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ABSTRACT 

Genomic selection (GS) has shown successful results as a tool to increase 
Fusarium Head Blight (FHB) resistance in wheat (Triticum aestivum L.). In 
this study we performed a genome-wide association study (GWAS) on 
regional FHB nurseries to select significant SNPs for deoxynivalenol (DON) 
and DSK, an index of DON, FHB rating and Fusarium damaged kernels 
(FDK). The objective was to determine whether a reduced number of 
markers could improve predictions of FHB traits compared to the full set 
of markers for three populations of 306, 281 and 198 lines that were 
evaluated in 2017, 2018, 2019 respectively at Lexington, Kentucky. Under 
a forward GS scheme, using regional nurseries as training populations (TP) 
of sizes 100 and 400, there was a substantial positive increase in prediction 
accuracy (PA) of 21% for DON (0.28 vs 0.22) and 12% for DSK (0.32 vs 0.28) 
using a reduced marker set at the smallest TP size. With cross validation, 
moderate PA was obtained consistently among populations and marker 
sets for both traits. While the full marker set showed the best performance, 
PA with reduced marker sets was only slightly lower, (0.55 vs 0.54) for DON 
and (0.60 vs 0.57) for DSK. Our results confirm first, that GWAS offers an 
excellent tool to select significant markers for traits like DON and DSK, 
which reduces the number of markers considerably. Secondly, under a 
forward GS scheme, using only SNPs significant at P < 0.1 was the most 
effective strategy in that PA was highest. With these results we move a step 
forward in selecting lines with good resistance to DON accumulation and 
other FHB traits before evaluating them in the field, reducing the costs of 
phenotyping and genotyping. 
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ABBREVIATIONS 

GS, Genomic selection; GWAS, genome wide association study; FHB, 
Fusarium head blight; FDK, Fusarium damaged kernels; DON, 
deoxynivalenol; DSK, index of DON, FHB rating, FDK; TP, training 
population; VP, validation population; PA, prediction accuracy 

INTRODUCTION 

Fusarium head blight (FHB) is one of the most devastating diseases of 
bread wheat (Triticum aestivum L.) worldwide, which leads to significant 
losses in grain yield and quality. FHB is particularly aggressive in regions 
with cropping systems in rotation with maize and high humidity and 
moisture through heading and maturity. The disease is primarily caused 
by Fusarium graminearum Schwabe, which infects spikes of wheat leading 
to the discoloration and deterioration of grain, and the contamination with 
mycotoxins, mainly deoxynivalenol (DON) [1–3]. 

Control of FHB is difficult because of the complexity of the disease, and 
the need to use different management strategies has been proven [3]. 
Breeding resistant cultivars should be a major part of an integrated 
approach to reduce the damage from FHB. In this sense, FHB adds 
complexity to the objective, because resistance is quantitatively inherited 
with many QTLs involved [4]. Breeding for resistance to a quantitatively 
inherited disease is a difficult task that requires multiple cycles of 
breeding, leading to a gradual improvement of resistance over time [5]. 
The use of an optical sorter based selection has shown promising results, 
increasing the percentage of individuals with higher levels of FHB 
resistance [6,7]. Together with marker-assisted selection (MAS), which has 
been used for improving FHB resistance [8–15], these approaches have 
become useful strategies in this fight against FHB. However, attempts to 
improve complex quantitative traits by using QTL-associated markers is 
not completely successful because of the difficulty of finding the same QTL 
across multiple environments (due to QTL x environment interactions) or 
variable effectiveness in different genetic backgrounds [16,17]. Moreover, 
the existence of multiple minor QTLs responsible for FHB resistance in 
different backgrounds has been addressed [18,19]. Genome wide 
association studies (GWAS), through the use of high-density SNPs maps, 
have been successful at detecting a high number of significant marker-
trait associations for FHB traits [20–25]. 

Genomic selection (GS) is a form of MAS that simultaneously estimates 
all locus, haplotype or marker effects across the entire genome to calculate 
genomic estimated breeding values (GEBVs) [26]. Since its inception, there 
have been many studies that demonstrate the utility of GS in breeding for 
disease resistance in crops [5,16,27–29]. In wheat, FHB resistance is a 
challenging breeding target due to the combination of quantitatively 
inherited resistance and a challenging phenotype that is not easy to 
reproduce artificially. Thus, GS provides a great opportunity to breed FHB-
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resistant wheat cultivars. Research evaluating the performance of GS on 
the prediction of FHB traits in wheat and barley (Hordeum vulgare L.) has 
produced some promising results. Some studies have predicted GEBVs 
under a cross validation scheme [30–35], while others have investigated 
the application of GS models under a forward selection scheme [22,36–40]. 

In a recently published study, Verges et al. [40] found prediction 
accuracies (PA) of 0.5 when predicting scab traits for populations of the 
University of Kentucky (UK) wheat breeding program in a forward GS 
scheme, with regional scab nurseries serving as the TP. In this study, three 
different optimization methods and four TP sizes were tested, at a constant 
number of markers; a high density SNP set with 20,929 SNPs. Some 
research has been done regarding the effect of marker number, with an 
agreement that a plateau in PA is reached with low to medium size marker 
sets [27,31,41]. All of these studies were done under a cross validation 
scheme. We are not aware of studies that evaluate the effect of marker 
number when training population (TP) and validation population (VP) are 
independent samples when predicting scab traits. 

One way to evaluate different marker sets that vary in size is to define 
them based on the magnitude of their effect as indicated by P value. This 
would mean a strategy that begins with a GWAS to find marker-trait 
significant associations, followed by genomic prediction to calculate the 
GEBVs. Some studies have taken this approach and evaluated it in rice 
[42,43], maize [44] and wheat [34,45,46], with mixed results in terms of 
success. Positive results were achieved by Hoffstetter et al. [34], where 
they predicted FHB resistance and other traits with reduced marker sets 
with different levels of significance, finding increases in PA of 50% as an 
average. Conversely, Larkin et al. [46] found a reduction in PA compared 
to a GS model when GWAS-derived significant markers were added as 
fixed effects to the GS model to predict FHB traits. 

