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ABSTRACT 

Background: Relatively little effort has been made yet to optimize the 
allocation of resources when using genomic predictions to maximize the 
return to investment in terms of genetic gain per unit of time and cost. 

Methods: We built a simulation pipeline in the R environment designed to 
become a decision tool to help breeders adjusting breeding schemes, 
according to their either short or long-term objectives. We used it to 
explore different scenarios in order to investigate under which conditions 
(at what step of the breeding program) genomic predictions could improve 
genetic gain. For a given budget per cycle, we compared 36 scenarios, 
varying strategies (phenotypic selection PS or genomic selection + 
phenotypic selection: GPS), trait heritability, relative selection rate at two 
key steps and genotyping cost. With GPS strategy, we also optimized 
mating using genomic predictions. The reference population is a 20 years 
historical data set from the INRAE-Agri-Obtentions bread wheat breeding 
program. We simulated 3 cycles of 5 years selection. 

Results: We showed that GPS selection using mating optimization 
significantly improved genetic gain for all scenarios while GPS without 
mating optimization and PS had similar efficiency in terms of genetic gain. 
Our results also highlighted that the loss of genetic diversity over 
successive cycles was faster using GPS strategies. Those were more 
efficient to increase favourable allele frequency, rare alleles in particular. 
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ABBREVIATIONS 

DH, double haploid; GEBV, genomic estimated breeding values; GPS, 
genomic and phenotypic selection; GS, genomic selection; He, expected 
heterozygosity; INRAE, Institut National de la Recherche en Agriculture, 
Alimentation et Environnement; OCS, optimal contribution selection; OHV, 
optimal haploid value; PS, phenotypic selection; QTL, quantitative trait 
locus; SNK, Student-Newman-Keuls; SNP, single nucleotide polymorphism; 
SSD, single seed descent; TBV, true breeding value; UC, usefulness criterion; 
UCPC, usefulness criterion parental contribution 

INTRODUCTION 

The objective of bread wheat breeding programs is to develop new 
varieties that outperform current varieties in terms of yield, adaptation, 
resistance to biotic and abiotic stresses, and/or end use qualities. A great 
challenge in plant breeding is to improve the genetic gain per unit of time 
for a given investment. To meet this goal, the optimization of resource 
allocation appears to be a key point. In addition, breeders must find a 
compromise between short-term genetic gain and the conservation of 
genetic diversity within their germplasm in order to guarantee long-term 
genetic gain [1]. 

Furthermore, the exponential decrease of genotyping costs, 
improvement of computing tools, data storage capacities and algorithms’ 
efficiency, and the development of new statistical methods have led to the 
development of a new powerful approach to optimize breeding schemes: 
genomic selection (GS). GS is a marker-based selection method that uses 
thousands to millions of molecular markers evenly spread along the 
genome to predict the genetic value of candidates to selection [2,3]. 
According to the breeder’s equation [4], GS could improve genetic gain by 
(i) accelerating genetic gain by shortening the breeding cycle, replacing 
field evaluation with genotyping at juvenile stage [5] for long-cycle plants 
like trees in particular, implement recurrent selection with rapid cycles in 
cereals with up to 3 steps of GS per year in greenhouse for maize for 
instance [6,7], (ii) decreasing the budget allocated to field evaluation by 
optimizing the number of genotypes and replicates per environment in the 
experimental design [8] and by this way increasing the size of the breeding 
program (number of crosses or progenies per cross), (iii) increasing 
genetic variance by optimizing mating to cumulate favourable alleles [9–12], 
(iv) increasing accuracy of selection. For wheat in particular, theoretical 
estimates of genetic gain showed that GS can accelerate recurrent 
selection using off-season field for spring wheat or rapid cycles in 
greenhouses for winter wheat. The gain was higher when applying GS in 
F2 compared to F3 or F4 [13]. We can postulate that optimized mating 
should increase the gain further. 

Several factors influence the accuracy of GS. These factors include trait 
architecture and trait heritability [14], training set size and composition 
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[15,16], i.e., congruency between the allelic composition represented in the 
training population to estimate marker effects and the allelic composition of 
the candidates whose performance is to be predicted [17–23], marker 
density [23–26], and statistical model for estimation of marker effects [27]. 
For wheat in particular, it was shown that the size of the training 
population should be 50 if individuals are full-sibs, 100 if they are half-sibs 
and 1000 if they are unrelated [13]. 

Most of previous researches on GS in plant breeding focused on the 
prediction accuracy of unphenotyped lines. In bread wheat, studies 
evaluated the prediction accuracy of grain yield [28–32], traits linked to 
bread making quality [33–38], or disease [39–42]. At the breeding program 
scale, some simulation works showed an interest of GS compared to 
classical phenotypic evaluation in terms of genetic gain. For example, a 
study [43] showed that GS accuracies were high enough (GS accuracy twice 
as high as PS accuracy) to achieve greater gain from selection per unit time 
compared with phenotypic selection for bread wheat adult stem rust 
resistance. However, the two strategies they compared represented 
different budgets. In contrast, another study [44] simulated and compared 
several hybrid and line wheat breeding programs using GS for a fixed 
budget. This study showed that GS could be advantageous in terms of 
genetic gain for line but even more for hybrid breeding in wheat. 
Furthermore, the efficiency of PS and GS for grain yield assuming a single 
selection cycle and a given budget were compared using a biparental 
population of maize double haploid (DH) lines, as discussed by [45]. They 
showed that with large Genotype × Environment interactions and under 
limited resources, it was beneficial to use an index combining PS and GS 
to maximize genetic gain. They also noticed that DH price was a limiting 
factor for large genetic gain. But none of those studies evaluated the 
interest of mating optimization using genomic predictions. In maize, 
several studies showed its interest for long term genetic gain, in pre-
breeding programs in particular [46–50]. 

Simulation studies actually enable the comparison of a wide range of 
scenarios that would not be possible to test experimentally. They also 
allow to evaluate an unlimited number of selection cycles (long-term 
selection) in a short amount of time with a cost limited to data storage and 
processing. 

In this study we compared the genetic gain and the evolution of genetic 
diversity in two types of simulated breeding schemes: one called 
Phenotypic Selection (PS) with two steps of selection based on field trials, 
and one called Genomic and Phenotypic Selection (GPS) that combines a 
first step of genomic selection and a second step of selection based on field 
trials. We also evaluated the interest of mating optimization (GPSopt). We 
explored different scenarios in order to investigate under which 
conditions GPS and GPSopt were more cost-effective than PS. We 
compared scenarios for a given budget covering all breeding costs. 
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MATERIALS AND METHODS 

We developed a R pipeline to simulate and compare winter wheat 
breeding programs in terms of genetic gain and genetic diversity evolution 
for a given budget (Figure 1). The scripts of the pipeline are available using 
the following link: https://forgemia.inra.fr/umr-gdec/gps. 

 
Figure 1. PS and GPS breeding schemes. PS: Phenotypic Selection. GPS: Genomic and Phenotypic Selection. 
Np and Nc: number of parents and crosses respectively. N2, N3 and N4: number of progenies at the beginning 
of steps 2, 3 and 4 respectively. α2, α3 and α4: selection rate on steps 2, 3 and 4 respectively. α34: global 
selection rate on steps 3 and 4. 

Data Set 

The pipeline was tested using a real breeding population of 757 winter-
type bread wheat lines developed by the Institut National de la Recherche 
en Agriculture, Alimentation et Environnement (INRAE, formerly INRA) 
and its subsidiary company Agri-Obtentions. These lines were selected 
between 2000 and 2013. Each line was genotyped using a 280K SNP array 
[51]. The datasets with the genotyping data are available in the INRAE 
Dataverse repository 
(https://data.inrae.fr/dataset.xhtml?persistentId=doi:10.15454/M8SAYH). 
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In order to limit computing time in simulation, we used a subset composed 
of 12,119 SNP evenly spread along the genetic map. Such marker number 
was previously shown as giving similar predictive ability as the full 
marker set [52]. 

