypic traits including grain per spike, days to maturity, 
plant height, and thousand kernel weight (Figure 1; Table 4). Plant height 
showed maximum number of MTAs among traits. None of the MTAs were 
associated with multiple traits.  

Crop Breed Genet Genom. 2020;2(3):e200013. https://doi.org/10.20900/cbgg20200013 



 
Crop Breeding, Genetics and Genomics 11 of 29 

 
Figure 1. Genetic map of all significant MTAs identified by FarmCPU method for yield component traits. 
Chromosome size extracted from Ensembl. Figure created by phenogram software 
(http://visualization.ritchielab.org/phenograms/plot#). 

For YLD, eleven MTAs were reported on chromosomes 1A, 3B, 6A, 6B, 
7A, 7B, and 7D (Figure 2). The MTA with the largest −logP value of 16.35 on 
chromosome 7D located at 633,027,374 base pairs (bp) explained 18% of 
phenotypic variation for grain yield. The next largest signal on 
chromosome 1A of −logP = 8.27 had allele effect of 174 kg·ha−1 (Table 4). 
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Figure 2. Manhattan plots of traits based on FarmCPU method. Blue horizontal line indicates –logP = 4.0, 
and red horizontal line indicates 5% FDR threshold.  

Five MTA were identified for GPS on 3B, 4D, 5A, 5B, and 7D (Table 4). 
These marker effects accounted for approximately 2 grain per spike and 
explained 4–7% of the phenotypic variation. One MTAs for GWS was found 
on chromosome 3B. Marker gbs_3A_739555657 explained 8% of the 
phenotypic variation and accounted for an allele effect of 63 milligrams of 
grain weight per spike (Table 4). Lastly, TKW had 7 MTAs on chromosomes 
1D, 2A, 3B, 5A, 6A, and 6B (Table 4). The strongest signal for TKW was 
identified on 5A at position 685,795,509 bp. This region exerted an effect 
of 540 mg and covered 10% of total phenotypic variation. The next largest 
signal was observed at position 206,962,855 bp on chromosome 2B with an 
effect of 690 mg and phenotypic explanation of 8%.  
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Table 4. Marker trait associations for yield and yield component traits in WL1718 environment. 

Trait Chr Marker Position Alleles a MAF −logP Effect R2 Units 
Biomass 1B IWA6758 474118005 A/G (226/20) 0.12 4.07 12.30 0.04 grams 
 1B IWB72708 473529137 T/C (227/19) 0.11 4.36 12.80 0.05 grams 
 3A 3A_419257151 419257151 A/G (241/9) 0.07 4.69 13.41 0.07 grams 
 5D 5D_365732020 365732020 A/C (212/51) 0.21 5.65 8.00 0.09 grams 
Grain per spike 3B 3B_22698880 22698880 A/G (246/20) 0.08 4.07 1.99 0.06 count 
 4D 4D_479593371 479593371 G/A (229/39) 0.15 4.33 1.75 0.07 count 
 5A 5A_606524326 606524326 C/G (221/44) 0.17 4.08 1.67 0.06 count 
 5B 5B_546826603 546826603 G/A (242/24) 0.1 4.61 2.33 0.04 count 
 7D 7D_440881288 440881288 G/A (233/34)  0.13 4.04 1.87 0.05 count 
Grain weight per spike  3A 3A_739555657 739555657 T/C (238/31) 0.12 4.60 0.063 0.08 grams 
Days to maturity  1B 1B_680465515 680465515 G/A (241/6) 0.06 4.92 0.64 0.05 Julian days 
 1D 1D_458723021 458723021 G/A (247/21) 0.08 4.30 0.48 0.03 Julian days 
 2A 2A_515253009 515253009 T/C (230/3) 0.08 6.24 0.59 0.03 Julian days 
 2D 2D_44485665 44485665 A/G (237/31) 0.12 9.41 0.74 0.16 Julian days 
 3B 3B_85344544 85344544 C/T (238/7) 0.07 6.46 0.71 0.04 Julian days 
 4A 4A_688222191 688222191 A/G (244/7) 0.06 4.72 0.49 0.03 Julian days 
 5A 5A_26153196 26153196 G/A (135/126) 0.48 4.28 0.21 0.02 Julian days 
 5B 5B_158399441 158399441 G/A (239/28) 0.11 4.91 0.32 0.02 Julian days 
 5D IWB54292 556553226 T/G (173/96) 0.36 4.31 0.19 0.05 Julian days 
 6B IWA3268 705159045 T/C (232/35) 0.14 4.09 0.33 0.07 Julian days 
Plant height  2A 2A_66985350 66985350 C/A (248/19) 0.08 4.24 2.39 0.06 centimeters 
 2A IWB51951 92797308 T/G (227/43) 0.16 5.01 1.46 0.08 centimeters 
 2B 2B_146441175 146441175 A/G (230/34) 0.14 7.60 1.77 0.04 centimeters 
 2B 2B_776795892 776795892 G/A (215/5) 0.11 9.90 3.00 0.04 centimeters 
 3A 3A_699195908 699195908 T/C (233/6) 0.08 5.41 2.28 0.07 centimeters 
 3B IWB9589 611497265 T/C (211/52) 0.21 6.49 1.30 0.10 centimeters 
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Table 4. Cont. 