For this study, we tried to go one step further in investigating the 
application of GS to predict FHB traits. Our first objective was to 
investigate the effectiveness of using GWAS to establish marker-trait 
relationships that could provide statistically significant SNPs associated 
with each individual trait under evaluation (DON and DSK, an index of 
DON, FHB rating and Fusarium damaged kernels (FDK)) for different UK 
populations and the regional scab nurseries. Secondly, we proposed to 
evaluate the impact of these reduced marker sets in predicting both traits 
under a cross validation scheme for all populations and under a forward 
GS scheme, where the regional scab nurseries become the TP. Finally, we 
investigated the impact of predicting FDK and FHB rating, using marker 
subsets defined for DON and DSK. 

MATERIALS AND METHODS 

The plant material in this study comprised lines from the University of 
Kentucky (UK) soft red winter wheat breeding program, and the 2014–
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2018 Uniform Northern and Uniform Southern soft red winter wheat scab 
nurseries (NUS and SUS respectively; Supplementary Table S1). 

Lines belonging to the UK wheat breeding program derived from 
multiple F4:5 and F4:6 families and were evaluated in yield trials as part of the 
testing program. They come from crosses made by the breeding program 
pursuing the program’s goals, one of which is increased FHB resistance. The 
breeding lines may have in their pedigree a parent that was evaluated for 
FHB resistance in the uniform scab nursery, but it was not a condition of 
this study. Three populations of 306, 281 and 198 lines were evaluated in 
2017, 2018, 2019 respectively at Lexington, Kentucky. In the three growing 
seasons the genotypes were planted in 1.2 m rows long, spaced 30 cm apart 
in the UK mist-irrigated, inoculated FHB nursery. The soil type at the site is 
a Maury silt loam (fine, mixed, semiactive, mesic typic Paleudalfs). The 
experiment was planted in a randomized complete block design with two 
replications. Two checks, a resistant line (KY02C-3005-25) and a susceptible 
cultivar (Pioneer Brand 2555) were planted across the experiment. 

In all seasons, the FHB Nursery had an overhead mist irrigation system 
on an automatic timer that started three weeks before heading. The 
irrigation schedule was as follows: 5 min periods every 15 min from 2000 
to 2045 h, 2100 to 2145 h, 0200 to 0245 h, 0500 to 0530 h, and 0830 h [13]. 
The experiment was inoculated with Fusarium graminearum—infected 
corn (Zea mays L.). Inoculum comprised 27 isolates taken from scabby 
wheat seeds collected over the years 2007–2010 from multiple locations 
across Kentucky [47]. The inoculum was prepared by allowing corn to 
imbibe water for approximately 16 h before autoclaving. After autoclaving, 
a solution of 0.2 g streptomycin in 150 mL sterile water was mixed in the 
corn to avoid the growth of other microorganisms. The corn was 
inoculated with potato dextrose agar (PDA) plugs containing Fusarium 
graminearum, covered and incubated for 2 weeks until fully colonized by 
the fungus. After that, the corn was spread on the floor until dry, and put in 
storage bags in a freezer until use. Approximately 3 weeks prior to heading, 
the scabby corn was spread in the rows at a rate of 11.86 gm−2 [13]. 

For the NUS and SUS each nursery cooperator submits his or her 
breeding materials for evaluation and conducts an inoculated FHB trial at 
his or her location following the protocols developed by the US Wheat and 
Barley Scab Initiative (https://scabusa.org/) whose aim is to develop control 
measures against FHB. Two hundred twenty-nine lines belonging to the 
NUS that represented elite germplasm from public and private breeding 
programs were evaluated in field environments from 2014 to 2018. The 
NUS was evaluated at one or two locations in up to nine states per year 
from 2014 to 2018: Indiana, Illinois, Kentucky, Michigan, Missouri, 
Nebraska, Ohio, Virginia. The data set was balanced for individual years 
where the same set of genotypes was evaluated across different locations 
and unbalanced between years. Another set of 223 lines was evaluated in 
field environments from 2014 to 2018; these experiments were part of the 
SUS and represented elite germplasm from public and private breeding 
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programs. The SUS was evaluated at one or two locations in up to 10 states 
per year from 2014 to 2018: South Carolina, Georgia, Louisiana, Arkansas, 
North Carolina, Virginia, Illinois, Kentucky, Missouri and Indiana. The 
data was balanced for individual years where the same set of genotypes 
was evaluated across different locations and unbalanced between years. 
A list of location/year combinations for each regional nursery is shown in 
Supplementary Table S1. 

Phenotypic Evaluation 

At 24 days after heading, FHB rating was recorded using a 0–9 scale. FHB 
rating is a visual estimate of the incidence and severity of the disease 
ranging from 0 (absence of FHB symptoms) to 9 (≥90% of FHB blighted 
spikelets). Heading date (HD) was recorded when 50% of the spikes in a row 
had emerged from the flag leaf sheath (in Julian dates; data not shown). 
Plant height (cm) was measured from the soil surface to the top of the spike, 
excluding awns (data not shown). Lines were manually harvested using a 
sickle, mechanically threshed and cleaned. After cleaning, a grain sample of 
approximately 15 g from each row was further cleaned by hand and 
evaluated for Fusarium damaged kernels (FDK). The percentage of FDK was 
estimated by visually comparing samples with known levels of FDK ranging 
from 5 to 90%. The same sample (15 g) was subsequently sent to the 
University of Minnesota DON testing laboratory for DON analysis. DON 
concentration was determined by gas chromatography with mass 
spectrometry [48,49]. An index was created [40] combining FHB rating, FDK 
percentage and DON content with the formula: 

DSK index = FHB × 0.2 + FDK × 0.3 + DON × 0.5, (1) 

DSK index was created to emphasize the importance of kernels traits 
(FDK, DON) in breeding for FHB resistance. 

