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ABSTRACT 

Genome-wide association studies (GWAS) are one of the foundations for 
modern molecular breeding for plant genetic improvement. Single-locus 
GWAS methodologies impose constraints in association mapping due to 
the complex nature of quantitative traits and the often-stringent 
thresholds used. Multi-locus models, therefore, serve as alternative 
approaches in identifying significant marker-trait associations. This study 
used six multi-locus models to determine quantitative trait loci (QTL) 
associated with yield and agronomic traits in a diverse population of chile 
pepper evaluated in New Mexico, USA. Using the GWAS models, eight 
genotyping-by-sequencing (GBS)-derived single nucleotide polymorphism 
(SNP) markers across six chromosomes were identified to be associated 
with multiple traits. Plant height shared similar genetic control with plant 
width, whereas total yield per plant had common QTL with yield 
components. Epigenetic mechanisms such as methylation and chromatin 
remodeling and organization were predicted for first pod date and 
flowering time. The diverse functions of candidate genes identified reflect 
the complex genomic architecture of the evaluated traits. Allele specific 
assays for the identified QTL will be developed and validated for marker-
assisted selection and genome-wide selection towards the genetic 
improvement of chile pepper. 
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ABBREVIATIONS 

GBS, genotyping-by-sequencing; GWAS, genome-wide association study; 
LD, linkage disequilibrium; NM-CAMP, New Mexico Capsicum association 
mapping panel; QTL, quantitative trait loci; SNP, single nucleotide 
polymorphism 

INTRODUCTION 

Chile pepper (Capsicum spp.) is among the most important vegetable 
and spice crops in the world due to its important diverse uses and cultural 
significance [1]. Global chile pepper production reached ~61.6 million tons 
in 2019 [2]. However, chile pepper production is continuously constrained 
by different factors such as the rapidly changing climate, presence of biotic 
and abiotic stress factors, labor availability, and costs associated with 
manual harvesting [3–5]. In the state of New Mexico in the United States, 
chile peppers are regarded as a major economic and cultural crop [6]. 
Chile pepper production in New Mexico was 51,000 tons in 2021, a 22% 
decrease from the previous year [7]. Genetic improvement is crucial to 
improve production and to meet the increasing demands for chile pepper. 

Marker-assisted selection (MAS) has the potential to accelerate crop 
genetic improvement. The availability of reference genomes for the 
Capsicum spp. [8–10] facilitates effective molecular breeding, marker 
discovery, genetic mapping, and candidate gene analysis. GWAS is one of 
the tools to dissect complex traits and identify trait-marker relationships 
based on linkage disequilibrium (LD) [11]. The development of a mapping 
population is faster, as GWAS uses a diverse germplasm instead of a 
biparental population for genetic mapping, eliminating the need to 
perform experimental hybridizations [12]. Models for GWAS also evaluate 
multiple traits simultaneously. Nevertheless, spurious associations can 
arise from genetic and population stratification [13]. Incorporating factors 
such as relatedness matrices (e.g., principal components) derived from 
molecular marker data in the GWAS model is therefore necessary to 
correct for the presence of population structure [14]. 

The general model for GWAS employs a mixed linear model (MLM) that 
includes kinship (K) and population structure (Q) information (i.e., K + Q 
model) that effectively controls Type I and II error rates [15]. More 
advanced MLM-based methods including the efficient mixed model 
association (EMMA; [16]), compressed mixed linear model (CMLM; [17]), 
efficient mixed model association expedited (EMMAX; [18]), and genome-
wide efficient mixed model association (GEMMA; [19]), were later 
developed for association mapping. These approaches feature a one-
dimensional survey of the genome by testing a single marker at a time, 
making the approach computationally efficient especially when using a 
large number of markers [20]. 

Previous GWAS in chile pepper used single-locus approaches to 
understand the genetic basis of various traits with agronomic and 

Crop Breed Genet Genom. 2022;4(2):e220002. https://doi.org/10.20900/cbgg20220002  

https://doi.org/10.20900/cbgg20220002


 
Crop Breeding, Genetics and Genomics 3 of 28 

economic importance. The genetic basis of fruit morphology, for example, 
has been examined by using 373 accessions belonging to 11 Capsicum 
species across 746K polymorphic single nucleotide polymorphism (SNP) 
sites resulting in the identification of four novel loci associated with fruit 
shape [21]. Association mapping for fruit weight and capsaicinoid content 
in C. annuum identified 16 SNP markers related to variation for fruit 
weight located within known genes [22]. In another study, Lee et al. [23] 
identified 17 fruit-related regions and 16 causal genes controlling major 
fruit-related traits using genotyping-by-sequencing [GBS]-derived SNP 
markers implemented for GWAS and biparental mapping. The genetic 
architecture of Phytophthora capsici resistance has also been examined 
using GWAS, and 117 significant SNP markers across the whole genome 
were identified to be associated with resistance to the disease [24]. 
Altogether, these studies demonstrated the utility of single-locus GWAS 
methods in identifying genomic regions associated with complex traits in 
chile pepper. The single-locus models, nevertheless, may not render an 
accurate estimate of marker effects if a trait were controlled by multiple 
loci [20], especially for large experimental error typical in plant breeding 
field experiments [25]. The Bonferroni multiple test correction for 
declaring significant thresholds is also often too stringent, consequently 
causing many important loci to be declared as non-significant [26]. 
Moreover, implementing strict thresholds decreases the probability of 
accepting false positives, but does not minimize the potential of rejecting 
true positives because of setting very high significance thresholds [27]. 
Multi-locus GWAS models, therefore, serve as good alternatives to the 
existing single-locus approaches and has been recommended for the 
genetic dissection of complex traits. 