Trait Chr Marker Position Alleles a MAF −logP Effect R2 Units 
Plant height 4B IWB43355 657825660 A/G (150/114) 0.43 7.59 1.45 0.07 Centimeters 
 5A 5A_480705790 480705790 C/A (255/13) 0.05 6.45 2.64 0.03 centimeters 
 6A 6A_419959989 419959989 T/G (149/113) 0.43 8.09 1.29 0.07 centimeters 
 6B 6B_21208064 21208064 G/A (239/29) 0.11 5.08 1.51 < 0.01 centimeters 
 7B IWA4750 701186266 A/G (172/93) 0.35 6.67 1.20 0.01 centimeters 
Thousand kernel weight 1B 1B_542725487 542725487 A/C (212/53) 0.21 4.77 0.37 0.03 grams 
 1D 1D_32441418 32441418 T/C (232/27) 0.12 5.08 0.49 0.02 grams 
 2A 2A_718459754 718459754 T/G (253/16) 0.06 4.37 0.57 0.04 grams 
 2B 2B_206962855 206962855 A/G (236/14) 0.09 5.89 0.69 0.08 grams 
 5A 5A_685795509 685795509 C/A (226/42) 0.16 6.30 0.54 0.10 grams 
 6A 6A_406733069 406733069 A/G (247/8) 0.06 4.68 0.82 0.07 grams 
 6B 6B_695913077 695913077 G/A (225/44) 0.16 5.67 0.45 0.02 grams 
Grain yield 1A IWA5011 400311021 T/C (235/33) 0.13 5.90 191 0.04 kg·ha−1 
 1A 1A_496309488 496309488 G/A(199/59) 0.24 8.27 174 0.06 kg·ha−1 
 3B IWB32652 349636369 A/G (172/96)) 0.36 4.00 97 0.03 kg·ha−1 
 3B 3B_310333182 310333182 G/A (221/19) 0.13 5.56 213 0.03 kg·ha−1 
 6A IWB26414 5326425 A/G (236/30) 0.12 7.73 224 0.03 kg·ha−1 
 6A IWB63176 63563014 A/G (193/74) 0.28 7.30 163 0.15 kg·ha−1 
 6B IWB38887 696150409 A/G (143/126) 0.47 4.41 92 0.05 kg·ha−1 
 6B 6B_73187805 73187805 G/A (251/15) 0.06 4.07 250 0.14 kg·ha−1 
 7A IWB59141 6499010 A/C (194/69) 0.27 4.00 117 0.11 kg·ha−1 
 7B IWB6720 59632081 A/C (227/39) 0.15 5.28 154 0.05 kg·ha−1 
 7D 7D_633027374 633027374 C/T (236/17) 0.09 16.35 492 0.18 kg·ha−1 
Days to heading 2B IWB34502 553613770 T/C (144/126) 0.44 6.62 0.44 0.01 Julian days 
 2D 2D_35683268 35683268 G/A (172/90 0.35 4.81 0.37 0.02 Julian days 
 3A IWB6009 669524837 T/G (144/126) 0.47 6.03 0.39 0.05 Julian days 
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Table 4. Cont. 