Trait Simulation 

We considered that 100 QTLs control the traits of interest. We simulated 
20 traits using random positions of the 100 QTLs, i.e., 20 random samples 
of 100 SNPs were assigned as QTL, marker effects drawn from a gaussian 
distribution: 

β~𝑁𝑁(0,1) 

The favourable allele was attributed at random to one of the two SNP 
alleles, so that coupling and repulsion associations also occur at random. 
The entry-mean heritability (h2) was set to either 0.2, 0.4 or 0.7. Phenotypic 
values of lines were obtained by adding a normally distributed noise to 
the genotypic values. In our study, the residual variance was 80% (h2 = 0.2), 
60% (h2 = 0.4) or 30% (h2 = 0.7) of phenotypic variance. We simulated 
phenotypes as: 

𝑌𝑌 = 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑁𝑁(0,��1−ℎ2�∗ 𝑣𝑣𝑣𝑣𝑣𝑣(𝑇𝑇𝑇𝑇𝑇𝑇)
ℎ2

) = Qβ + N(0, ��1−ℎ2�∗ 𝑣𝑣𝑣𝑣𝑣𝑣(Xβ)
ℎ2

), (1) 

with Q the genotyping matrix of 100 QTLs and β the vector of marker 
effects. 

Simulation of the Breeding Programs 

We compared two types of breeding schemes (Figure 1): one called 
Phenotypic Selection (PS) with two steps of selection based on field trials, 
and one called Genomic and Phenotypic Selection (GPS) that combines a 
first step of genomic selection and a second step of selection based on field 
trials. For the sake of simplicity, both breeding programs were designed 
using doubled haploids (DHs), instead of successive selfing, to reduce the 
time required for inbred development. We counted three years for cross, 
DH productions from F1 and seed multiplication, one year of PS (or GPS) 
selection and a last year of phenotypic selection, to fit breeder’s 
requirement of having real data to apply candidates in official registration 
trials. For both PS and GPS approaches, a breeding cycle lasts five years. 
We simulated three successive cycles. For the first cycle, the training 
population is composed of 757 Nref lines that have been genotyped and 
virtually “phenotyped” for one trait (20 times). Then, we extend the 
training population at each cycle with the N4 individuals that are 
genotyped and “virtually” phenotyped to update the genomic prediction 
equation. 
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Genomic Prediction Models 

We start the simulation with Nref lines (757 in our example) that have 
been genotyped and virtually “phenotyped” for one quantitative trait, 
twenty times to avoid any bias in QTL positions. For GPS, the first vector 
of marker effects �̂�𝛽0  is calculated using a ridge regression on those 
phenotypes. The database of phenotypes is incremented at each 
phenotyping step and the vector of marker effects �̂�𝛽𝑘𝑘  is updated at each 
cycle k. 

�̂�𝛽 = (X′X +  λI)−1𝑋𝑋′𝑦𝑦, (2) 

with y the vector of phenotypes, X the matrix of the 12,019 markers after 
removing the 100 markers sampled to simulate QTLs, λ chosen to make 
X’X non-singular, using the R package rrBLUP. 

We evaluated the accuracy of genomic predictions using the 
correlation between TBV and GEBV of lines at the third step. 

At the first step of each cycle, NC crosses are produced between the NP 
best individuals according to phenotyping results at step 4 of previous 
cycle (or Nref individuals for the first cycle). In PS scheme, crosses are 
obtained by randomly mating these NP best individuals. Note that we could 
have chosen to cross the two best individuals according to phenotypes, or 
the first with the second, the second with the third. But none of those 
strategy is realistic. In a real breeding program, breeders would select 
parents that complement for different traits. More realistic mating 
scenarios in PS strategy will be tested when a multi-trait strategy will be 
implemented in the pipeline. For this paper, we decided to compare PS and 
GPS strategy using the same random mating strategy among the NP best 
individuals, and a GPS strategy with random or optimized mating. This 
second strategy is called GPSopt and optimizes the complementarity 
between parental alleles [53]. We calculate the value of a cross as the value 
of the individual that would have inherited the best chromosomes of its 
parents. 

𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖 =  ∑ max(𝐺𝐺𝐺𝐺𝑇𝑇𝑇𝑇𝑐𝑐𝑖𝑖𝑛𝑛𝑐𝑐ℎ𝑟𝑟
𝑐𝑐=1 ,𝐺𝐺𝐺𝐺𝑇𝑇𝑇𝑇𝑐𝑐𝑖𝑖), (3) 

with UCij the usefulness criterion of the cross between the i-th and the j-th 
parents, i ≠ j, c the chromosome number, 𝐺𝐺𝐺𝐺𝑇𝑇𝑇𝑇 = 𝑋𝑋�̂�𝛽. This UC assumes 
chromosome being inherited without recombination, which is true for 
half of the chromatids in a single meiosis, as it is the case for doubled 
haploids from F1. The best cross is the cross that could produce the best 
possible gamete if the progeny size was unlimited. This is unrealistic but it 
was shown to be an acceptable approximation of cross value when using 
DH in wheat programs by [53]. 

To simulate progeny, each chromosome is either parental or 
recombined. If recombined, the number of cross-overs on each 
chromosome is sampled from a Poisson distribution, and cross-overs 
positions are distributed randomly along the genetic map [51]. 
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At step 2, N2 progeny are multiplied to implement one trial at the 
following step. We considered that the selection at this step was made on 
agronomic visual traits, excluding plants with major defaults, disease 
sensibility in particular. Since it cannot be focused on targeted traits (yield), 
we considered it had no impact on the distribution of genetic value of the 
N3 selected progeny. So, the selection was considered random for the 
targeted trait. 

At step 3, N3 progeny are evaluated in one trial. 

𝑁𝑁3 =  𝑁𝑁2𝛼𝛼2, (4) 

with α2 the selection rate at step 2 (α2 = 0.2 in this study). 
In PS scheme, these individuals are evaluated in the field and we 

consider a multiplication cost corresponding to five trials for next step. 
Selection is based on phenotypic data with a rate of selection α3. In GPS 
scheme, there is no trial, the selection is based on GEBVs calculated as the 
cross product between the vector of marker effects and the matrix of 
genotypes of progenies, excluding markers to which QTLs were assigned. 
Only N4 (N3α3) progeny are multiplied in nursery. 

At step 4, N4 progeny are evaluated in five trials (different 
environments, e.g., different locations). 

𝑁𝑁4 =  𝑁𝑁3𝛼𝛼3 (5) 

The last step is a phenotypic selection of NP parents for the next cycle 
in both PS and GPS schemes with a selection rate α4. 

𝑁𝑁𝑝𝑝 =  𝑁𝑁4𝛼𝛼4 (6) 

Instead of defining α3 and α4 independently, we fixed a relative 
selection rate (called λ) between steps 4 and 3 as follow: 

α3=α34
λ (7) 

and 

α4=α34
1-λ, (8) 

with: 

𝛼𝛼34 = 𝛼𝛼3𝛼𝛼4 =  𝑁𝑁𝑃𝑃
𝑁𝑁2𝛼𝛼2

, (9) 

If λ = 0.5, α3 =  α4. If λ > 0.5, α3 <  α4. If λ < 0.5, α3 >  α4. 

Costs Modelling 
We defined Cx the cost of each operation X of the breeding program 

(Supplementary Table S1). The cost of an operation sometimes varies 
depending on the step where the operation was done. The step is then 
specified as an exponent. For example, we assumed that field evaluations 
were realized in one trial at step 2, five trials at step 3 and ten trials at step 
4 (for registration), which explains the different costs of seed 
multiplication and evaluation. Note that those costs that include DNA 
extraction, genotyping and biometrician salaries are specific to INRAE. 
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Genotyping cost may decrease in the future. Some other genotyping 
platforms are more flexible and allow to genotype with high density the 
parents and low density the progeny that can be imputed [13]. 