Multi-locus association mapping involves two major steps in detecting 
significant marker-trait associations. In the first step, markers are scanned 
and selected based on a low significance level; after which, a multiple 
locus method is implemented for markers that pass the initial screening in 
the second step, and the true quantitative trait loci are confirmed using a 
likelihood test [20]. Contrary to single-locus association mapping, all 
potential loci are fitted to a single linear model and their effects are 
calculated and tested simultaneously in multi-locus GWAS [25], 
consequently improving power over the single-locus methods [28]. The 
first multi-locus association mapping approach, multi-locus mixed model 
[MLMM], was implemented in human and Arabidopsis thaliana datasets 
[29]. The MLMM considers the loci as fixed effects and features a simple, 
forward-backward stepwise approach where variance components are re-
estimated at each step. Random effect multi-locus models for GWAS were 
subsequently developed due to the observed inflation of the true marker 
effects from the predicted values resulting from accounting markers as 
fixed effects [30]. In recent years, the application of multi-locus GWAS 
methodologies assuming random marker effects to complement or as 
alternatives to single-locus approaches has expanded across different 
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plant species. Multi-locus random effect GWAS models have been 
implemented in major crops including bread wheat (Triticum aestivum L.; 
[31,32]), maize (Zea mays L.; [33]), rice (Oryza sativa L.; [34,35]), soybean 
(Glycine max L.; [36,37]), and upland cotton (Gossypium hirsutum; [38]). 
Altogether, these studies demonstrated the efficiency and power of multi-
locus GWAS in dissecting the genetic basis of different complex traits 
resulting from using less stringent significant criteria. To our knowledge, 
there are currently no known reports on the application of multi-locus 
models for association mapping of complex traits in chile pepper. 

In the present study, we demonstrated the potential of using multi-
locus GWAS approaches in dissecting the genetic architecture of yield, 
phenology, and plant morphology-related traits in chile pepper (Capsicum 
spp.) The objectives of this study were to (1) explore the relationships 
among yield, yield components (green and red mature fruit yield per plant, 
ten pod weight), and agronomic traits (plant height and width) in a chile 
pepper mapping population; (2) identify significant genomic regions 
associated with different yield and agronomic traits using multi-locus 
GWAS models; and (3) determine candidate genes related to these 
significant loci. Results from this study will be important for the 
development and validation of markers for molecular breeding and 
genetic improvement of current chile pepper germplasm. 

MATERIALS AND METHODS 

Chile Pepper Germplasm 

The New Mexico Capsicum association mapping panel (NM-CAMP) 
consisted of 203 accessions belonging to four cultivated and one wild 
species of chile pepper (Capsicum spp.; Supplementary Table S1). The 
majority (156; 77%) of the NM-CAMP comprised of members of C. annuum, 
including their wild progenitor, ‘chiltepin’ (C. annuum var. glabriusculum). 
The second largest group consisted of members of C. chinense (34; 17%); 
followed by C. frutescens (7; 3%), and C. baccatum (5; 2%). A single 
accession of the wild chile pepper C. chacoense was also included in the 
NM-CAMP population. The C. annuum group included cultivars previously 
released by the New Mexico State University (NMSU) Chile Pepper 
Breeding and Genetics Program such as the ‘NuMex Big Jim’ [39], ‘NuMex 
Heritage Big Jim’ [40], ‘NuMex Sandia Select’ [41], ‘NuMex Joe E. Parker’ 
[42], and ‘NuMex Heritage 6-4’ [43], all classified as New Mexican pod type 
chile pepper. Additionally, jalapeño types such as ‘NuMex Vaquero’ [44], 
the cayenne, ‘NuMex Las Cruces’ [45], the paprika, ‘NuMex R. Vince 
Hernandez’ [46], the serrano, ‘NuMex Cajohns’, and ornamental chile 
peppers ‘NuMex Christmas’, ‘NuMex Easter’, and ‘NuMex Chinese New 
Year’ [47], and NMSU breeding lines derived from single plant selections 
were included in the NM-CAMP. The C. baccatum comprised of the ajis 
from South America, whereas the C. chinense consisted of habaneros and 
the ‘Superhots’, chile peppers with more than 1 million Scoville Heat Units, 
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such as the ‘Carolina Reaper’, ‘Trinidad Moruga Scorpion’ [48], and ‘7 Pot 
Primo’. The NM-CAMP members of C. frutescens comprised of the tabasco, 
including the ‘NuMex Nobasco’, a no-heat type [49] and ‘Siling Labuyo’, a 
high-heat cultivar from the Philippines. 