Trait Chr Marker Position Alleles a MAF −logP Effect R2 Units 
Days to heading 3B 3B_705185712 705185712 C/T (142/121) 0.46 5.98 0.39 0.02 Julian days 
 4B 4B_665871684 665871684 C/T (241/10) 0.07 6.92 1.11 0.02 Julian days 
 5B 5B_167440402 167440402 A/G (241/26) 0.10 4.33 0.42 0.02 Julian days 
 6A 6A_565344991 565344991 C/A (151/110) 0.42 7.39 0.46 0.02 Julian days 
 7A 7A_690860911 690860911 G/A (185/66) 0.28 4.86 0.38 0.05 Julian days 
 7D 7D_301325415 301325415 G/T (243/21) 0.09 5.77 0.74 0.10 Julian days 
 7D 7D_58927880 58927880 C/T (204/61) 0.24 8.38 0.58 0.08 Julian days 

a The underlined nucleotide represents the favorable allele. For days to heading, days to maturity, and plant height, the favorable allele was reducing whereas all other traits the 

favorable allele was considered as increasing; 

Chr: chromosome; 

MAF: minor allele frequency; 

R2: coefficient of determination. 
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For BIO, we identified 4 MTAs on chromosomes 1B, 3A, and 5D (Figure 
2, Table 4). The largest signal for biomass was identified on chromosome 
5D at position 365,732,020 bp with –logP of 5.65 that explained 9% of 
variation observed in biomass. The next large signal for biomass was −logP 
of 4.69 on chromosome 3A. Independent MTAs for BIO represented 4–9% 
of the phenotypic variation with positive allele effects between 8.00 and 
13.41 grams.  

Ten MTAs were identified for days to heading for WL1718 across nine 
chromosomes (Figure 2). Two MTAs on 7D had −logP values of 5.77 and 
8.38 with allele effects of 0.74 and 0.58 earlier heading date, respectively. 
Ten MTAs were identified with –logP up to 9.41 for days to maturity (Table 
4). The most significant signal was identified at 44,485,665 bp position of 
chromosome 2D, which explained 16% of variation. Eleven MTAs were 
identified with –logP up to 9.90 for PH (Figure 2). One marker on 6D 
explained 16% of the phenotypic variation for plant height and had a 
minor allele frequency of 0.07 (Table 4).  

Transferability of GWAS results. We used existing YLD and HD data 
that were generated from the same germplasm in other states and seasons. 
Altogether, we assembled 14-environment datasets, of which WL17 and 
WL18 are from our field testing in Indiana. Linear discriminant analysis 
(LDA) on grain yield resulted in three homogeneous groups (Figure 3A) 
and on heading date resulted in four homogenous groups (Figure 3B). 
Strikingly, we observed that year-to-year variations resulted in different 
groupings in some cases (Supplementary Table S4). For example, for grain 
yield, LDA group 1 included WL17, KYM12, MDM12, MOM12, and MOM13, 
group 2 included WL18, OWL12, OWM12, VAL12, OWL13, and OWM13, 
and group 3 consisted of VAL13 and VAM13. We observed that for 
example, VAL12 and VAL13 are categorized in different groups (Figure 
3A). Similar observation was true for WL17 and WL18. In addition, we 
noticed that groupings were different for grain yield and heading date. 
LDA for grain yield and heading date had a percent separation above 87% 
for each discriminant function and cross-validation confirmed successful 
separation of environments. 