Total cost (CT) of the PS scheme was defined as follow: 

𝑈𝑈𝑇𝑇𝑃𝑃𝑃𝑃(𝑁𝑁𝐶𝐶 ,𝑁𝑁2,𝑁𝑁3,𝑁𝑁4) = 𝐾𝐾[𝑁𝑁𝐶𝐶𝑈𝑈𝐶𝐶 + 𝑁𝑁2(𝑈𝑈𝐷𝐷𝐷𝐷 + 𝑈𝑈𝑀𝑀2 ) + 𝑁𝑁3(𝑈𝑈𝑀𝑀3 + 𝑈𝑈𝑃𝑃3) +
𝑁𝑁4(𝑈𝑈𝑀𝑀4 + 𝑈𝑈𝑃𝑃4)], 

(10) 

with K the number of cycle (K = 3 in this study) and N2 the progeny number 
at the beginning of step 2. In our study, we supposed that the number of 
progenies was the same for all crosses. Note however that the pipeline 
offers the possibility to make it proportional to cross value (Usefulness 
Criterion). Total cost depends on 4 parameters concerning progeny size at 
each step. The number of possible combinations for a same budget is very 
large. In order to simplify comparisons, as progeny sizes are dependant of 
each other for a fixed budget, we defined three parameters (NC, NP and λ) 
that are fixed for one scenario. The total cost CT and progeny sizes N3 and 
N4 can be expressed as functions of these parameters and N2. 

Thanks to previous equations, we have: 

𝑁𝑁4 =  𝑁𝑁𝑃𝑃
𝛼𝛼4

=  𝑁𝑁𝑃𝑃
𝛼𝛼1−𝜆𝜆

=  𝑁𝑁𝑃𝑃

� 𝑁𝑁𝑃𝑃
𝑁𝑁2𝛼𝛼2

�
1−𝜆𝜆 =  𝑁𝑁𝑝𝑝𝜆𝜆(𝑁𝑁2𝛼𝛼2)1−𝜆𝜆, (11) 

Therefore, the total cost of the PS scheme can be defined as follows: 

𝑈𝑈𝑇𝑇𝑃𝑃𝑃𝑃(𝑁𝑁𝑃𝑃,𝑁𝑁𝐶𝐶 , 𝜆𝜆,𝑁𝑁2) = 𝐾𝐾�𝑁𝑁𝐶𝐶𝑈𝑈𝐶𝐶 + 𝑁𝑁2�𝑈𝑈𝐷𝐷𝐷𝐷 + 𝑈𝑈𝑀𝑀2 + 𝛼𝛼2(𝑈𝑈𝑀𝑀3 + 𝑈𝑈𝑃𝑃3)� +
𝑁𝑁𝑝𝑝𝜆𝜆(𝑁𝑁2𝛼𝛼2)1−𝜆𝜆(𝑈𝑈𝑀𝑀4 + 𝑈𝑈𝑃𝑃4)�, 

(12) 

For a given total cost and set of parameters (NC, NP and λ) we search for 
the value of N2 that solve this equation. 

To define the total cost of the GPS scheme (CTGPS), we introduced the 
genotyping cost of the reference population composed of Nref lines. Note 
that cost of field evaluation at the third step is replaced by the cost of 
genotyping and that only N4 lines that are selected at step 3 were 
multiplied for GPS (instead of N3 for PS): 

𝑈𝑈𝑇𝑇𝐺𝐺𝑃𝑃𝑃𝑃(𝑁𝑁𝑃𝑃,𝑁𝑁𝐶𝐶 , 𝜆𝜆,𝑁𝑁2) = 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑈𝑈𝐺𝐺 + 𝐾𝐾�𝑁𝑁𝐶𝐶𝑈𝑈𝐶𝐶 + 𝑁𝑁2�𝑈𝑈𝐷𝐷𝐷𝐷 + 𝑈𝑈𝑀𝑀2 + 𝛼𝛼2𝑈𝑈𝐺𝐺) +
𝑁𝑁𝑝𝑝𝜆𝜆(𝑁𝑁2𝛼𝛼2)1−𝜆𝜆(𝑈𝑈𝑀𝑀3 + 𝑈𝑈𝑀𝑀4 + 𝑈𝑈𝑃𝑃4��, 

(13) 

As genotyping cost is lower than phenotyping cost, the number of 
progenies is larger in GPS strategy. As we fixed the total cost, either the 
number of crosses or the number of progenies per cross will be different 
between PS and GPS schemes. For GPS and GPSopt schemes, we tested 
scenarios with the same number of crosses and a different number of 
progenies n2 per cross (called GPS.n2 and GPSopt.n2) and scenarios with 
the same number of progenies per cross and a different number of crosses 
(called GPS.NC and GPSopt.NC). 

Simulation of Different Scenarios 

We evaluated the impact of several parameters on the final genetic gain. 
To do so, we simulated breeding programs with two total costs for 15 years 
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(three cycles of five years; CT ∈ {22.5 M€, 45 M€}, i.e., average CT per year 
of 1.5 or 3 M€), two genotyping cost (CG ∈ {37€, 10€}), three relative 
selection rate λ (λ ∈ {0.25,0.5,0.75}), and three levels of heritability of the 
trait (h² ∈ {0.2,0.4,0.7}). The description of each scenario is available in 
Supplementary Table S2. 

It led to the evaluation of 36 scenarios for five different strategies (PS, 
GPS.n2: fixed number of crosses, GPS.NC: fixed number of progenies per 
cross, GPSopt.n2: optimized mating design with a fixed number of crosses, 
GPSopt.NC: optimized mating design with a fixed number of progenies per 
cross). For each strategy / scenario, we tested 20 simulated traits (100 QTLs 
randomly sampled for each simulated trait) to evaluate the variance due 
to different QTL positions. For each combination of strategy, scenario and 
trait, we ran the algorithm 10 times to estimate the variance due to 
mendelian sampling only. For each simulation, we performed three cycles 
of five years. 

The algorithm used to run the simulations required several input data: 
including the simulated strategy (PS, GPS.NC, GPS.n2, GPSopt.NC, GPSopt.n2) 
trait and replication, a matrix with chromosome number and genetic 
position in columns 1 and 2 respectively, a matrix of genotypes with Nref 
rows, a vector of phenotypes of Nref length, one vector including true 
marker effects for the simulated trait, one scenario (combination of CT, CG, 
λ and h² values), the cost of each operation and the selection rate on step 
2. The algorithm is illustrated in Supplementary Figure S1. 

Evolution of the Genetic Gain 

For each strategy and scenario, at the end of each cycle, we computed 
the genetic gain as the difference between the mean of the true breeding 
values (TBVs) of the Np (200) best lines and the reference (initial) data set. 
The average TBV of the 200 best parental lines was 4.85. This average TBV 
was higher than the average TBV of the parental population which was 
0.33. We performed an analysis of variance (ANOVA) to compare the 
impact of the input parameters on the genetic gain. 

We tested a model without interactions between parameters (14), 
models that take into account interactions between the strategy and the 
simulated trait (15), the strategy and the total cost of the breeding scheme 
(16), the strategy and the relative selection rate (λ) (17), the strategy and 
the trait heritability (18). 

gijklm = µ0 + Si + λj + h²k + CTl + Tm + εijklm, (14) 

gijklm = µ0 + Si + λj + h²k + CTl + Tm + Si x Tm + εijklm, (15) 

gijklm = µ0 + Si + λj + h²k + CTl + Tm + Si x CTl + εijklm, (16) 

gijklm = µ0 + Si + λj + h²k + CTl + Tm + Si x λj + εijklm, (17) 

gijklm = µ0 + Si + λj + h²k + CTl + Tm + Si x h²k + εijklm, (18) 
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with gijklmn is the genetic gain of the scenario with the the i-th strategy (S), 
the j-th value of λ, the k-th value of h², the l-th value of CT, and for the m-
th simulated trait (T). 

For GPS strategies, we also studied the impact of genotyping cost on 
genetic gain:  

gijklmn = µ0 + Si + λj + h²k + CTl + Tm + CGn + εijklmn (19) 

with CGn the n-th value of CG. F tests were considered significant at α < 0.05. 
For the different strategies, genetic gains for pairwise scenarios were 

compared using the Student-Newman-Keuls (SNK) test from the R library 
Agricolae. Means were judged significantly different when P-values < 0.05. 