Collection and Analysis of Phenotypic Data 

Yield and agronomic traits were collected from NM-CAMP for the 2021 
growing season at the Leyendecker Plant Science Research Center, Las 
Cruces, NM (32.32° N, 106.76° W), and at the NMSU Los Lunas Agricultural 
Science Center, Los Lunas, NM (34.81° N, 106.73° W; hereafter referred to 
as the CRU and LUN locations, respectively), 320 kms (200 miles) N of CRU. 
Seedlings with 8–10 true leaves were transplanted 30 cm apart in 4.5 m 
plots with 0.30 m distance between plots in raised beds. The plants were 
cultivated under standard cultural and management practices including 
fertilizer application and furrow irrigation for growing chile pepper in 
New Mexico. Transplanting was done in April (CRU) and May (LUN), 
whereas a single manual harvest of pepper fruit samples was conducted 
from September-October 2021. The CRU location has a Belen clay loam 
class, whereas the LUN environment has a mixture of sandy clay loam 
(Gila) and Belen soil types. The mean temperatures between April and 
October and between May and October 2021 for the CRU and LUN 
locations were 21.5 °C and 19.5 °C, respectively, with the highest average 
temperature recorded in July at 25.7 °C in CRU (National Climatic Data 
Center; https://www.ncdc.noaa.gov/cdo-web/search; data retrieved 10 May 
2022) [50]. 

The NM-CAMP was evaluated in an augmented complete block field 
design for the CRU and LUN environments, where each block consisted of 
replicated checks, namely ‘Charger’ (New Mexican type), ‘Centella’ 
(jalapeño), and ‘C2 792’ (cayenne) and un-replicated entries. The total yield 
per plant (TYP; in kgs.) was represented as the fresh weight of the mature 
pods (green and red fruits) divided by the total number of plants of each 
plot; whereas the yield component trait, 10-pod weight (TPW; in kgs.), was 
measured as the total weight of randomly selected five mature green and 
five mature red pepper fruits. Other yield components such as green yield 
per plant (GYP) and red yield per plant (RYP) represented the fresh weight 
for green and red mature chile pepper fruits, respectively, divided by the 
number of individual plants of each plot, in kgs. Plant height (PHT) was the 
average measurement (in cm) from the ground to the top of the plant for 
five individual plants in each plot. Plant width (PWDTH; in cm) was 
measured as the widest point of five individual plants on the top of the 
canopy. Flowering time (FT) and first pod date (FPD) represented the 
number of days when the flowers and the pods (fruits) start to develop 
from the day of transplanting for each entry of the NM-CAMP. Phenotypic 
data collection was performed on a plot basis for each genotype using a 
maximum of ten plants for yield and yield components, and five individual 
plants for the plant morphology traits. 
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Phenotypic field data were analyzed under an augmented type 
complete block using a custom script for an augmented complete block 
design in the statistics program, R [51]. Best linear unbiased estimates 
(BLUEs) for the phenotypes were calculated in individual locations, 
whereas the Best Linear Unbiased Predictors (BLUPs) were estimated for 
the combined analysis across environments. Effects were considered as 
fixed and random when calculating BLUE and BLUP values, respectively. 
The broad-sense heritability, H2 at an individual location was calculated 
as: H2 = σ2

G/σ2
G + σ2

E; where σ2
G and σ2

E represent the variance due to 
genotype and residual, respectively. Across locations, H2 was represented 
as H2 = σ2

G/σ2
G + σ2

GE/n + σ2
E; where σ2

GE is the variance due to genotype-by-
environment interaction and n is the number of environments. 

Adjusted values for the trait data were calculated using the following 
statistical model for analysis for individual environment, where the effects 
were regarded as fixed: 

Yij = µ + Gen + Ck + IDck + Blki + εij (1) 

where Yij is the phenotype of interest; µ is the mean effect; Gen is the un-
replicated entry effect; Ck and IDck are the effects of the replicated check 
on each block and the check identifier, respectively; Blki is the effect of the 
ith block; and εij is the residual effect. Phenotypic values across combined 
locations were calculated using the following model, where the effects 
were considered random: 

Yikj = µ + Gen + Ck + IDck + Blki + Loci + Loci × Gen + Loci × Ck + Loci 
× IDck + Blkk (Loci) + εijkl 

(2) 

where Yij is the phenotype of interest; µ is the mean effect; Gen is effect of 
un-replicated entry; Ck and IDck are the effects of the replicated checks on 
each block and the check identifier, respectively; Blki is the effect of the ith 
block; Loci is the effect of location i; Loci × Gen, Loci × Ck, Loci × IDck are the 
effects of the interactions between environment and the entry, check, and 
check identifiers, respectively; Blkk (Loci) is the effect of block nested into 
the location; and εij is the residual effect. The BLUE and BLUP trait values 
were calculated using models (1) and (2), respectively. Analysis of variance 
for an augmented design was conducted using the ‘augmentedRCBD’ [52] 
package in R [53]. Principal components analysis and Pearson correlation 
coefficient calculation were performed using the software ‘DeltaGen’ [54] 
and the multivariate function in JMP® 13.2.1 [55], respectively. 

DNA Isolation and Genotyping-by-Sequencing 

Seeds were planted in F1020 multi-cell trays (American Horticultural 
Supply, Inc., CA, USA) at the Fabián García Science Center, Las Cruces, NM, 
USA and were grown in standard greenhouse conditions with 
temperatures maintained between 26 and 30 °C for cultivating chile 
pepper [56]. Tissue samples from seedlings (30–45-day old) of single plants 
per entry were collected using 1.2 mL Qiagen® collection microtubes 
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(Qiagen, MD, USA). Genomic DNA extraction was conducted using ~50 mg 
of fresh leaf tissue using the Qiagen DNEasy® 96 plant extraction kits 
through the University of Minnesota Genomics Center DNA Extraction 
Facility (https://genomics.umn.edu/service/dna-extraction). The total DNA 
isolated was quantified using Picogreen® (Thermofisher Scientific, MA, 
USA) and samples were normalized to 10 ng/µL for genotyping-by-
sequencing (GBS). 