We performed GWAS for YLD and HD based on phenotypic 
observations from four environments: WL1718, Group 1, Group 2, and 
Group 3. In Group 1, twelve MTAs were identified in chromosomes 1B, 2B, 
5A, 5B, 6A, 6B, 7A, 7B, and 7D. Three MTAs were present on chromosome 
6B and two MTAs on 7A. For Group 3, eight MTAs were identified on 
chromosomes 3B, 5B, and 7B, however, applying the same standard for 
markers in LD as above, resolved to five independent MTAs. No MTAs 
were identified in Group 2. When we compared YLD signals among the 
three homogenous groups, there was not any MTA identified in more than 
one group, indicating that QTL are specific to each group. 
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Figure 3. Grouping of environment and year based on linear discriminant analysis. 3D plot of multi-
dimensional scaling to visually observe groupings based on (A) grain yield and (B) days to heading. 

Table 5. −logP value and marker effect for significant multi-environment marker trait associations.  

Trait Chr SNP 

Environment 

WL1718 Group 1  Group 2 Group 3 

−logP Effect −logP Effect −logP Effect −logP Effect 

Grain 

yield 

1A IWA5011 5.90 191 1.55 64 1.68 96 - - 
1A 1A_496309488 8.27 174 2.73 71 - - - - 
3B 3B_310333182 5.56 213 - - - - 1.69 170 
6A IWB63176 7.30 163 - - - - 1.57 94 
6B 6B_73187805 4.07 250 7.75 238 - - 2.38 235 
7A IWB59141 4.00 117 1.72 56 - - 3.04 150 
7D 7D_633027374 16.35 492 20.87 393 - - 1.64 184 

Days to 

heading 

2B IWB34502 6.62 0.44 5.53 0.29 1.94 0.30 - - 
3A IWB6009 6.03 0.39 1.85 0.16 - - - - 
3B 3B_705185712 5.98 0.39 - - 1.40 0.24 - - 
4B 4B_665871684 6.92 1.11 6.74 0.84 2.08 0.81 - - 
5B 5B_167440402 4.33 0.42 1.46 0.22 - - - - 
7A 7A_690860911 4.85 0.38 9.10 0.40 2.23 0.33 - - 
7D 7D_301325415 5.77 0.74 7.48 0.68 5.50 0.98 - - 
7D 7D_58927880 8.38 0.57 4.44 0.30 1.48 0.29 - - 

Represented MTAs based on the accepted threshold (−logP value > 1.3). 

A total of 28 independent MTAs were identified across environmental 
groupings for YLD but we only noticed seven MTAs that were identified in 
at least two environments which are indicative of transferability across 
environments. Two of these MTAs are located on chromosomes 6B and 7D. 
The MTA on chromosome 6B for YLD at position 73,187,805 bp was 
identified in WL1718, Group 1, and Group 3 environments with −logP of 
4.07, 7.75, and 2.38, respectively (Table 5). The marker effect for this 
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validated MTA showed an effect size of 238–250 kg·ha−1 across 
environments. The MTA on chromosome 7D for YLD is at 633,027,374 bp, 
and was identified in WL1718, Group 1, and Group 3 environments with 
−logP of 16.35, 20.87, and 1.64, respectively (Table 5). The marker effect of 
this MTA was approximately 492 kg·ha−1 in WL1718, 393 kg·ha−1 in Group 
1, and 184 kg·ha−1 in Group 3 (Table 5).  

For HD, LDA grouping clustered environments into four groups. LDA 
group 1 included WL17, WL18, MOM13, OWL13, and OWM13, group 2 
included MOM12, OWL12, OWM12, VAL13, and VAM13, and group 3 
consisted of MDM12, VAL12, and VAM12 (Supplementary Table S4). 
KYM12 was a singleton Group 4, with no other group member (Figure 3B), 
and was left out of the analysis. GWAS was performed for these three 
groups. Group 1 had 35 MTAs that were grouped into 26 independent loci. 
Eleven of these loci were located on chromosome 7A and five were located 
on chromosome 7D. For Group 2, eleven MTAs were identified on 
chromosomes 1A, 1B, 3A, 4B, 5B, 6A, 6B, 7A, 7B, and 7D. Lastly, Group 3 did 
not show any significant MTAs for HD. When we compared HD signals 
among the three homogenous groups, only one MTA, marker 
7D_301325415 on chromosome 7D, was present in more than one group 
(Table 5). 