Evolution of Genetic Diversity 

For each strategy and scenario, we analysed the evolution of genetic 
diversity over successive cycles. To do so, we measured the percentage of 
alleles present in both the reference population and the 200 best progenies 
of each cycle. We estimated the significance of the various factors on 
genetic diversity with the same models used for genetic gain above. We 
also measured the difference between the expected heterozygosity (He) in 
the initial population and at the third cycle for (i) all the markers but QTLs, 
(ii) markers assigned to QTLs and (iii) markers located at the vicinity of 
QTLs (positioned at less than 1, 5, 10 or 15 cM from a QTL), using the 
following formula: 

𝐻𝐻𝐻𝐻 =  ∑ �1−∑ 𝑝𝑝𝑖𝑖
2𝑛𝑛

1 �𝐿𝐿
1

𝐿𝐿
, (20) 

with L the number of loci, n the number of alleles (2 in our case) for each 
locus, and pi the frequency of the allele i. 

For the different strategies, He differences at the end of the last cycle 
were compared using the SNK test. 

We also compared the number of cumulated favourable alleles 
(difference between the third cycle and the initial population) between 
strategies and scenarios. 

Parental Contribution 

For GPSopt strategies, a usefulness criterion was used to choose crosses 
that maximize the probability to get lines that cumulate a maximum of 
favourable alleles among the Np selected lines. Note that in our example, 
we did not constrain the contribution of any parents, but it is possible to 
fix a contribution threshold using this pipeline. For GPS and PS strategies, 
crosses were chosen at random among the Np selected lines. 

We compared the distribution of the contributions of reference lines 
between strategies and scenarios based on the pedigree of the Np lines 
selected at the end of each cycle. 

We defined the contribution of a reference line as the number of 
selected progenies presenting them in their pedigree divided by the total 
number of parental lines that contributed to the global progeny. Note that 
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all the reference lines or Np lines selected at the end of previous cycle did 
not contribute to crosses. Then we calculated the number of parents that 
contributed to 25% and 75% of the progeny. In addition, we used the 
Shannon index to evaluate the diversity of the parental lines that 
contributed using the following formula: 

𝐻𝐻′ =  −  ∑ 𝑝𝑝𝑖𝑖 × ln(𝑝𝑝𝑖𝑖)
𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟
𝑖𝑖=1 , (21) 

with Nref the number of initial parental lines, and pi = ni/N with ni the 
contribution of parent i to the Np progenies and N the total number of lines 
that contributed to progeny. Note that the more unequal the parental 
contributions, the smaller the corresponding Shannon index. 

In order to check if the distribution of favourable alleles was different 
among parents selected by UC or at random, we computed for each cross 
that contributed to selected lines the number of shared and specific 
favourable alleles among the two parents. We calculated it for each cycle. 

RESULTS 

Progeny Size under Different Strategies and Scenarios 

When the budget CT was doubled, the number of progenies was 1.9 
times larger at each step on average (for given values of CG and λ). When 
the cost to genotype one line (CG) decreased from 37 to 10 euros, the 
number of progenies at each step was only 1.1 times larger at each step on 
average (for given values of CT and λ). Note that for given values of CT and 
CG, the higher the value of λ, the higher the population size N3 in step 3, the 
smaller the population size in step 4 N4 and the higher N3 + N4. 

Supplementary Table S3 reports the number of progenies at each step, 
for each strategy (PS, GPS.NC, GPS.n2, GPSopt.NC, GPSopt.n2) and scenario 
(combination of CT, CG and λ). 

Cost Distribution between Operations 

We compiled the percentage of the total budget allocated to each 
operation (crosses, DH, multiplication, field experiment and genotyping) 
under different strategies (PS, GPS.NC, GPS.n2, GPSopt.NC, GPSopt.n2) and 
scenarios (combination of CT, CG, λ). Results were similar for GPS.NC and 
GPS.n2, and for GPSopt.NC and GPSopt.n2, for that reason we only show 
results for PS, GPS.n2 and GPSopt.n2 in Table 1. For each strategy, the 
production of DHs was the major source of expenses. Indeed, for PS 
strategy between 30.8% and 46.5% of the global budget was allocated to 
DH production. This percentage is even higher for GPS schemes (between 
37.3% and 72.6%). Multiplication steps required on average between 20% 
and 25% of the global budget. Since one field evaluation was more 
expensive at step 4 than at step 3 (more replicated plots), scenarios with a 
higher number of lines in the last step (λ < 0.5) used more budget for field 
evaluations. 
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For GPS strategies, genotyping required between 7.6% and 13.1% of the 
global budget when the cost of genotyping was 37€. It was obviously lower 
when the cost of genotyping was 10 € (ranging from 2.2% to 3.9%). But note 
that the number of tested lines only slightly increased (x1.1). 

Table 1. Percentage of total budget allocated to each operation. 

Breeding 
scheme 

Average 
annual 

CT 
CG Λ 

% percentage of the budget allocated to 

crosses DH multiplication 
field 

experiment 
Genotyping 

PS 

1.5M€ --- 

0.25 0.5 30.8 22.5 46.2 

0 

0.5 0.5 40.8 24.5 34.2 

0.75 0.5 45.4 25.3 28.7 

3M€ --- 

0.25 0.3 32.9 23.0 43.8 

0.5 0.3 42.8 24.9 32.0 

0.75 0.3 46.5 25.6 27.6 

GPS 

and 

GPSopt 

1.5M€ 

10€ 

0.25 0.5 39.9 21.5 35.9 2.2 

0.5 0.5 60.6 20.8 14.8 3.3 

0.75 0.5 70.6 20.5 4.6 3.8 

37€ 

0.25 0.5 37.3 20.4 34.2 7.6 

0.5 0.5 55.1 19.1 14.1 11.2 

0.75 0.5 63.6 18.6 4.5 12.8 

3M€ 

10€ 

0.25 0.3 43.6 21.4 32.3 2.4 

0.5 0.3 64.7 20.7 10.8 3.5 

0.75 0.3 72.6 20.4 2.8 3.9 

37€ 

0.25 0.3 40.6 20.2 30.7 8.2 

0.5 0.3 58.7 18.9 10.3 11.8 

0.75 0.3 65.4 18.5 2.7 13.1 

DH: Doubled haploids. CT: Total cost. CG: Genotyping cost. λ: Relative selection rate. Results were similar for GPS.NC and GPS.n2, and 

for GPSopt.NC and GPSopt.n2, for that reason we only show results for PS, GPS.n2 (GPS) and GPSopt.n2 (GPSopt). 

Contribution of Input Parameters to Final Genetic Gain 

We evaluated the contribution of input parameters (i.e., strategy, total 
cost, trait heritability, QTL sampling, and λ) to genetic gain for the 200 lines 
selected at last step. 

We found that each of the five factors had a significant effect on the 
final genetic gain (Supplementary Table S4). Trait heritability contributed 
the most. As expected, scenarios with higher heritabilities led to higher 
genetic gain (the average genetic gain was 13.32, 16.36 or 18.90 when the 
heritability was 0.2,0.4 or 0.7, respectively). The strategy was the second 
most significant parameter. The genetic gain for GPSopt.NC and GPSopt.n2 
strategies was larger than the genetic gain for strategies using random 
mating (the average genetic gain was 18.0 for GPSopt, 15.0 for GPS and 15.3 
for PS). The strategy and the trait heritability accounted for 16.7% and 40.1% 
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of the sum of squares, respectively. Note that doubling the total cost had a 
rather low impact on the final genetic gain (+ 1.07 on average). In addition, 
λ and QTL sampling had a low impact on the final genetic gain. We did the 
same analysis with the genetic gain obtained for various selection rates at 
last step (for the 10, 50 and 100 best lines) and we obtained the same 
conclusions (Supplementary Table S5). For GPS strategies, decreasing 
genotyping cost from 37€ to 10€ had no significant effect on the genetic 
gain (the average genetic gain was 16.4 for 37€, 16.5 for 10€). 