The GBS procedure for the NM-CAMP was conducted through the 
University of Minnesota Genomics Center 
(https://genomics.umn.edu/services/gbs) as described previously in 
Lozada et al. [57]. Briefly, a single enzyme digestion protocol was 
implemented using ApeKI (New England Biolabs, Inc., MA, USA) for ~100 
ng of DNA per sample. Enzyme incubation at 75 °C for 2 h was performed 
and heat-inactivation at 80 °C for 20 min followed. Ligation of the DNA 
samples were then conducted with 200 units of T4 ligase (New England 
Biolabs, Inc. MA, USA). Purification of the ligated samples with solid phase 
reversible immobilization (SPRI) beads, and subsequent amplification (18 
cycles) with 2X NEB Taq Master Mix were performed to add the barcodes. 
Libraries were purified, quantified, and pooled using SPRI beads. 
Fragments (300–744 bp) were selected and diluted to 1 nM for single end 1 
× 100 sequencing using the Illumina NovaSeqTM 6000 sequencer (Illumina, 
CA, USA). Illumina ‘bcl2fastq’ software (Illumina, CA, USA) was used to 
demultiplex the raw FASTQ files. For the beginning of each sequence read, 
the first 12 bases were removed to exclude the adapters. Adapter 
sequences at the 3’ ends of the reads were removed using Trimmomatic 
[58]. Burrows-Wheeler Aligner [59] aligned the FASTQ files to the Zunla-1 
(C. annuum) reference genome ([9]; Zunla-1 reference genome 
GCA_000710875.1, PRJNA186921, v.1.0; 
(https://www.ncbi.nlm.nih.gov/nuccore/ASJU00000000.1/). Simultaneous 
joint calling of variants across all samples was done using the Freebayes 
Bayesian genetic variant identifier [60]. VCFtools processed raw variant 
call format (VCF) files to remove variants with the following parameters: 
(a) minor allele frequency <1%; (b) genotype rates <95%, and (c) samples 
with genotype rates <50%. TASSEL 5.2.77 [61] was used to convert the VCF 
files to the HapMap format using where loci with MAF < 0.05 and 
unmapped markers were further excluded. Names of SNP markers were 
designated as "Scaffold/Chromosome name Position of the marker (in bp) 
in the scaffold”. Missing data imputation was accomplished using the LD 
k-nearest neighbor genotype imputation function [62] in TASSEL 5.2.77. 

Genetic Diversity and Population Structure 

Different indices were used to calculate the genetic diversity for the 
NM-CAMP. Tajima’s D statistic [63] was calculated using a ‘sliding window’ 
analysis (step size = 100 (0.10 Kb) and window size = 500 (0.50 Kb)) in 
TASSEL 5.2.77. GenoDive program [64] calculated heterozygosity within 
populations (Hs), total heterozygosity (Ht), and inbreeding coefficient (Gis). 
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Analysis of molecular variance (AMOVA) [65] was performed through the 
package ‘poppr’ [66] in R. ‘GeneticSubsetter’ [67] package in R calculated 
polymorphism information content (PIC). Principal component analysis 
using genome-wide SNP markers were conducted using the “PCA” function 
in TASSEL v.5.2.77 and the first two PCs were fitted in a bivariate plot in 
JMP 13.2.1. 

Population genetic stratification of the NM-CAMP was evaluated using 
STRUCTURE [68]. An admixture model was applied using a burn-in of 
10,000 iterations, 10,000 Monte Carlo Markov Chain replicates, and 
number of clusters, K, between 1 and 10 with the number of replicates per 
K equal to 5. An ad-hoc statistic for ΔK based on the magnitude of changes 
in the log probability of data between the values of K [69] was used to infer 
the true number of K that best represent the entries in STRUCTURE 
HARVESTER [70]. ‘StructuRly’ program [71] visualized the admixture 
values derived from STRUCTURE for each entry through bar plots. 

Linkage Disequilibrium Analysis 

Analysis of linkage disequilibrium (LD) was conducted in TASSEL 
v.5.2.77, where LD coefficients for pairwise intrachromosomal marker 
pairs were calculated using the “sliding window” type function and a 
window size of 50 (0.05 Kb). The intrachromosomal LD values (r2) were 
represented as the square of allele frequency correlations between pairs 
of loci [72]. Distance at which LD starts to decay was determined by fitting 
a non-linear regression model [73,74] in the r2 against physical distance 
(Mb) biplot and identifying the intersection between the regression curve 
and a critical value (r2 = 0.25) in the plot. Analysis of LD was also performed 
using the markers identified to be associated with yield and agronomic 
traits. Intrachromosomal marker pairs with P < 0.05 were declared to be 
in significant LD. 