The regional nurseries data were obtained for every genotype, location, 
year combination. Lines were planted in a 1.2 m row spaced 30 cm with 
two blocks. A common check cultivar (Ernie) was planted in the NUS and 
SUS across years and locations. Historical data consisted of entry mean 
data for FHB rating, FDK and DON concentration for each combination of 
genotype/location/year. 

Data Analysis 

The following linear mixed model was utilized for the analysis of the 
FHB traits for which individual row-level data were available: 

Ylk = μ + Bk + Gl + εkl, (2) 

where μ was the mean, Ylk was phenotypic observation of the lth genotype 
at the kth block, Bk was effect of the block, Gl was the effect of the genotype, 
and εkl represented the residual term. The overall mean and the genotypic 
effects were considered fixed, and the block term was treated as a random 
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effect. Best Linear Unbiased Estimators (BLUEs) were derived from the 
model above. 

For the historical data of the NUS and SUS nurseries, a single value of 
each line-environment combination was available for the different traits 
(FHB, FDK, DON). Therefore, the following linear mixed model was used 
for this data: 

Yijl = μ + Yi + Lj + YLij + Gl + YGil + LGjl + εijl, (3) 

where μ was the mean, Yijl was phenotypic observation of the lth genotype 
at the ith year in the jth location, Yi was the effect of the year, Lj was the 
effect of the location, Gl was the effect of the genotype and YGil and LGjl 
were the interaction terms year by genotype and location by genotype 
respectively, while εijl represented the residual term. The overall mean 
and the genotypic effects were considered fixed and all the remaining 
terms random. The model above is the one from which BLUEs were derived. 

Genotyping 

For the 785 breeding lines from the University of Kentucky wheat 
breeding program, DNA was extracted using the Sbeadex plant kit from 
BioSearch Technologies; using leaf samples from the F4:5 or F4:6 lines that 
were collected by sampling a minimum of eight 7–10 day old seedlings. 
Genotyping by sequencing (GBS) [50] using the protocol described by 
Poland et al. [51] was conducted for the 785 lines that were phenotyped. 
Single nucleotide polymorphism (SNP) calling on raw sequence data for 
UK breeding lines and regional scab nurseries was done with Tassel-
5GBSv2 pipeline version 5.2.35. SNPs with ≤50% missing data, ≥5% minor 
allele frequency and ≤10% of heterozygous calls per marker locus were 
retained and imputation performed using Beagle v4.0. The final number 
of SNPs defined was 20,929. 

Design of the Training Populations and Validating Populations 

For this study we used the same training populations (TPs) with 100 and 
400 individuals selected at random by Verges et al. [40]. In this study, four 
TP sizes were created (100,200,300,400) based on three different 
optimization methods to select lines for the TP: at random, based on the 
two tails distributions of lines for a specific trait and based on PEV 
(Prediction Error Variance) algorithm. As a summary, the NUS and SUS 
were combined together and we randomly selected 100 and 400 lines to 
constitute two different TP sizes to estimate GEBVs for the UK breeding 
lines in the three consecutive years. The validating populations (VP) were 
created by selecting 50 genotypes randomly from the total breeding lines 
for each year independently, creating a total of 20 validation sets for 2017, 
2018 and 2019. The validating populations created for 2017 and 2018 sets 
were used previously in the study mentioned above and the VP created for 
the 2019 sets were created for this study. 
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Genome Wide Association Study (GWAS) 

Marker-trait associations were tested in the Genome Association and 
Prediction Integrated Tool (GAPIT) [52] using a mixed linear model (MLM) 
for the regional scab nurseries (NUS + SUS). A mixed linear model (MLM) 
includes both fixed and random effects. Individuals are included as 
random effects and these gives a MLM the ability to incorporate 
information about relationships among individuals. This information 
about relationships is conveyed through the kinship (K) matrix, which is 
used in an MLM as the variance-covariance matrix between individuals [52]. 
GAPIT produces a series of output files, including Manhattan plots, Q-Q 
plots and an association table with GWAS results for all SNPs analyzed, 
including P-values. First, GWAS was performed for each one of the 10 sets 
of lines becoming the TPs for cross validation, separately. This was done 
to prevent “inside trading” effect, described by Arruda et al. [29]; SNPs 
significantly associated with all traits were identified and specifically for 
DON content and DSK index, significant SNPs were selected to create three 
marker sets at different P value levels (0.01, 0.05 and 0.1). Secondly, GWAS 
was performed to the complete set of regional nursery lines (442 lines) to 
identify and select SNPs significantly associated with DON and DSK and 
create markers sets at different P value levels (0.01, 0.05 and 0.1) which 
were used on the forwards GS approach to predict UK breeding lines in the 
three consecutive years (2017,2018,2019). 

Genomic Prediction 

GEBVs for FHB rating, FDK, DON, and DSK were estimated using ridge 
regression best linear unbiased prediction (RR-BLUP) [26] with the model. 

y = Xβ + Zu + e, (4) 

where y is a vector of BLUEs for one trait for each wheat genotype, β is a 
vector of fixed effects which includes the overall mean and fixed 
covariates (major QTL and association mapping markers), u is a vector of 
random marker effects, X and Z are the design matrices for fixed and 
random effects, respectively, and e is a vector representing residual terms. 
The variance–covariance structure associated with the random term was 
u ~ N (0, Iσu

2) and for the residual term was e ~ N (0, Iσe
2). The estimates of 

u were obtained from the mixed.solve function using the package RR-BLUP 
in R [53]. Prediction accuracy was defined as the Pearson correlation 
between the phenotypic values (BLUEs) and the GEBVs (predicted) values. 