Table 2. Contribution of input parameters to the genetic gain. 

Trait Factor F P-value % of SS Factor level 
Number of 

records 
Means 

Genetic 

gain 

Strategy 1909.9 <2 × 10-16 16.7 

PS 7200 15.3 

GPS.n2 7200 15.0 

GPSopt.n2 7200 18.0 

λ 300.0 <2 × 10-16 0.7 

0.25 12,000 16.3 

0.5 12,000 16.7 

0.75 12,000 15.6 

h² 18,379.2 <2 × 10-16 40.1 

0.2 12,000 13.3 

0.4 12,000 16.4 

0.7 12,000 18.9 

Average 

annual CT 
1123.2 <2 × 10-16 2.5 

1.5M€ 18,000 15.6 

3M€ 18,000 16.7 

Strategy * λ  <2 × 10-16 1.5 

PS, 0.25 2400 14.6 

PS, 0.5 2400 15.62 

PS, 0.75 2400 15.8 

GPS.n2, 0.25 2400 14.9 

GPS.n2, 0.5 2400 15.4 

GPS.n2, 0.75 2400 14.3 

GPSopt.n2, 0.25 2400 18.6 

GPSopt.n2, 0.5 2400 18.5 

GPSopt.n2, 0.75 2400 16.9 

h²: trait heritability. λ: relative selection rate. CT: Total cost. CG: Genotyping cost (37€). % of SS: (Sum of squares) / (Total sum of squares). 

Number of records: number of records for each factor value. Means: average genetic gain for each factor value. Results were similar 

for GPS.NC and GPS.n2, and for GPSopt.NC and GPSopt.n2, for that reason we only show results for PS, GPS.n2 (GPS) and GPSopt.n2 

(GPSopt). QTL sampling accounted for less than 1%, for that reason we do not detail the mean of each of the 20 traits in this table. 

Considering the interaction between strategy and one of the other input 
parameters, we found that strategy and λ had the most significant effect 
on final genetic gain (Table 2). The genetic gain for GPS strategies (GPS.NC, 
GPS.n2, GPSopt.NC and GPSopt.n2) was always larger than genetic gain for 
PS when λ = 0.25 (i.e., α3 >  α4 ,  N3 is decreased and N4 is increased 
compared to λ = 0.75, the selection is less stringent at step 3 where GPS is 
applied). The interaction between strategy and total cost and the 
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interaction between strategy and trait heritability had a significant effect 
on final genetic gain but they accounted for less than 1% of the sum of 
squares. Finally, the interaction between strategy and QTL sampling (i.e., 
the simulated trait) had no significant effect on final genetic gain. 

Comparison of the Evolution of Genetic Gain between Scenarios 

As expected, we observed an increase of the 200 best lines average TBV 
along generations. Figure 2 illustrates the cumulative genetic gain at the 
end of each cycle with an average annual CT = 3M€ and CG = 37€. Results 
for other values of CT and CG are available in Supplementary Table S6. 

Genetic gain was always significantly larger for GPSopt.NC and 
GPSopt.n2 than for PS, GPS.NC and GPS.n2 whatever the values of CT, λ, CG 
and h². The difference between GPSopt.NC or GPSopt.n2 and PS was even 
larger when λ = 0.25 ( α3 >  α4). Indeed, the average differences between 
GPSopt and PS were + 3.94 for λ = 0.25, +2.90 for λ = 0.5 and +1.46 for λ = 
0.75 (Table 2). Genetic gain was also larger for GPS.NC and GPS.n2, 
compared to PS when λ = 0.25. However, this difference was significant in 
only one third of the scenarios. When λ = 0.5, no significant difference was 
observed between PS, GPS.NC and GPS.n2. In contrast, when λ = 0.75, 
genetic gain was significantly larger for PS compared to GPS. NC and GPS. 
n2 (+ 1.55). 

Note that GPS. NC and GPSopt. NC allowed to do 156 more crosses per 
cycle on average compared to GPS. n2 and GPSopt. n2. The number of 
progenies per cross was decreased from 412 to 333 for n3 and from 82 to 
67 for n4 (with λ = 0.25, average annual CT = 3 M€ and CG = 37€). However, 
the genetic gain for GPS. NC (GPSopt. NC) and GPS.n2 (GPSopt. n2) was not 
significantly different whatever the scenario. 

 

Figure 2. Evolution of genetic gain. h²: trait heritability. λ: relative selection rate. Average annual total cost 

(CT) = 3M€ and genotyping cost (CG) = 37€. Results were similar for GPS.NC and GPS.n2, and for GPSopt.NC 

and GPSopt.n2, for that reason we only show results for PS, GPS.n2 (GPS) and GPSopt.n2 (GPSopt). 
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Evolution of Correlations Between TBV and GEBV or Phenotypic 
Values 

We calculated the Pearson correlation between TBV and GEBV (GS 
accuracy) and between TBV and phenotypic values (PS accuracy) for the 
progenies at step 3 (Table 3). As expected, accuracy increased with trait 
heritability. Whatever the values of trait heritability and λ, PS accuracy at 
step 3 slightly decreased over the cycles. In contrast, GS accuracy increased 
over cycles. For instance, for GPSopt strategies, accuracy at step 3 of third 
cycle was on average twice as high as the one at the first cycle. Although λ 
had low impact on PS accuracy, it was significant on GPS and GPSopt. 
When λ = 0.25 ( α3 >  α4 ), final accuracy was superior compared to 
scenarios with λ = 0.75 (+ 0.12 and + 0.17 in GPS and GPSopt respectively). 
When λ decreases, the number of progenies N4 evaluated in the field at 
step 4 increases (Supplementary Table S3) and the number of lines added 
to the training population increases. 

Table 3. PS and GS accuracies at step 3. 

h² strategy 

Λ 

0.25 0.50 0.75 

Cycle 1 Cycle 02 Cycle 3 Cycle 1 Cycle 2 Cycle 3 Cycle 1 Cycle 2 Cycle 3 

0.2 

PS 0.56 0.54 0.53 0.56 0.53 0.53 0.56 0.53 0.53 

GPS 0.37 0.70 0.79 0.39 0.64 0.74 0.38 0.56 0.65 

GPSopt 0.31 0.79 0.88 0.30 0.71 0.80 0.29 0.59 0.65 

0.4 

PS 0.73 0.70 0.69 0.73 0.69 0.69 0.73 0.69 0.69 

GPS 0.42 0.76 0.86 0.42 0.70 0.80 0.42 0.63 0.73 

GPSopt 0.37 0.85 0.92 0.37 0.80 0.86 0.38 0.70 0.76 

0.7 

PS 0.88 0.86 0.86 0.88 0.86 0.86 0.88 0.86 0.85 

GPS 0.46 0.83 0.90 0.46 0.77 0.87 0.46 0.70 0.81 

GPSopt 0.45 0.92 0.95 0.45 0.88 0.92 0.46 0.80 0.85 

h²: trait heritability. λ: relative selection rate. Average annual total cost (CT) = 3 M€ and genotyping cost (CG) = 37€. Results were similar 

for GPS.NC and GPS.n2, and for GPSopt.NC and GPSopt.n2, for that reason we only show results for PS, GPS.n2 (GPS) and GPSopt.n2 

(GPSopt). 

Contribution of Input Parameters to Genetic Diversity Evolution 

As expected, we observed a decrease of polymorphism rate (calculated 
as the percentage of alleles present in both the reference lines and the 
selected progenies) over cycles for all scenarios and strategies. 

The five input factors had a significant effect on polymorphism rate 
(percentage of alleles) in the 200 best progenies of the last cycle compared 
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to the reference (initial) population (Supplementary Table S8). Figure 3 
illustrates the results with an average annual CT = 3M€ and CG = 37€. 
Results for other values of CT and CG are available in Supplementary file. 
Each of the five factors had a significant effect. Strategy and λ accounted 
for 39.1% and 13.7% of the sum of squares, respectively. Trait heritability, 
annual total cost and QTL sampling (the simulated trait) accounted for less 
than 1% of the sum of squares. This decrease was more pronounced for 
GPS breeding schemes than for PS, when crosses were optimized in 
particular, and when λ = 0.75. 