Multi-locus Association Mapping and Analysis of Candidate Genes 

Multi-locus GWAS was conducted using the multi-locus random-SNP-
effect Mixed Linear Model (‘mrMLM.GUI’) package [75] in R for the BLUE 
and BLUP trait values. A total of six GWAS models were implemented to 
identify QTL: (1) mrMLM [20]; (2) FASTmrMLM [76]; (3) FASTmrEMMA 
[77]; (4) pLARmEB [78]; (5) pKWmEB [79]; and (6) ISIS EM-BLASSO [80] 
using default parameters (Table 1). A restricted maximum likelihood 
(REML) approach was used for FASTmrEMMA and the bootstrap was set 
to ‘FALSE’ for pLARmEB. The search radius (in kb) of candidate genes for 
mrMLM and FASTmrMM was set to 20, whereas the number of potentially 
associated variables selected by LARS for pLARmEB was set to 50. To 
minimize the confounding effects of a small number of individuals for 
some representative species, the C. chacoense accession was excluded for 
the final GWAS analyses. A kinship-principal component (K-PC) model was 
implemented for the identification of QTL, where the K matrix and the first 
three PCs were included in the model to correct for population structure. 
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Principal components derived from marker data were calculated using 
TASSEL v.5.2.77. The threshold for identifying a significant marker-trait 
association using the multi-locus GWAS models was set to an LOD score 
of >3.0 to balance high power and low false positive rate for the detection 
of QTL [25]. Candidate genes within the LD regions for the significant 
multi-trait QTL were identified by comparing sequences against the 
genome of ‘Criollo de Morellos 334’ (CM-334; Genome assembly (GA): 
ASM512225v2) (C. annuum L.) using BLASTn in EnsemblPlants ([81]; 
https://plants.ensembl.org/index.html; accessed on 01 December 2021) 
with the following criteria: (a) ≥ 95% sequence identity and (b) an e-value 
cut-off of 10. Genes were annotated based on their biological functions 
using a gene ontology-based sequence annotation. 

Table 1. Overview of the multi-locus association mapping models used to identify QTL using the New Mexico 
Capsicum association mapping panel. 

1 All the models consider marker effects as random and controls polygenic background and population structure. 

 

Model 1 Features Reference 

1. Multi-locus random-SNP-effect 
mixed linear model (mrMLM) 

Implements a ‘population 
parameters previously 
determined’ (P3D) algorithm and 
residual variance is estimated 
after QTL variance effect  

Wang et al. [20] 

2. Fast multi-locus random-SNP-
effect mixed linear model 
(FASTmrMLM) 

Accelerates mrMLM function by 
using GEMMA, matrix 
transformation, and identities 

Tamba and Zhang [76] 

3. Fast multi-locus random-SNP-
effect efficient mixed model 
association (FASTmrEMMA) 

Model chooses potential QTL with 
P < 0.005 and includes them in a 
multi-locus model for 
identification of significant 
associations 

Wen et al. [77] 

4. Polygenic-background-control-
based least angle regression plus 
empirical Bayes (pLARmEB) 

Least angle regression (LARS) 
model is implemented to select for 
significant markers 

Zhang et al. [78] 

5. Polygenic Kruskal-Wallis 
method with Empirical Bayes 
(pKWmEB) 

Kruskal-Wallis test with LARS is 
used to determine markers 
associated with a trait  

Ren et al. [79] 

6. Iterative modified-sure 
independence screening 
Expectation-Maximization-
Bayesian least absolute shrinkage 
and selection operator (ISIS EM-
BLASSO) 

Number of markers are reduced 
via correlation learning; EM-
BLASSO estimates effects and 
likelihood ratio identifies true 
QTL 

Tamba et al. [80] 
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RESULTS 

Phenotypic Diversity for Yield and Agronomic Traits 

Analysis of variance for augmented design revealed significant 
differences (P < 0.0001) among entries for FPD, FT, PHT, and PWDTH 
within environments for the NM-CAMP (Supplementary Table S2). Overall, 
the total yield per plant (TYP) for Las Cruces (CRU) was higher than the Los 
Lunas (LUN) location, although no significant differences were observed 
between the environments (Supplementary Table S3). Entries in the CRU 
location were taller and wider, on average, than the LUN environment. 
Conversely, at the LUN location, earlier flowering time (FT) and first pod 
date (FPD) (~3 days earlier, on average) occurred as compared to the CRU. 
Across individual environments, plant height (PHT), FT, and FPD were the 
most heritable traits, with PHT reaching a broad-sense heritability (H2) 
value of 0.97 for CRU, whereas TYP was moderately heritable for CRU (0.50) 
and LUN (0.45). For the combined multi-location analyses, H2 values 
ranged between 0.20 (TYP and red yield per plant (RYP)) and 0.88 (ten pod 
weight, TPW). Phenotypic correlations among yield and agronomic traits 
showed wide range of variation for Best Linear Unbiased Prediction (BLUP) 
trait values across environments (Table 2). The yield components TPW, 
RYP, and green yield per plant (GYP) were significantly correlated with 
TYP with correlation coefficient, r values of 0.15 (P < 0.05), 0.74 (P < 0.0001); 
and 0.61 (P < 0.0001), respectively, whereas there was a negative, non-
significant correlation between GYP and RYP (r = −0.03, P > 0.05). Time to 
flowering and first pod date (FT and FPD) were highly significantly 
correlated (r = 0.98; P < 0.0001). A significant correlation was likewise 
observed for PHT and PWDTH (r = 0.65; P < 0.0001). The principal 
component (PC) biplot for phenotypic traits support the values for 
phenotypic correlation. The total yield and yield components formed a 
separate cluster with the plant morphology and phenology-related traits 
(Figure 1A). The first and second PCs were related to 32.4 and 25.2% of 
phenotypic variation, respectively. 