Cross Validation 

For cross validation, a total of 10 different TP (N = 351 lines) and VP (N 
= 91 lines) sets were created with the set of lines from the regional 
nurseries. We investigated the predictive ability of the genomic selection 
model for each of the two traits and calculated the prediction accuracy 
(Pearson correlation between phenotypic values and GEBVs) across 10 
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iterations of cross validation. A random sampling cross validation was 
conducted, training the model with 10 different TPs and VPs that were 
created to avoid the possible overestimated PA produced when the GS 
model is trained with markers selected by GWAS on the same lines that 
will become the VP “inside trading effect” (Table 1). Each TP was created 
randomly, had 351 lines, a 80% of the total regional nurseries lines and the 
other 20% become the VP. 

Table 1. Number of SNPs for DON and DSK that constituted the marker sets for Cross Validation. Scenario 1 
(GS) included the full set of SNPs. Scenarios 2–4 comprised SNPs with a significant effect for DON/DSK 
obtained after GWAS for the regional nurseries. 

 Scenarios Marker Sets Number of SNPs  

TRAIT     AV Min Max 

DON Scenario 1 GS (Full Set)  20,939 20,929 20,929 

 Scenario 2 GWAS (0.01) 218 205 238 

 Scenario 3 GWAS (0.05) 941 877 1078 

  Scenario 4 GWAS (0.1) 1878 1756 1990 

DSK Scenario 1 GS (Full Set)  20,939 20,929 20,929 

 Scenario 2 GWAS (0.01) 171 143 201 

 Scenario 3 GWAS (0.05) 875 829 914 

  Scenario 4 GWAS (0.1) 1852 1724 1935 

Forward Prediction Study 

The forward prediction study included the use of two different training 
population sizes (100,400) comprising the combination of NUS and SUS to 
estimate GEBVs of 20 prediction sets with 50 breeding lines each, for each 
of the three years (2017,2018,2019). 

Table 2. Different marker scenarios applied for forward genomic selection. Significant SNPs obtained after 
GWAS for the two traits are shown in this order: DON/DSK. 

Scenarios Marker Sets Number of SNPs  

Scenario 1 GS (Full Set)  20,929 

Scenario 2 GWM (0.01) 234/176  

Scenario 3 GWM (0.05) 899/831  

Scenario 4 GWM (0.1) 1780/1756  

Regional nurseries were defined as TPs and GWAS was used to define 
marker set scenarios for GS (Table 2). Scenario 1 (GS-full set) used all the 
SNPs that passed the filtering and imputation process (20,929). Scenario 2 
(GWM-0.01) used only a set of significant (P < 0.01) SNPs for DON content 
and DSK index. Scenario 3 (GWM-0.05) used only a set of significant (P < 
0.05) SNPs for DON content and DSK index. Scenario 4 (GWM-0.1) used only 
a set of significant (P < 0.1) SNPs for DON and DSK index. Therefore, the 
study included five (4) different marker sets, two (2) TP sizes (100,400), and 
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three (3) different sets of lines as validating populations (2017, 2018 and 
2019 populations). 

RESULTS 

Genome Wide Association Study 

Manhattan and QQ plots from GWAS for DON content and DSK for the 
regional FHB nurseries are shown in Supplementary Figure S1. The 
Manhattan plot is a scatter plot where the X-axis is the genomic position of 
each SNP, and the Y-axis is the negative logarithm of the P-value obtained. 
The Quantile-Quantile (Q-Q) plot is a tool for assessing how well the model 
used in GWAS accounts for population structure and family relatedness. 
In this study, the Q-Q plot for each analysis showed that the observed-log10 
(P value) was close to the expected-log10 (P value), but in the tail of the 
distribution, deviations from observed values in most cases indicated that 
significant marker effects were found. GWAS provided the significant 
markers at levels 0.01, 0.05 and 0.1 for the different populations and 
scenarios in this study. 

Phenotypic summary 

The training populations used in this study consisted of a set or lines 
entered in the US regional scab nurseries: Uniform Northern (NUS) and 
Uniform Southern Scab Nursery (SUS), and three set of breeding lines from 
the University of Kentucky wheat breeding program. This historical TP 
data comprised five years that were evaluated and curated 
(https://scabusa.org/publications#pubs_uniform-reports; verified January 
13 2021). It is important to note that the regional nursery entries have been 
selected by breeders on the basis of their scab resistance, while the 
breeding lines had been advanced on the basis of agronomic performance 
and had not yet been screened for scab resistance. The phenotypic 
information (Table 3) for the nurseries, and the populations evaluated in 
Lexington, KY in 2017, 2018 and 2019, showed that good levels of infection 
were achieved, so that we were able to score genotypes and differentiate 
resistant and susceptible reactions for the different traits. The means for 
FHB rating, ranged from 3.30 in the regional nurseries to 5.35 in the 2018 
population, with a minimum rating of 1–1.25 and a maximum rating score 
of 8.5 in the four sets. The mean FDK percentage ranged from 12.56% for 
the 2019 population and 48.62% for the 2017 population. The mean FDK 
for the 2017 population is higher than the one obtained for the regional 
nurseries (29.84%). FDK ranged from minimum values between 3.5 and 12% 
to higher values between 40–90%. The highest FDK was achieved with the 
2017 population, and the lowest with 2019 population, both planted in 
Lexington KY. Regarding DON levels, the mean DON content ranged from 
1.74 ppm for 2019 population to 24.92 ppm for 2017 population. Regional 
nurseries and 2018 population had mean values intermediate between 
these two contrasting values for DON content. The DON values ranged 
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from 0.16 to 5.12 ppm for 2019 population, 3.3 to 36.55 ppm for 2018 
population, 11.1 to 51.4 ppm for 2017 population and 2.27 to 24.46 for the 
regional nurseries. DON levels in Lexington, KY in 2017 were higher than 
generally occurs. Despite these high values, we still could observe 
phenotypic variance among the evaluated lines. There was a range of 40 
ppm between the lowest and highest values for the 2017 population and a 
very low range (5 ppm) between DON content values for the 2019 
population, indicating that data from 2019 the lowest DON content 
accumulation. DSK index was calculated based on these traits. 