 

Figure 3. Evolution of polymorphism rate over cycles. h²: trait heritability. λ: relative selection rate. Annual 

total cost (CT) = 3 M€ and genotyping cost (CG) = 37€. The evolution of polymorphism rate was calculated as 

the percentage of alleles present in both the reference population and the selected progenies. Results were 

similar for GPS.NC and GPS.n2, and for GPSopt. NC and GPSopt. n2, for that reason we only show results for 

PS, GPS. n2 (GPS) and GPSopt. n2 (GPSopt). 

We also estimated the evolution of the expected heterozygoty (He) over 
the cycles (Supplementary Table S7) and the difference He in the reference 
population and at the end of each cycle for the all set of markers except 
QTLs, for markers assigned to QTLs and for markers at the vicinity of QTLs 
(1, 5 and 10 cM) (Table 4). Initial He in the reference population (Heini) was 
0.26. He decreased faster for GPSopt strategies (−0.14 < effect at the end of 
third cycle < −0.09) whatever the scenario compared to GPS strategies 
(−0.08 < effect < −0.03) and PS strategy (−0.03 < effect < −0.02). The 
difference was even larger when λ = 0.75 for GPS strategies (−0.14 < effect 
< −0.12 for GPSopt, −0.1 < effect < −0.08 for GPS). The loss of genetic 
diversity was stronger at QTL locations but not at the vicinity of QTLs. 

The number of additional favourable alleles cumulated at the end of 
the third cycle was also significantly larger for GPSopt strategies. For 
GPSopt, it ranged from 15.57 for h² = 0.2 and λ = 0.75 to 22.39 for h² = 0.7 
and λ = 0.25. For GPS, it ranged from 13.2 for h² = 0.2 and λ = 0.75 to 19.1 
for h² = 0.7 and λ = 0.5. For PS, it ranged from 12.75 for h² = 0.2 and λ = 0.25 
to 19.47 for h² = 0.7 and λ = 0.75. 
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Table 4. Evolution of genetic gain, number of favourable alleles and diversity. 

Strategy h² λ Gaina Nfavb Hec He.QTLd He.QTL1e He.QTL5f 
GPSopt 0.7 0.25 25.7 (a) 22.39 (a) −0.09 (jk) -0.14 (k) -0.1 (j) -0.1 (j) 
GPSopt 0.7 0.5 25.6 (a) 22.5 (a) −0.1 (n) −0.16 (m) −0.12 (k) −0.11 (k) 
GPSopt 0.7 0.75 24.3 (b) 21.27 (b) −0.12 (p) −0.17 (n) −0.13 (n) −0.13 (n) 
GPSopt 0.4 0.25 23.3 (c) 19.94 (c) −0.09 (kl) −0.14 (j) −0.1 (j) −0.1 (j) 
GPSopt 0.4 0.5 23.2 (c) 20.01 (c) −0.11 (o) −0.15 (lm) −0.12 (l) −0.12 (l) 

PS 0.7 0.75 23 (cd) 19.47 (d) −0.03 (de) −0.09 (f) −0.04 (e) −0.04 (de) 
PS 0.7 0.5 22.9 (cd) 19.35 (de) −0.03 (de) −0.09 (f) −0.04 (e) −0.04 (de) 

GPS 0.7 0.5 22.6 (de) 19.1 (e) −0.05 (f) −0.1 (g) −0.06 (f) −0.06 (f) 
GPS 0.7 0.25 22.3 (e) 18.75 (f) −0.04 (e) −0.09 (f) −0.05 (e) −0.04 (e) 
PS 0.7 0.25 22.2 (e) 18.66 (f) −0.03 (cd) −0.08 (e) −0.04 (cd) −0.04 (cd) 

GPSopt 0.4 0.75 21.6 (f) 18.47 (f) −0.13 (q) −0.17 (n) −0.14 (o) −0.14 (o) 
GPS 0.7 0.75 21.4 (f) 18.08 (g) −0.08 (i) −0.12 (h) −0.08 (h) −0.08 (h) 
PS 0.4 0.75 20.7 (g) 17.11 (hi) −0.03 (bc) −0.07 (d) −0.04 (bc) −0.03 (bc) 

GPSopt 0.2 0.25 20.5 (g) 17.19 (h) −0.1 (l) −0.13 (i) −0.1 (j) −0.1 (j) 
PS 0.4 0.5 20.5 (g) 16.98 (hi) −0.03 (bc) −0.07 (d) −0.04 (bc) −0.03 (bc) 

GPSopt 0.2 0.5 20.4 (g) 17.28 (h) −0.12 (p) −0.15 (l) −0.12 (m) −0.12 (m) 
GPS 0.4 0.5 20.2 (g) 16.82 (i) −0.06 (g) −0.1 (g) −0.06 (g) −0.06 (g) 
GPS 0.4 0.25 19.7 (h) 16.25 (j) −0.04 (e) −0.07 (d) −0.04 (de) −0.04 (de) 
PS 0.4 0.25 19.4 (h) 15.97 (jk) −0.03 (b) −0.06 (c) −0.03 (b) −0.03 (b) 

GPS 0.4 0.75 18.9 (i) 15.66 (kl) −0.09 (j) −0.12 (h) −0.1 (i) −0.09 (i) 
GPSopt 0.2 0.75 18.5 (i) 15.57 (l) −0.14 (r) −0.17 (n) −0.15 (p) −0.15 (p) 

GPS 0.2 0.5 17.4 (j) 14.22 (m) −0.06 (h) −0.09 (f) −0.07 (g) −0.07 (g) 
PS 0.2 0.75 17.3 (j) 13.99 (mn) −0.02 (a) −0.05 (a) −0.02 (a) −0.02 (a) 
PS 0.2 0.5 17 (j) 13.86 (n) −0.02 (a) −0.05 (a) −0.03 (a) −0.02 (a) 

GPS 0.2 0.25 16.4 (k) 13.32 (o) −0.03 (cd) −0.06 (b) −0.04 (bc) −0.03 (bc) 
GPS 0.2 0.75 16.2 (kl) 13.2 (o) −0.1 (m) −0.12 (h) −0.1 (j) −0.1 (j) 
PS 0.2 0.25 15.8 (l) 12.75 (p) −0.02 (a) −0.04 (a) −0.02 (a) −0.02 (a) 

a: Genetic gain (TBV difference between the 200 selected lines at year 15 and the reference population) ; b: number of favourable alleles 

difference; c: diversity (He) difference along the genome (QTL excluded) ; d: diversity (He) difference at QTLs ; e: diversity (He) 

difference at 1 cM interval around QTLs ; f: diversity (He) difference at 5 cM interval around QTLs; Two different crossing strategies 

are compared, random crossing and optimized crossing using UC criterion (opt), three different levels of heritability (0.2,0.4,0.7) and 

three different levels of selection ratio λ between steps 3 and 4 (0.25,0.5,0.75). The letters into brackets (a-r) correspond to significant 

different groups according to SNK test (α = 10−5). Results were similar for GPS.NC and GPS.n2, and for GPSopt.NC and GPSopt.n2, for that 

reason we only show results for PS, GPS.n2 (GPS) and GPSopt.n2 (GPSopt). 

Parental Contributions 
The number of reference lines that contributed to progenies decreased 

over cycles (Supplementary Table S9). When average annual CT = 3 M€ 
and CG = 37€, on average 31 reference (founder) lines were used as parents 
to produce the 200 best lines of the last cycle in GPSopt strategies. In 
contrast, on average 53 founder lines were used as parents in other GPS 
strategies and 81 in PS strategy. We also noticed that the number of 
founder lines was slightly smaller for GPS strategies with 400 crosses 
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(GPS.NC and GPSopt.NC) compared to GPS strategies with more crosses 
(GPS.n2 and GPSopt.n2). 