Table 2. Phenotypic correlations between different yield and other agronomic traits for the New Mexico 
Capsicum association mapping panel. 

Trait 1 GYP RYP TYP TPW FPD FT PWDTH 
GYP -       
RYP −0.03 -      
TYP 0.61*** 0.74*** -     
TPW 0.22** 0.06 0.15* -    
FPD 0.02 0.04 0.05 −0.17* -   
FT 0.02 0.04 0.05 −0.15* 0.98*** -  
PWDTH −0.03 0.12* 0.10 −0.10 0.38*** 0.38*** - 
PHT 3.71 × 10−05 0.02 0.04 −0.06 0.26*** 0.27*** 0.65*** 

1 GYP—Green yield per plant; RYP—Red yield per plant; TYP—Total yield per plant; TPW—Ten pod weight; FPD—First pod date; FT—

Flowering time; PWDTH—Plant width; PHT—Plant height; ***—Significant, P < 0.0001; **—Significant, P < 0.001; *—Significant, P < 

0.05. 
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Figure 1. Principal component (PC) biplots from the first two PCs for (A) yield, plant morphology, and 
phenology-related traits. Group I consisted of PHT, PWDTH, FPD, and FT, whereas Group II comprised the 
yield (TYP) and yield components (GYP, RYP, and TPW). (B) New Mexico Capsicum association mapping panel 
(NM-CAMP) from GBS-derived SNP markers showing genetic differentiation based on species. FPD—First 
pod date; FT—Flowering time; GYP—green yield per plant; PHT—Plant height; PWDTH—Plant width; RYP—
Red yield per plant; TPW—Ten pod weight; TYP—Total yield per plant. 

GBS-Derived SNP Markers 

A total of 25,867 GBS-derived SNP markers were identified across the 
12 chromosomes of chile pepper for the NM-CAMP. After removing 
variants with various filtering criteria (minor allele frequency <1%; 
genotype rates <95%; samples with genotype rates <50%), 14,922 SNP loci 
remained for further analysis. Chromosome P3 had the greatest number 
of SNPs identified (1965), followed by chromosomes P1 and P2, with 1692 
and 1505 markers, respectively. Chromosomes P11 (871), P5 (911), and P9 
(917) had the least number of SNP markers discovered. In terms of marker 
density (SNP/Mb), chromosome P8 had the highest SNP density (9.2), 
followed by P2 (9.1), and P3 (7.5); whereas chromosomes P9, P11, and P7 
had the least, with 3.8, 3.9, and 4.1, respectively (Supplementary Table S4). 
Overall, the whole genome had a marker density of 5.6 SNP/Mb. Across the 
SNP sites, the most common nucleotide was thymine (T) (29.8%), followed 
by adenine (A) (24.9%), guanine (G) (23.1%), and cytosine (C) (22.2%). 
Ambiguous nucleotide calls comprised 133,858 (4.4%) of the total sites. 
Transition substitutions were identified in 8,149 sites (54.6%), where the 
‘A/G’ was the most common (14.3%) followed by the ‘T/C’ (13.9%) type. A 
total of 6773 sites (45.4%) were transversion substitutions with the ‘T/A’ 
being the most common (6.8%) and the ‘G/C’ type the least (4.1%), across 

Crop Breed Genet Genom. 2022;4(2):e220002. https://doi.org/10.20900/cbgg20220002  

https://doi.org/10.20900/cbgg20220002


 
Crop Breeding, Genetics and Genomics 12 of 28 

the whole genome. The proportion of heterozygous SNP sites was 0.04 and 
the average minor allele frequency across all loci was 0.22. 

Analysis of Principal Components, Genetic Diversity, and Population 
Structure 

Principal component analysis (PCA) revealed three distinct clusters 
based on species (Figure 1B). The first two PCs accounted for 24.1% (PC1) 
and 2.8% (PC2) of the total genotypic variance. Cluster I was comprised of 
the C. baccatum, C. chinense, C. frutescens, and C. chacoense complex (46 
entries), whereas Clusters II and III consisted of the C. annuum. The 
chiltepins formed a complex with the ornamentals, jalapeno, serrano, 
cayenne, and New Mexican pod types previously released by the NMSU 
Chile Pepper Breeding Program (Cluster II; 112 lines). The last group 
(Cluster III; 45 genotypes) consisted of the NMSU breeding lines derived 
from single plant selections of several ‘NuMex’ cultivars including the 
‘NuMex Joe E. Parker’, ‘NuMex Big Jim’, and ‘NuMex Sandia Select’. 

Tajima’s D value for the NM-CAMP was 2.97. Negative Tajima’s values 
were observed for all groups, with −1.17, −0.19, and −0.20 for Clusters I, II, 
and III, respectively. Analysis of molecular variance revealed that most of 
the genetic variation was a consequence of variation between the 
Capsicum populations (PCA groups) (73.4%; Table 3). Variation between 
samples within a population and variation within samples accounted for 
17.3 and 9.3% of variation, respectively. 