Table 3. Summary of the phenotypic information for FHB rating, FDK (Fusarium damaged kernels) and DON 
(Deoxynivalenol content) for the regional scab nurseries and the Kentucky breeding populations evaluated 
in 2017, 2018 and 2019. 

 FHB rating 
(0–9) 

FDK 
(%) 

DON 
(ppm) 

  
FHB rating 

(0–9) 
FDK 
(%) 

DON 
(ppm) 

Reg Nur* (2014-2018)     Breeding lines (2017)     

Mean 3.30 29.84 9.01 Mean 4.10 48.62 24.92 

Min 1.25 9.70 2.27 Min 1.0 12.00 11.10 

Max 7.50 61.47 24.46 Max 8.50 90.00 51.40 

Breeding lines (2018)     Breeding lines (2019)   

Mean 5.35 32.70 11.97 Mean 4.16 12.56 1.74 

Min 2.50 5.00 3.30 Min 2.0 3.50 0.16 

Max 8.50 85.00 36.55 Max 7.0 40.00 5.12 
*Regional nurseries. 

Effect of the different marker sets with cross validation 

We evaluated the effect of the different marker set scenarios shown in 
Table 1 to predict DON and DSK for the regional nurseries with cross 
validation. Table 4 showed for DON a moderate PA with all scenarios. The 
highest PA was obtained with scenario 1, the full set of markers, and a 
slight reduction is observed with the three scenarios of marker subsets. 
Using scenario 3 (GWM-0.05) PA was 0.54, a 2% reduction compared to the 
full marker set (PA = 0.55). With scenario 4 (GWM-0.1) PA was 0.53, a 4% 
reduction compared to scenario 1. The lowest PA was obtained with 
scenario 2 (GWM-0.01), the smaller marker set. We observed the same 
trend for DSK index, with scenario 1 obtaining the highest PA, 0.6 and 
scenario 3 and 4 (GWM-0.05; GWM-0.1) having a slight reduction of a 5–8% 
in PA compared to scenario 1. 

Table 4. Mean prediction accuracy and standard deviation for DON and DSK index with Cross Validation. 

Marker 

set/Trait GS GWM (0.01) GWM (0.05) GWM (0.1) 

DON 0.55 ± 0.07 0.51 ± 0.07 0.54 ± 0.05 0.53 ± 0.06 

DSK 0.6 ± 0.05 0.49 ± 0.06 0.55 ± 0.06 0.57 ± 0.05 
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Effect of the different marker set scenarios and TP size on predicting DON 
content and DSK index in a forward selection scheme 

Table 5 shows the prediction accuracies obtained for the two traits 
under all marker scenarios (Table 2) and for the three different set of lines 
evaluated, with a TP size of 100. As a general conclusion, at TP = 100 the 
highest PA obtained for DON (0.38) and for DSK (0.44) was achieved, 
predicting the 2017 population under scenarios 2 (GWM-0.01) for DON and 
Scenario 3 (GWM-0.05) for DSK. If we look at the PA obtained by year, for 
the 2017 population, the highest prediction accuracy (PA = 0.38) for DON 
content was achieved with Scenario 2 (GWM-GWM-0.01), and the lowest 
PA (0.24) was obtained with Scenario 1, (GS-full set). For DSK, also for 2017 
population, the highest PA (0.44) was achieved with Scenario 3 and the 
lowest PA (0.36) was achieved with the Scenario 2 (GWM-0.01). For the 
2018 population, the highest PA for DON content was obtained with 
scenario 4 (GWM-0.1) (PA = 0.25) and the lowest PA was obtained with 
Scenario 3, showing for this trait/year combination similar PA ranging 
from 0.22–0.25 with all scenarios. For DSK, also for 2018 population, the 
highest PA (0.29) was achieved with scenario 2 (GWM-0.01) and the lowest 
PA (0.14) was achieved with Scenario 3 (P < 0.05). For the 2019 population, 
the highest PA (0.23) for DON content was obtained with Scenario 4 (GWM-
0.1), while the lowest PA (0.17) achieved with Scenario 2 (GWM-0.01). For 
DSK, also for the 2019 population, the highest PA (0.34) was obtained with 
scenarios 4 (GWM-0.1) and the lowest PA (0.21) was obtained with scenario 
1 (GS-full set). 

Table 5. Accuracy for DON and DSK index under different marker sets and two TP sizes (100 and 400). GS 
whole genotype marker data (~ 20,929 SNPs), GWM (0.01) marker subset based on significance level P < 0.01 
(234 and 176 SNPs), GWM (0.05) marker subset based on significance level P < 0.05 (899 and 831 SNPs), GWM 
(0.1) marker subset based on significance level P < 0.1 (1780 and 1756 SNPs). 