We also calculated the number of reference lines that contributed to 25% 
or 75% of progeny. These two indicators followed the same trends as the 
number of reference lines that contributed to the whole progeny 
(Supplementary Table S9). Indeed, only 1.4 reference lines contributed to 
25% of progeny for GPSopt strategy on average compared to 3.2 and 4.8 
different initial lines were needed in GPS and PS strategies, respectively. 
On average, 7 founders contributed to 75% of progeny, compared to 17 and 
27.6 for GPS and PS strategies, respectively. These reveals that some 
parents contribute to a large number of selected progenies for GPSopt if 
no contribution threshold is applied. This is consistent with the Shannon 
index that was smaller for GPSopt approach at the end of the third cycle 
(2.4,3.3 or 3.8 in GPSopt, GPS or PS). 

Table 5. Number of common and specific favourable alleles between parents. 

Strategy h² com0a spe0b ef.com0c ef.spe0d fq.ef.com0e fq.ef.spe0f com5g com10h com15i spe5j spe10k spe15l 

GPSopt 0.2 42 (a;41) 25 (b;25) 36 (a;34) 20 (b;20) 28 (a;27) 8 (b;9) 43 (b) 48 (b) 55 (c) 23 (d) 22 (e) 17 (e) 

GPSopt 0.4 42 (a;41) 26 (ab;26) 37 (a;35) 20 (ab;21) 29 (a;28) 8 (b;9) 43 (ab) 49 (a) 57 (b) 24 (c) 23 (c) 18 (d) 

GPSopt 0.7 43 (a;42) 26 (a;26) 38 (a;36) 21 (ab;21) 29 (a;28) 8 (b;9) 44 (a) 49 (a) 58 (a) 26 (a) 24 (a) 19 (c) 

GPS 0.2 37 (b;37) 26 (ab;26) 30 (b;30) 21 (ab;21) 24 (b;25) 10 (a;10) 41 (d) 46 (d) 51 (f) 25 (b) 22 (d) 20 (b) 

GPS 0.4 37 (b;37) 26 (ab;26) 30 (b;30) 21 (ab;21) 25 (b;25) 10 (a;10) 42 (c) 47 (c) 53 (e) 25 (b) 23 (c) 20 (b) 

GPS 0.7 37 (b;37) 26 (ab;26) 30 (b;30) 21 (a;21) 24 (b;25) 10 (a;10) 43 (c) 48 (b) 54 (d) 26 (a) 24 (b) 21 (a) 
a number of common favourable alleles between parents of the 10 (400) best crosses according to UC at generation 0 (among genitors from the reference population) ; b number of 

favourable alleles that are specific to one of the parent of the reference population ; c number of common favourable alleles multiplied by their effect ; d number of specific 

favourable alleles multiplied by their effect ; e number of common favourable alleles multiplied by their effect and frequency ; f number of specific favourable alleles multiplied by 

their effect and frequence; g number of common favourable alleles between parents of the 200 lines selected at year 5; h number of specific favourable alleles between parents of 

the 200 lines selected at year 5; i number of common favourable alleles between parents of the 200 lines selected at year 10; j number of specific favourable alleles between parents 

of the 200 lines selected at year 10; k number of common favourable alleles between parents of the 200 lines selected at year 15; l number of specific favourable alleles between 

parents of the 200 lines selected at year 15. Two different crossing strategies are compared, random crossing and optimized crossing using UC criterion (opt), three different levels 

of heritability (0.2,0.4,0.7). The letters into brackets (a-f) correspond to significant different groups according to SNK test (α = 10−5). Results were similar for GPS.NC and GPS.n2, and 

for GPSopt.NC and GPSopt.n2, for that reason we only show results for PS, GPS.n2 (GPS) and GPSopt.n2 (GPSopt). 

We also observed that the number of favourable alleles present in both 
parents was larger in GPSopt compared to the other strategies (Table 5) 
and that this number increased over cycles. On the opposite, the number 
of favourable alleles specific to one parent was not different between 
optimized and random crossing strategies in our elite germplasm 
(reference population) but became significantly inferior over cycles as the 
number of favourable alleles and inbreeding increased. There was 5 more 
QTLs in common between parents at the first generation in GPSopt 
compared to GPS, 4 more at the third cycle (year 15). Finally, GPSopt was 
more efficient to increase the frequency of favourable alleles, especially 
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when those alleles were rare in the reference population, heritability was 
high and λ was low (α3 was high) (Figure 4). 

 

Figure 4. Increase of favourable alleles frequency. h²: trait heritability. λ: relative selection rate. Annual 

total cost (CT) = 3 M€ and genotyping cost (CG) = 37€. Results were similar for GPS.NC and GPS.n2, and for 

GPSopt.NC and GPSopt.n2, for that reason we only show results for PS, GPS.n2 (GPS) and GPSopt.n2 (GPSopt). 

DISCUSSION 

This study focused on two types of breeding schemes: Phenotypic 
Selection (PS) with two steps of selection based on field trials, and Genomic 
and Phenotypic Selection (GPS) that combines a first step of genomic 
selection and a second step of selection based on field trials. We finalized 
the cycle by phenotypic selection because plant breeders have to provide 
field data for candidates when applying for official variety registration. In 
order to compare PS and GPS schemes with a fixed budget, GPS could 
either have the same number of crosses than PS (GPS.n2) or it could have 
the same number of progenies per cross at the beginning of step 2 (GPS.Nc). 
In addition, we explored two methods to choose couples to be crossed at 
each cycle for GPS schemes: random mating of the best lines (GPS.NC or 
GPS.n2 strategies) or optimized mating (GPSopt.NC or GPSopt.n2 strategies) 
using the optimal haploid value (OHV) usefulness criterion [53]. We tested 
several scenarios by varying cost of the breeding scheme, genotyping cost, 
trait heritability and selection rates at each step of selection, in order to 
investigate under which conditions GPS was more efficient than PS. We 
evaluated each strategy by comparing the genetic gain of lines selected at 
the end of the breeding program and the evolution of genetic diversity 
over cycles. Note that computational time was three to five times longer 
for the simulations of breeding schemes with optimized mating. 

Comparison of Genetic Gain of Selected Lines at the End of the 
Breeding Programs 

The objective of bread wheat breeding programs is to develop new 
varieties that outperform existing varieties, particularly those used as 
control in official registration trials. To reach this goal, breeders have to 
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choose the strategy that leads to maximal True Breeding Value (TBV, with 
the hope that the realized phenotype will also be superior. As expected, 
the TBV of the 200 best lines increased over cycles for all strategies and 
scenarios in our simulations. 

We observed that trait heritability and strategy (PS, GPS, GPSopt) are 
the two main factors affecting genetic gain which is consistent with the 
breeder’s equation [4]. To a lesser extent, relative selection rate (λ) 
between genomic and phenotypic selection steps had a significant effect 
on the genetic gain variance. 

In this study, we simulated traits controlled by 100 QTLs randomly 
sampled from 12,119 genomic markers. The next step will be to vary the 
number of sampled QTLs, the distribution of their effects and epistasis. 

We simulated breeding programs with two different budgets. Doubling 
the global budget did not lead to a large increase of the genetic gain (+ 6% 
on average). The genotyping cost had no significant effect on the genetic 
gain variance. This may be due to DH expense that is so high that varying 
the other costs has low impact on progenies number. This suggests that the 
INRAE-AO breeding program and reference panel may not have reached 
the necessary critical size to benefit fully from genomic predictions. 