Inference for population stratification using STRUCTURE identified K = 
5 (ΔK = 14,014.61) as the optimal number of genetic groups for the NM-
CAMP (Figures 2A, B). These clusters corresponded to the different 
Capsicum species, where the C. annuum and C. annuum var. glabriusculum 
(chiltepins) were divided into four different clusters. Accordingly, Group I 
consisted of the C. annuum and chiltepins, whereas the C. chinense, C. 
baccatum, C. frutescens, and C. chacoense formed a complex (Group II). 
Clusters III and IV comprised exclusively of the C. annuum and chiltepins, 
respectively. Group 5 was an admixture of C. annuum and C. annuum var. 
glabriusculum. The number of cluster K = 3 (ΔK = 5696.21) also showed a 
high delta K value, demonstrating that this could serve as an alternative 
clustering to describe the population differentiation among the different 
species for the NM-CAMP (Figure 2B). The grouping for K = 3 for the 
population was consistent with the PC biplot with differentiation based on 
species, where C. annuum formed Cluster II and III, whereas the rest of the 
Capsicum species comprised a complex for Group I. 
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Table 3. Analysis of molecular variance using genome-wide SNP markers for the New Mexico Capsicum 
association mapping panel. 

Source of 
variation 

Degrees of 
freedom 

Sum of 
squares 

Mean  
square 

Standard 
deviation % 

Between 
populations 2 619,197.9 309,598.9 2543.8 73.3 
Between 
samples 
within 
population 201 306,071.1 1522.7 599.7 17.3 

Within 
samples 204 65,949.0 323.3 323.3 9.3 

Total 407 991,218.0 2435.4 3466.8 100.0 

Linkage Disequilibrium 

Analysis of linkage disequilibrium (LD) identified 681,178 
intrachromosomal marker pairs for the NM-CAMP; of which 530,921 
(77.9%) were in significant (P < 0.05) LD (Supplementary Table S4). The 
analysis of LD for QTL associated with yield and other agronomic traits 
further identified 777 intrachromosomal marker pairs in significant LD 
(0.11%) (Supplementary Table S5). Chromosome P1 had the highest 
number of pairs in significant LD (61,708; 80.1%) whereas chromosome P4 
had the least (41,763; 78.9%). The mean coefficient of LD (r2) across all 
pairs of SNP markers was 0.25. A total of 30,111 (4.4%) pairs of loci were in 
complete LD (r2 = 1.0). Across the individual chromosomes, the mean 
distance of marker pairs in significant LD ranged between 2.8 
(chromosome P2) and 7.25 Mb (chromosome P9). The average distance (in 
Mb) of marker pairs in complete LD was highest for chromosome P9 (8.88), 
followed by P5 (8.55), and P11 (8.07). The LD began to decay at a physical 
distance of ~2.82 Mb (critical value, r2 = 0.25) across the whole genome for 
the NM-CAMP (Figure 2C). Decay for LD varied across the different 
chromosomes, ranging between 0.81 Mb (chromosome P8), and extended 
up to 8.94 Mb (chromosome P5). Across the different PCA groups, distances 
at which LD decay began were highest for Cluster III (2.74 Mb), followed 
by Cluster I (1.69 Mb). Cluster II, comprised of NMSU chile pepper cultivars 
and chiltepin, had the least LD decay distance among the groups at 0.24 
Mb. 
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Figure 2. Bar plots for the admixture indices for each individual in the New Mexico Capsicum association 
mapping panel (NM-CAMP) for (A) K = 5 clusters. Clusters 1, 3, and 5 comprised of the C. annuum and C. 
annuum var. glabriusculum (chiltepins), whereas cluster 2 consisted of the C. baccatum, C. chacoense, C. 
chinense, and C. frutescens complex. Cluster 4 comprised exclusively of the chiltepins. (B) Inference for the 
optimal number of clusters for the NM-CAMP using the Evanno method revealed K = 5 with the highest value 
for ΔK; (C) Decay plot for linkage disequilibrium (LD). The red dashed line represents the critical value for 
LD (r2 = 0.25) and the blue solid line corresponds to the non-linear regression curve. The intersection 
between the critical value and the regression curve is the distance at which LD starts to decay (~2.82 Mb). 

Quantitative Trait Locus and Candidate Gene Identification 

Using six multi-locus GWAS models, 215 QTL distributed in 12 
chromosomes were identified to be associated with yield and other 
agronomic traits for the NM-CAMP based on an LOD score threshold of > 
3.0 (Supplementary Table S6). Of the identified QTL, 86 (40%) were 
detected using at least two different models, traits, and/or environments. 
The multi-locus GWAS model, pKWmEB, resulted in the greatest number 
of significant SNPs identified (75), whereas the FASTmrEMMA had the 
fewest QTL (31). Chromosome P3 had the highest number of identified QTL 
(28), followed by P2 (24), and P1 (23). Overall, 60 QTL were associated with 
TPW, whereas 29 and 23 QTL were related with GYP and TYP, respectively. 
Among the plant morphology-related traits, PHT had a greater number of 
identified QTL (54) compared to PWDTH (27); whereas for the phenology-
related traits, FPD had more QTL (23) than FT (20). A total of eight multi-
trait, multi-model QTL were detected in at least two environments (Table 
4). The traits PHT and PWDTH shared a common QTL mapped on 
chromosomes P2 and P11, whereas TYP and GYP had multi-trait QTL on 
chromosomes P2 and P6. Time to flowering and first pod date also shared 
common QTL on P1, P6, P7 (Figure 3). All six multi-locus models identified 
the multi-trait QTL SCM002817.1_37397491 (P6), associated with FPD and 
FT and related with 2.9–11.9% of phenotypic variation. The QTL 
SCM002815.1_213170635 (P4) was associated with FPD and PHT and 
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explained ~6.0% of variation for the traits. A total of 40 candidate genes 
for C. annuum were identified for the multi-trait QTL (Supplementary 
Table S7). These candidate genes were associated with at least 60 diverse 
biological functions related to defense response, metabolic processes, 
oxidation-reduction, phosphorylation, and gene silencing, among others. 
A candidate gene for the multi-trait QTL SCM002817.1_37397491, 
T459_13341, mapped on chromosome P6 and associated with FPD and FT, 
is predicted for epigenetic mechanisms namely chromatin organization 
and methylation in C. annuum. Another candidate gene for 
SCM002817.1_37397491, T459_07853, has function associated with the 
remodeling of chromatin. 