Marker set Year DON DSK 
    100 400 100 400 
GS 2017 0.24 0.43 0.42 0.49 
GS 2018 0.23 0.34 0.20 0.25 
GS 2019 0.19 0.16 0.21 0.24 
GWM (0.01) 2017 0.38 0.38 0.36 0.36 
GWM (0.01) 2018 0.23 0.24 0.29 0.20 
GWM (0.01) 2019 0.17 0.16 0.30 0.26 
GWM (0.05) 2017 0.32 0.34 0.44 0.45 
GWM (0.05) 2018 0.22 0.28 0.14 0.13 
GWM (0.05) 2019 0.22 0.15 0.29 0.28 
GWM (0.1) 2017 0.37 0.39 0.42 0.45 
GWM (0.1) 2018 0.25 0.30 0.20 0.21 
GWM (0.1) 2019 0.23 0.16 0.34 0.30 
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At TP size of 400 individuals, as a general conclusion, the highest PA 
obtained for DON (0.43) and for DSK (0.49) was achieved predicting the 
2017 population under scenario 1 (GS). With this TP size, PA for DON in 
2017 varied from 0.34 to 0.43; the highest PA was obtained with Scenario 
1 (GS) and the lowest PA with Scenario 3 (GWM-0.05). For DSK, the PA 
ranged from 0.36 to 0.49, with the highest PA obtained with Scenario 1 (GS) 
and the lowest with Scenario 2 (GWM-0.01). With 2018 population set, PA 
for DON varied from 0.24 to 0.34, being the highest PA obtained with 
scenario 1 (GS-full set) and the lowest with scenario 2 (GWM-0.01). For DSK, 
the PA ranged from 0.13 to 0.25, with the highest PA obtained with scenario 
1 (GS) and the lowest with scenario 3 (GWM-0.05). With respect to DON, PA 
in the 2019 population varied from 0.15 to 0.16. For DSK, the PA ranged 
from 0.24 to 0.30 with the highest PA obtained with scenario 4 and the 
lowest PA obtained with scenario 1 (GS-full set). 

(A) (B) 

  
Figure 1. Prediction Accuracy (PA) for DON (A) and DSK index (B) under different marker sets for genomic 
selection. Average between 2017-18-19. GS: full marker set (~20,929 SNPs), GWM (0.01), GWM (0.05) and 
GWM (0.01), marker subsets based on different significance level. 

Figure 1A,B showed PA for both traits and four marker scenarios, 
where PA is the average of the three populations (2017, 2018 and 2019). As 
a general conclusion, under scenario 4 (GWM-0.1) we observed the highest 
PA for both traits at TP size = 100 and under scenario 1 (GS) at TP size = 
400. At TP = 100 (Figure 1A), scenario 4 (GWM-0.1) increased PA for DON 
(0.28) by 21% compared to scenario 1 (GS full set) where we obtained the 
lowest PA (0.22). Similarly, for DSK (Figure 1B), scenario 4 (GWM-0.1) 
increased the PA by 12% compared to scenario 1, that obtained the lowest 
PA. At TP = 400 (Figure 1A), for DON, scenario 1 (GS) reached an average 
PA of 0.21, 10% higher than PA obtained with scenario 4 (GWM-0.1) the 
second highest value. For DSK, scenario 1 reached an average PA of 0.33 
that is a 3% higher than PA obtained with scenario 4 (GWM-0.1), the second 
highest value. We observed for DON, that the difference between the size 
of the TP did not have an impact on the average PA under the marker 
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subsets, but it did had an impact with the full set of markers where PA at 
TP = 400 outperformed by a 21% PA at TP size = 100. We observed a similar 
trend for DSK with scenarios 3 and 4, but we observed and impact of TP 
size with scenarios 1 and 2. When looking at scenarios 2–4, where SNPs 
were selected based on GWAS P values on the regional nurseries only, 
scenario 4 (GWM-0.1), showed the highest PA compared to scenario 2 and 
3, for both DON and DSK and at both TP sizes. 

Effect of the different marker set scenarios on prediction of FHB rating and 
FDK 

We also investigated the effect of genomic selection under these marker 
scenarios when predicting other scab traits like FHB rating and FDK (Table 
6). These traits are known to be correlated with DON, and along with DON, 
they constitute the DSK index. These traits were predicted based on the 
markers selected with GWAS for DON and DSK; evaluation was carried out 
under different marker scenarios, the effects of markers coming from 
GWAS for DON or DSK, and under two TP sizes. The results showed that 
PA for FHB rating was, on average, lower (0.2) than PA obtained for DON 
(0.28) or DSK (0.31) and PA for FDK was of a similar magnitude (0.31) when 
compared to DON (0.28) and DSK (0.31). 

Table 6. Average prediction accuracy for FHB rating and FDK under different marker set scenarios, 2017-
19. GS whole genotype marker data (~ 20,929 SNPs), GWM (0.01) marker subset based on significance level 
P < 0.01 (234 and 176 SNPs), GWM (0.05) marker subset based on significance level P < 0.05 (899 and 831 
SNPs), GWM (0.1) marker subset based on significance level P < 0.1 (1780 and 1756 SNPs) and GWM (corr) 
marker subset based on correlation. Training population sizes = 100, 400. 

  FHB Rating  FDK 

Trait N 100 400 AV   100 400 AV 
DON         

GS 20929 0.15 0.15 0.15  0.29 0.35 0.32 

GWM (0.01) 234 0.18 0.22 0.20  0.29 0.25 0.27 

GWM (0.05) 899 0.17 0.19 0.18  0.30 0.33 0.32 

GWM (0.1) 1780 0.15 0.18 0.16  0.30 0.36 0.33 

DSK         
GS 20929 0.15 0.15 0.15  0.29 0.35 0.32 

GWM (0.01) 176 0.17 0.16 0.17  0.34 0.26 0.30 

GWM (0.05) 831 0.20 0.20 0.20  0.30 0.29 0.30 

GWM (0.1) 1756 0.20 0.21 0.21  0.34 0.32 0.33 

N: SNPs number. FHB rating (0–9), FDK: Fusarium damaged kernels, (%). 