A total of 47 MTAs were detected for heading date across environments 
but we only noticed eight MTAs that were identified in at least two 
environments which are indicative of transferability across 
environments. These MTAs were identified on chromosomes 2B, 3A, 3B, 
4B, 5B, 7A, and 7D (Table 5). For HD, one marker from the SNP chip array, 
IWB34502 located at 553,613,770 bp on chromosome 2B was associated 
with days to heading (Table 5), in WL1718, Group 1, and Group 2 
environments with allele effect of 0.44, 0.29, and 0.30 days, respectively. A 
marker with similar effects in the same environments was identified at 
690,860,911 bp on chromosome 7A with a −logP of 4.86, 9.10, and 2.23 in 
WL1718, Group 1, and Group 2, respectively (Table 5). Chromosome 7D 
contained two markers significant for days to heading. The positive allele 
associated with this marker (301,325,415 bp) on 7D showed effect sizes of 
0.74, 0.68, and 0.98 days for WL1718, Group 1, and Group 2, respectively 
(Table 5). The marker at position 58,927,880 bp on chromosome 7D was 
found to be associated with heading date in environment WL1718, Group 
1, and Group 2 with −logP of 8.38, 4.44, and 1.48 (Table 5). 

For YLD, seven out of 28 MTAs and for HD, eight out of 47 MTAs were 
found to be transferable across seemingly homogenous environments. 
Therefore, we concluded that not all marker-trait associations are 
transferable and MTAs are often environment specific.  

DISCUSSION 

In this study, we analyzed associations between genotypes and 
phenotypes in a US SRW wheat elite population, consisting of breeding 
lines that were developed by breeding programs in the Midwest and east. 
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Marker-trait associations for this population have been previously 
identified for Fusarium head blight [65], days to heading [66], and grain 
quality [33] from plants grown in Ohio and Virginia. We dissected the 
genetic architecture of grain yield and related traits based on phenotypes 
observed in Indiana. In addition, we examined the transferability of SNPs 
across environments for the traits of YLD and HD.  

Phenotypic correlations among traits and deciphering their 
relationship can give insight into identifying selection criteria for 
improving traits of interest. Our study showed that grain components 
including TKW, BIO, and GWS were significantly and positively correlated 
with YLD. Previous studies have documented positive relationship 
between TKW and YLD as well [67,68]. In wheat breeding research, 
biomass is often referred to as the whole aboveground plant parts. The 
pre-Green Revolution wheat germplasm were tall, and their height was the 
driver of plant aboveground weight. Therefore, during the Green 
Revolution the main force that led to increases in harvest index and 
productivity was only reducing plant height. In this population, although 
variation in biomass was observed, we think that in this era a “useful 
biomass” is one that can lead to non-competing multiple well-grown culms 
(tillers) with the potential to lead to a fertile spike. Increasing tiller 
numbers or protecting tillers in soft red winter wheat is one approach that 
can produce useful biomass. Our data showed that NS and BIO were 
significantly correlated (r = 0.47) and that NS is distributed in a wide range 
from 74 to 152. For example, the varieties OHO8-172-42, IL08-12174, 
MD05W1292-11-1, 05264A1-1-3-2, and IL07-20728 showed averages above 
240 grams for BIO and 134 NS. Other traits that can lead to useful biomass 
are smaller leaves with enhanced photosynthetic capacity and the levels 
of spike fertility, among others.  

While TKW, BIO, and GWS showed positive correlation with YLD, the 
duration of vegetative growth period, indicated by days to heading (and 
similarly days to maturity) negatively correlated with YLD. Similar 
negative correlation was reported by Addison et al. [63]. Addison et al. [63] 
noticed this trend in a SRW wheat recombinant inbred line (RIL) 
population across nine environments in the southern US, with the 
population segregating for photoperiod and vernalization loci. Grain 
number is the main driver of grain yield but no correlation was observed. 
This is a population of elite lines therefore; loci influencing traits relating 
to grain number could be potentially fixed in the population of elite 
germplasm. 