We however identified under which conditions genomic predictions 
were the most interesting. We compared two strategies, genotyping 
predictions were used (1) to select candidates for next steps (GPS.NC and 
GPS.n2 strategies), or (2) to select candidates and optimize crosses 
(GPSopt.NC and GPSopt.n2 strategies). In our germplasm, we found that 
only strategies with optimized crosses were significantly superior to PS in 
terms of final genetic gain. We showed that parents involved in crosses 
that have led to the production of selected lines had a larger number of 
favourable alleles when the crosses were optimized. In addition, we 
highlighted the fact that some parents were involved in a large proportion 
of crosses in GPSopt strategies, leading to efficient favourable allele 
frequency increase, even rare alleles, but also global decrease of diversity 
and a genetic gain slowdown. Strategies with optimized mating were more 
advantageous when the selection rate was more intense at the step of 
phenotypic selection (step 4) than at the step of genomic selection (step 3). 
In this case, the number of progenies that were both genotyped and 
phenotyped at each cycle in GPS and GPSopt strategies were larger. As 
genomic prediction equations were updated at each cycle, the training 
population was larger and the predictions were more accurate. This result 
is consistent with previous studies that have shown that training 
population size and composition are key factors affecting accuracy of 
genomic predictions [15,16]. 

In our simulations GPS and PS breeding programs required the same 
number of years. It would be interesting to simulate more realistic 
breeding programs were genomic predictions results in accelerating the 
breeding programs using rapid cycles for instance [44,54,55]. 
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Evolution of Genetic Diversity 

Genetic diversity is a key parameter in plant breeding since it has an 
effect on long term genetic gain (according to breeder’s equation [4]). 
However, it has been shown in both experimental study and by stochastic 
simulations [1,56] that GS accelerates the loss of diversity compared to 
phenotypic selection due to the rapid fixation of regions of the genome 
with an effect on the trait of interest. Our results were consistent with 
those studies. Indeed, we observed a faster decrease of polymorphism rate 
in GPS strategies compared to PS schemes whatever the simulated 
scenario. This loss of alleles was even faster for strategies with optimized 
crosses (GPSopt.NC and GPSopt.n2). In order to reduce this loss, we could 
place additional weight on low-frequency favourable alleles as 
recommended by [1]. Since the loss of diversity is particularly fast when 
crosses were optimized, a second option would be to define a maximum 
number of crosses for which each parent could contribute in order to 
avoid having too many lines with one (or two) common parent like the 
optimal contribution selection (OCS) strategies [49]. Note that favourable 
alleles were more efficiently fixed for GPS and GPSopt and the frequency 
of favourable alleles, the rare ones in particular increased faster. In this 
study, we considered that only lines from the previous generation could 
be mated. This assumes no introduction of neo-diversity in the breeding 
scheme, which is not realistic, but simulations are always a simplification 
of real life. Indeed, it is common use to introduce external bread wheat 
registered material at each cycle. In order to simulate more realistic 
breeding programs, it would be important to give the possibility to add 
parents from an external pool (for example lines selected by other 
breeders or coming from genetic resources collections). 

Resource Allocation 

A great challenge in plant breeding is to improve and accelerate the 
genetic gain with a fixed budget. To meet this goal, breeders have to 
evaluate the best way to allocate resources. In this study, we found that 
production of doubled haploids (DHs), used to reduce the time required 
for inbred development [57], was the major expense in the INRAE-AO 
breeding program. Indeed, up to 46.5% and 72.6% of the global budget 
were allocated to DH production in PS and GPS schemes respectively. 
Therefore, it could be interesting to simulate breeding schemes based on 
other breeding methods than DH production, Single Seed Descent (SSD) in 
rapid cycles for instance. It would also double the number of efficient 
crossovers, increasing the probability to obtain beneficial recombinations. 
Another possibility to reduce the total cost of production of DHs without 
reducing the genetic gain would be to genotype F2 and produce DH only 
for F2 with highest GEBVs. 

We also noticed that field evaluation accounted for a significant part of 
the budget (up to 46.2% for PS and up to 35.9% for GPS strategies). In 
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addition, the percentage of the global budget allocated to field evaluation 
was higher for the most interesting scenarios in terms of genetic gain, i.e., 
the scenarios with the higher number of lines at step 4. To reduce 
phenotypic cost, each line could be phenotyped in a relevant subset of 
trials. We could optimize the experimental design in order to decrease the 
number of lines observed in each environment without decreasing the 
number of alleles observed in each environment and the selection 
accuracy [8]. When some cheap traits correlated to the targeted traits exist, 
we could also improve resource allocation by optimizing phenotyping 
between target and secondary traits [37,38,58–61]. We could simulate 
traits that are controlled by QTLs with partly pleiotropic effects [62]. 

Perspectives for the Improvement of the Pipeline 

We highlighted the importance of optimizing crosses using genomic 
predictions. We used as a first test a usefulness criterion that is fast to 
calculate (OHV). It calculates the TBV of the progeny that would get the 
best chromosome from each parent. This is not realistic with limited 
progeny size, since the probability of obtaining this best OHV can be very 
low, and this criterion assumes no recombination. We will include in the 
second version of the pipeline some usefulness criterion that takes into 
account the actual recombination rates across the genome for a limited 
number of progenies [11,63]. We could also give the possibility to monitor 
long term diversity by estimating simultaneously genetic gain and 
parental contribution using OCS and usefulness criterion parental 
contribution (UCPC) methodologies [12,49]. This way, we will be able to 
adjust the number of progenies according to predicted cross values using 
genetic algorithms. 

In this study, we replaced one step of phenotypic selection by genomic 
selection. However, genomic selection predictions could also be used at an 
earlier stage. Indeed, genomic prediction could be applied during the 
second step in order to reduce the budget allocated to multiplication. In 
this case, the number of genotyped lines would be higher. In addition, 
genomic predictions could be used to accelerate recurrent selection in a 
two or three-part breeding scheme composed of: (i) a population 
improvement component (pre-breeding) through recurrent selection, (ii) 
an optional bridging component if the performance gap between donors 
and elites is too large [50] and (iii) a traditional breeding program 
component [64]. 

In this study, we focused on single-trait selection. However, real 
breeding programs most often deal with simultaneous improvement of 
several traits that can be negatively or un-correlated with each other. In a 
multi-trait context, replacing one step of phenotyping by a step of 
genotyping would be even more cost effective. Simulations of breeding 
programs with several selection objectives would be more realistic. We 
will have to build a selection index [65] that depends on the relative 
economical weight of each selected traits. In addition, a multi-objective 
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optimization framework was proposed by [48] to define the best 
compromise. 

CONCLUSIONS 

In this study, we showed that GPS selection using mating optimization 
in INRAE-AO breeding program significantly improved genetic gain over 
successive cycles for different levels of heritability, selection rates and 
genotyping cost, compared to PS. In contrast, GPS without mating 
optimization and PS had a similar efficiency in terms of genetic gain. In 
addition, the loss of genetic diversity was faster in GPS breeding programs. 
Our results also highlighted that GPS strategies were more efficient to 
increase favourable allele frequency, rare alleles in particular. The results 
may be different in programs with different genotyping and phenotyping 
costs. 

The simulation pipeline we developed can help breeders to test the 
effectiveness of their breeding programs when changing parameters 
(genotyping and phenotyping costs, heritability of the trait, selection 
intensity, progeny size, number of crosses, cross value). For instance, we 
could test a scenario in which F2 are genotyped and only those with high 
genetic variance prediction are used for DH production. This would 
accelerate the cycles [13]. In the next version, the pipeline will also 
improve several trait simultaneaously and be able to integrate external 
varieties at each cycle. 

SUPPLEMENTARY MATERIALS 

The following supplementary materials are available online: 
https://doi.org/10.20900/cbgg20210008. Supplementary Table S1: 
Operation costs; Supplementary Table S2: Description of the 36 scenarios; 
Supplementary Table S3: Progeny size under different scenarios; 
Supplementary Table S4: Contribution of input parameters to genetic gain; 
Supplementary Table S5: Contribution of input parameters to genetic gain 
for the 10, 50 and 100 best lines; Supplementary Table S6: Evolution of 
genetic gain and polymorphism rate; Supplementary Table S7: 
Contribution of input parameters to polymorphism rate; Supplementary 
Table S8: Evolution of expected heterozygosity (He) over cycles; 
Supplementary Table S9: Evolution of parental contribution over cycles; 
Supplementary Figure S1. Description of the algorithm. 
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