For FHB rating, predictions based on GWAS for DON or DSK gave 
similar accuracies (0.18 and 0.19; Table 6). The highest prediction accuracy 
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for this trait was found with Scenario 2 (GWM-0.01) at TP = 400, PA = 0.22. 
AT TP = 400, PA for FHB rating under all reduced marker sets, was 6 to 32% 
higher than scenario 1 (GS-full set). At TP = 100 the results were similar; 
highest PA was obtained with scenario 3 and 4 (0.2), the PA obtained under 
these scenarios was 12–25% higher than scenario 1, and the lowest PA 
obtained under scenario 1 (GS-full set). For FDK, Table 6 shows that 
predictions based on GWAS for DON and DSK had similar accuracies (0.31–
0.32) and the scenario that showed the best results was scenario 4 (GWM-
0.1), PA = 0.33 as an average between two TP sizes. Scenario 4 
outperformed scenario 1 (GS-full set) by a 3% and scenarios 2 and 3 by a 3 
to 18%. The highest prediction accuracy for this trait was found with 
scenario 4 (GWM-0.1) at TP = 400, PA = 0.36. The lowest PA was obtained 
with scenario 2 (GWM-0.01), at both TP sizes and with markers selected 
based on GWAS for DON and DSK. 

DISCUSSION 

Genomic selection has become a primary technology for plant breeders 
looking to accelerate the breeding process. Some of the benefits of GS 
include increasing genetic gain per unit time, reducing phenotyping costs, 
reducing field testing and more accurate selection of parents for crosses. 
In this study we established several scenarios with different marker 
subsets based on level of significance obtained with GWAS in the regional 
nurseries, and afterwards evaluated them with both cross validation and 
forward GS, predicting independent sets of UK breeding lines. 

Overall, results from our study showed positive and promising results 
regarding the use of a subset of markers based on GWAS. We established 
trait specific genomic relationship matrices, and defined different marker 
sets that include specific SNPs that were significant for DON or DSK. It is, 
to our knowledge, the first study reporting positive results with GWAS-GS 
for DON and DSK under a forward GS scheme, where a set of regional lines 
with known DON values becomes the TP to calculate GEBVs for UK 
breeding lines that don’t have FHB phenotyping evaluation yet. It is known 
that FHB is a very complex disease and the traits evaluated to quantify 
disease resistance are explained by many genes with small effects. 
Therefore, GWAS can be used to identify trait-marker associations in order 
to improve and validate GS; in addition, this step reduces the number of 
markers used for the analysis significantly, with the cost reduction than 
implies. Alternatively, it may be possible to reduce costs using a targeted 
genotyping approach such as amplicon sequencing [54]. 

Under a forward selection approach, our results using regional 
nurseries as TPs (Figure 1A,B) over three years, showed a substantial 
positive increase in PA of 21% for DON (0.28 vs 0.22) and 12% for DSK (0.32 
vs 0.28) under scenario 4 compared to scenario 1 at the smallest TP size. 
On the other hand, with the largest TP, the highest accuracies were 
obtained with the full marker set for both traits, being 10% and 3% higher 
for DON and DSK, respectively than scenario 4, the second best scenario. 
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Based on these results, we conclude that the association of GWAS and GS 
is a successful strategy that allows one to reduce the marker set with 
minimal effect on PA but with a great impact on the marker number; our 
results showed an average 93.6% reduction in marker’s number (20,932 vs 
1900) and only an average 6% reduction in PA for both traits (TP = 400). 
We validated in a forward GS scheme that significant SNPs for regional 
nurseries were also significant SNPs for the UK material, showing 
association with QTLs that are mainly responsible for the resistance or 
susceptibility of lines. Rutkoski et al. [30] suggested that fewer loci were 
involved in DON resistance compared to other FHB traits like Severity, 
Incidence and FDK; our results agree with this concept as we observed that 
a reduced number (~ 1800) of SNPs were enough to estimate GEBVs in an 
accurate and consistent way for DON accumulation and DSK index. 

In studies applying a forward GS scheme with independent samples of 
related material [27,38], investigators found prediction accuracies for DON 
in barley ranging from 0.14 to 0.67 and for FHB ranging from 0.58 to 0.77. 
In wheat, using an independent sample for TP and VP, Jiang et al. [22] 
found prediction accuracies of 0.58 for FHB rating using a TP and VP 
evaluated in different years, for sets of European wheat populations. In 
another study, Schulthess et al. [37] found prediction accuracies ranging 
from 0.4 (lower relatedness between TP and VP) to 0.8 (higher relatedness 
between TP and VP) when predicting severity in hybrid wheat. In our 
study, the highest PA obtained, with scenario 4, for DON (0.39) and DSK 
(0.45) was found when predicting the 2017 population. Lower prediction 
accuracies were observed with the 2018 and 2019 populations. 

Year to year variability is a normal phenomenon in a breeding program: 
every year new families are evaluated, and the environmental conditions 
are unpredictable. In our results, GxE interaction was manifest in the 
differences among 2017 (high PA), 2018 and 2019 (moderate-low PA). In a 
forward GS scheme, prediction accuracies are affected by degrees of 
relatedness between TP and VP, and the year effect, when TP and VP are 
evaluated in different years. Therefore, we see our results as promising in 
that we are using regional nurseries composed of lines from different 
breeding programs to predict UK breeding lines; nursery entries may not 
be closely related to the UK material, adding more complexity to GS. 
Something else to consider is the phenotypic expression showed in the 
three different sets of validating populations for DON. The expression of 
DON content varied greatly among UK populations (Table 3). In 2017 and 
2018, a range was observed of 40.3 and 33.25 ppm between the minimum 
and the maximum values, respectively, whereas in 2019 we observed little 
variability with 4.96 ppm between the lowest and highest values. This 
year-to-year difference in phenotypic expression for the different lines 
affected the PA. 