There are reports in the literature that shows positive correlations 
between days to heading and grain yield, [69], especially under cooler 
temperatures for hard red spring wheat [70]. The primary reason for the 
observed negative correlation between days to heading and yield in this 
population could be that most of the late heading germplasm were 
developed by and adapted to the state of New York. Therefore, a hidden G 
× E interaction works contrary to the yield formation. Path analysis affirms 
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the consequence of heading later is indirectly decreasing grain 
development as observed in thousand kernel weight and grain yield. 
Therefore, a practical consideration for future characterization of 
populations that are mixture of germplasm from multiple crop breeding 
programs is that the experimenters can use days to heading as biomarkers 
because a the shift in phenology could mask yield traits. When a drastic 
change between native germplasm and others is observed, yield 
differences are likely expected. Tessmann et al. [71] used QTL markers for 
plant height, vernalization, and photoperiod genes along with the actual 
heading date trait as covariates in the GWAS model to account for the 
latitude differences. This method is also routinely performed for maize but 
including flowering time (days to anthesis) as covariates [72,73].  

One major concern in GWAS discoveries is marker density. Wheat is a 
self-pollinated crop and the germplasm has been under selection. 
Therefore, in the beginning of the experiment, 45K markers seemed 
unnecessarily dense. We found evidence to the contrary. Significant MTAs 
with SNPs from GBS were 32 for yield components measured in WL1718 
and 10 multi-environment MTAs for GY and HD. In contrast, markers from 
the SNP chip array contributed 8 MTA for yield components and 5 multi-
environment MTA for GY and HD. This data indicates that MTAs were 
identified from both sets of SNP markers. In addition, we examined the 
inter-marker spaces for SNP chip markers located between two GBS 
markers. For example, the SNP IWB72708 (identified for biomass at –logP 
= 4.36) is located 897,950 bp downstream of gbs_1B_472631187 while 
296,024 bp upstream of gbs_1B_473,825,161. The SNP IWB51951 (identified 
for plant height at –logP = 5.01) is located 458,542 bp downstream of 
gbs_2A_92,338,766 while 1,095,722 bp upstream of gbs_2A_93,893,030. 
While these distances must be judged based on the local LD decay rates in 
each region, our conclusion is that the 45K marker set, combined from chip 
array and GBS methods, is not in excess for this germplasm and the 
combination of both marker sets can be complementary in GWAS 
applications.  

FarmCPU is a multiple loci linear mixed model that eliminates 
confounding effects between markers and kinship by iterating between 
both fixed and random effect models. In the fixed effect model, individual 
SNPs are tested while using pseudo-QTNs as covariates to control false 
positives. The FarmCPU model controls false positives, false negatives, and 
provides greater statistical power than alternative models used for 
association mapping [39,41]. Based on quantile-quantile (Q-Q) plots, 
FarmCPU effectively controlled false positives and false negatives based 
on the population structure and significant associations (Supplementary 
Figure S3). The Q-Q plot line holds close to the 1:1 line of expected versus 
observes association probabilities, with a slight upward tail indicating 
deviation from expected distribution. A deviation in the tail area indicates 
properly controlling false positives and false negatives, where any 
inflation line upward would indicate false positives or downward indicate 
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false negatives [39]. Other researchers reported similar claims. Xu et al. 
[74] and Vanous et al. [75] concluded the multi-locus model of FarmCPU 
provided more statistical power than single locus models with less over or 
under fitting. The FarmCPU model identifies the most significant single 
SNP at a specific genomic location instead of a large peak of SNPs with 
other MLM models [39].  

In the target environment of Indiana, several loci affected yield and 
yield components traits were identified. Germplasm were also identified 
that harbor those favorable alleles. The 17 lines that harbored the 
favorable yield QTL for the region on 7D were all developed by Purdue’s 
small grains breeding program. It is possible that all 17 of these lines 
contain a 7E translocation for resistance to barley yellow dwarf and cereal 
yellow dwarf virus, and are descendants of the Purdue line “P107” [76]. 
However, we could identify the 7E translocation harboring line in the 
pedigrees of only 11 out of the 17 lines. This translocation could explain 
the slow LD decay rate in over 100 Mbp on chromosome 7D.  

QTL expressed in one environment may not equally or ever be 
expressed in other environments. To a large degree, this can be associated 
with the key environmental clues that are critical regulatory event for the 
mode of action and expression of traits and QTL. For example, if the mode 
of action of a growth QTL is via tiller development before winter that are 
later on sensitive to freezing temperature, then two environments 
differing in winter temperature would results in different number of 
tillers that are counted in the spring. Therefore, QTL could go unnoticed in 
the colder environment. Similar examples can be given for kernel weight 
QTL expression under two hot and mild grain-fill period temperatures. 
Such QTL by environment interaction effects can vary depending on the 
location and specific year. To identify stable QTLs, GWAS on the basis of 
combined analysis of years and locations is suggested, which is often 
known as multi-environment GWAS [36,77] for future QTL 
implementation in marker assisted selection [78,79]. However, our results 
showed that majority of MTAs are environment specific. Even when we 
contained GWAS analysis within homogenously environments, the 
majority of MTAs we identified in WL site for YLD and HD and were not 
observed in other environments. Even when markers were significant 
across environments, there was differences for phenotypic variations that 
was explained by each marker and the size of marker effect. For some 
traits such as grain yield the magnitude of variance component due to G × 
Y was 20% greater than the magnitude of variance component due to G. 
Since winter wheat is grown over nine months, variation in climate and 
weather can directly impact the year to year variability and effect of the 
environment. For example, the WL site in 2017 showed significantly 
higher monthly temperature than WL18 site from February through April 
(Supplementary Table S1), which is a critical time in winter wheat 
development. With the increase in temperature, the vernalization period 
for 2017 was shorter than 2018, resulting in a decrease in yield. This could 
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be one potential reason for the difference in classifying the WL17 and 
WL18 site into different groups for YLD. Previous work is a mix of success 
and failure in the transferability of QTL across environments. Guan et al. 
[80] identified 226 QTL controlling yield component traits and heat 
susceptibility in a Chinese elite double haploid winter wheat population. 
Across the 12 environments in northern China, only 39 of these QTL were 
deemed “stable” based on detection in at least three individual 
environments. Further explanation could be the significant source of 
variance based on effect of environment and effect of genotype by 
environment on all measured traits. In the United Kingdom, a double 
haploid population was developed from favorable bread making 
hexaploid winter wheat cultivars to detect QTL controlling yield variation. 
The population was evaluated and phenotyped at five field trials across 
multiple years in England, Scotland, Germany, and France. Two QTL were 
mapped on chromosome 6B for grain size and yield, Qtgw-jic.6A and Qyld-
jic.6A, that were stable across nine of the twelve environments [81]. These 
favorable QTL validated with near isogenic lines displayed improvements 
of 5.5% and 5.1% for grain yield and grain weight. 

Seeking stable QTLs for yield determining traits may not be the most 
thoughtful approach to improve stability and genetic gains for wheat 
breeding. QTL transferability is challenging, and we suggest proceeding 
with caution to identify QTLs across multiple environments. In our case, 
detecting MTAs in homogenous environments showed minimal 
opportunities for making progress across regions or even or for 
developing biomarkers for marker assisted selection. We suggest 
performing GWAS and evaluating MTAs in the targeted breeding 
environment. The ability to utilize past data is powerful for predictability 
and examining transferability, however, the effect of the environment 
could be the leading issue in non-transferable QTLs controlling significant 
MTAs.  
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Lafayette, Indiana, for the two cropping seasons of the study; 
Supplementary Table S2. Path coefficient analysis; 
Supplementary Table S3. LD decay half distance per chromosome and 
genome; 
Supplementary Table S4. Grouping of environments from linear 
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Supplementary Figure S3. Q-Q plots from Manhattan plots of phenotypic 
traits from Figure 2. 
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