In order to place the PAs obtained with forward GS in context, we can 
look at previous studies from our group [40,55]. Verges et al. [40] found 
that with a 0.40–0.43 PA for DON, using a 30–40% selection intensity, 
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common in early generation selection, 50 to 60% of the lines were correctly 
selected for low DON based on GEBVs. We also found that with a 0.49 PA 
for DSK, up to 68% of lines were correctly selected for low DON, using the 
same selection intensity. Therefore, we think that a prediction accuracy of 
0.4 would be acceptable to most breeders when selecting for DON 
resistance in lines not yet tested in a scab nursery. 

Under cross validation (Table 4), our results agreed with the values 
found in the literature, for DON and DSK, and with consistency among all 
marker subsets. The GS model trained with the full marker sets showed 
the highest PA for DON (0.55). In scenario 3 with a reduced markers set, 
using SNPs significant at P < 0.05, we observed the highest PA for DON (0.54) 
compared to the 0.55 observed with the full set marker set. Different 
authors investigated this trait in wheat [30,31,35,40] and barley [27], 
reporting moderate PA for DON with cross validation, less than or equal to 
0.6 on average. Therefore, our results provide strong evidence about the 
model’s predictive ability with a 95% reduction of marker number used 
for this trait through building trait-specific genomic relationship matrices 
that exploit GWAS via rrBLUP [42]. 

The DSK index was proposed by Verges et al. [40] with the objective of 
weighting the values of FDK and DON, traits that affect grain quality, food 
safety and economic return to the farmer. Under cross validation (Table 4), 
this trait showed a moderate PA ranging from 0.49–0.57 for scenarios 2–4. 
The highest PA with the marker subsets was obtained under scenario 4 (PA 
= 0.57), SNPs selected with GWAS for DSK with a P < 0.1 level of significance. 
This value represents a slight reduction in accuracy of 5% compared to 
scenario 1 (PA = 0.6). DSK is a novel index and therefore difficult to 
compare with other indices from the literature, but in another study 
Arruda et al. [31] evaluated two different indices (FHB index and ISK), 
finding prediction accuracies with cross validation of around 0.5 for FHB 
index and 0.7 for ISK. Rutkoski et al. [30] found prediction accuracies 
ranging from 0.44 to 0.54 for the same index. 

We also investigated whether SNPs selected based on significant 
marker-trait associations for DON and DSK would be effective in 
estimating accurate GEBVs for FDK and FHB rating, two very important 
traits evaluated when breeding for FHB resistance. Our results (Table 6) 
showed for FDK, a similar average PA (0.3) to DON or DSK, based on all 
scenarios and the three different populations to which a forward GS 
scheme was applied. The prediction accuracies ranged from 0.25 to 0.35. 
As an average of two TP sizes, scenario 4 showed the highest PA for FDK 
(PA = 0.33) 5% higher than scenario 1. These results show consistency in 
PA and confirm the usefulness of GWAS identifying significant SNPs to 
target different scab traits when breeding to increase FHB resistance. 
Arruda et al. [31] found a PA of 0.8 for FDK; Rutkoski et al. [30] found 
prediction accuracies ranging from 0.35 to 0.46 and Larkin et al. [46] found 
PA of 0.53 all under a cross validation scheme. Even though the PA we 
obtained is lower, we should underscore that our results are based on a 
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forward GS scheme, where prediction accuracy is generally lower than is 
found with cross validation. Two aspects are important to address here: (1) 
the similar PA obtained for FDK is an average based on the three UK 
populations and all scenarios; (2) Scenario 4, with 1756–1780 SNPs 
outperformed scenario 1, which strongly supports the use of GWAS-GS 
approach in a forward GS strategy. 

TP size has been extensively discussed in the literature, and there is 
agreement that highest PAs are achieved with 300–400 individuals and 
that at larger TPs, a plateau is achieved [27,56–59]. Our results, under a 
forward GS scheme, showed small differences between PA obtained with 
TP size 100 vs 400 using reduced marker numbers (scenarios 2–4). PA for 
DON, as an average of all scenarios, was 0.27 at TP size of 100 and 400. PA 
for DSK reached 0.31 at TP size of 100, and 0.29 at TP size of 400. With the 
full marker set, the results differed in that both traits had higher PA at TP 
= 400 compared to TP = 100. 

In a simulation study, Hickey et al. [41] suggested that for related 
biparental populations, 300–500 SNPs are enough to get prediction 
accuracies of 0.6, with training populations ranging from 400–800 
individuals. Numerous investigators have evaluated the effect of marker 
number on the PA for FHB traits and they observed a similar trend, where 
increases in marker number increase PA until a plateau is reached, in 
some studies sooner, with 250 to 380 markers [27,60,61] or later, at around 
3000 SNPs [31]. Our results, under a forward GS approach, indicate that 
with 1700–1800 SNPs selected via GWAS, it is possible to obtain PA of 0.4, 
when TP and VP are independent sets of lines. 

With this study we tried to improve our understanding of how GS and 
GWAS could improve breeding for a challenging disease like FHB, and 
very challenging and costly traits like DON accumulation. In a recent 
article, we stated that selections based on GEBVs could be done effectively 
in material that was not yet evaluated for FHB in the field [40]. Lines in 
earlier generations could be selected for resistance based on GEBVs, 
eliminating very susceptible material before testing it in the field. The 
results of this study reinforce this idea, given the usefulness of the regional 
nurseries to predict FHB traits, coupled with the use of GWAS for 
identifying a smaller number marker significantly associated with traits 
of interest. Reduced marker number decreases genotyping costs 
considerably, which is always good news for breeders. 

SUPPLEMENTARY MATERIALS 

The following supplementary materials are available online: 
https://doi.org/10.20900/cbgg.20210007. Supplementary Table S1: Uniform 
Northern and Uniform Southern Scab Nursery (NUS-SUS) for 2014–2018; 
Supplementary Figure S1: Manhattan and QQ plots from GWAS for DON 
content and DSK for the regional FHB nurseries and the three Kentucky 
populations. 
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