 

Figure 3. Genome-wide quantitative trait loci (QTL) associated with different phenology and plant 
morphology-related traits using multi-locus models in chile pepper (threshold LOD score >3.0; horizontal 
dashed line). Loci in red text are multi-trait QTL. The QTL identified by multiple GWAS models are indicated 
by pink dots above the significance threshold.  COM- combined values across environments; CRU- Las 
Cruces, NM. 
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Table 4. Multi-trait quantitative trait loci (QTL) identified for the New Mexico Capsicum association mapping 
panel. 

 

QTL Traits 1  Chr. 

Marker 
position 

(Mb) Env.2 Model 3 
QTL 

effect LOD  R2 4 

SCM002812.1_256497523 FPD, FT P1 256.49 

COM 1 2.30 3.89 4.39 
COM 2 2.25 4.84 4.38 
COM 4 1.75 3.78 2.63 
LUN 6 5.50 4.93 10.62 
COM 4 1.79 3.97 2.49 
COM 5 1.73 3.11 9.87 

SCM002818.1_210288611 FPD, FT P7 210.29 

COM 1 −4.28 4.47 32.13 
COM 2 −2.80 4.03 14.35 
COM 5 −3.37 16.63 38.31 
LUN 1 −8.21 5.90 20.65 
COM 1 −3.28 4.22 17.79 
COM 3 −6.79 4.68 17.71 
LUN 4 −7.31 3.69 14.25 

SCM002817.1_37397491 FPD, FT P6 37.39 

COM 2 2.46 3.09 2.91 
COM 3 6.59 3.25 5.59 
COM 2 4.50 11.30 8.72 
COM 4 3.47 5.29 5.19 
COM 6 5.05 14.50 10.98 
LUN 1 10.42 10.59 6.12 
LUN 2 9.24 8.24 9.02 
LUN 3 18.54 5.93 9.41 
LUN 5 8.78 7.48 11.87 

SCM002815.1_213170635 FPD, PHT P4 213.17 
COM 5 2.06 3.83 6.22 
LUN 2 5.76 4.33 6.53 

SCM002813.1_138962498 GYP, TYP P2 138.96 

COM 6 −0.004 6.28 25.54 
LUN 4 −0.58 7.13 8.72 
LUN 4 −0.88 4.62 19.63 

SCM002817.1_189395041 GYP, TYP P6 189.35 

COM 5 −0.001 3.71 4.12 
LUN 2 −0.22 3.32 5.73 
LUN 4 −0.18 4.19 1.31 
LUN 6 −0.24 4.19 6.80 

SCM002822.1_213369314 
PHT, 

PWDTH P11 213.36 

CRU 1 −16.94 9.10 18.34 
CRU 2 −10.44 7.87 6.96 
CRU 6 −9.99 4.61 6.38 
COM 5 −4.25 5.94 9.96 

SCM002813.1_132341942 
PHT, 

PWDTH P2 132.34 

CRU 6 7.12 4.14 4.26 
COM 1 5.03 4.86 16.44 
COM 2 3.88 4.71 9.85 
COM 6 3.66 4.55 8.78 

1 FPD- First pod date; FT- Flowering time; GYP- Green yield per plant; PHT- Plant height; PWDTH- Plant width; TYP- Total yield 

per plant; 2 COM- Combined values across environments; CRU- Las Cruces, NM; LUN- Los Lunas, NM; 3 Multi-locus GWAS models: 

(1) mrMLM; (2) FASTmrMLM; (3) FASTmrEMMA; (4) pLARmEB; (5) pKWmEB; (6) ISIS EM-BLASSO (Table 1); 4 Percent variation 

explained for each QTL. 
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DISCUSSION 

Since its first application in crops two decades ago [74,82], GWAS has 
become one of the foundational approaches for modern molecular plant 
breeding. The method itself complements traditional linkage mapping 
based on biparental populations by providing a higher mapping resolution, 
often to the gene level, because of higher recombination events that occur 
in natural populations [83]. The genetic architecture of complex traits such 
as yield and the often-stringent thresholds in declaring significant 
associations in single-locus GWAS models, nevertheless, can be limiting 
when implementing these mapping approaches. In the current study, 
multi-locus association mapping uncovered the genetic architecture of 
major yield and agronomic traits in chile pepper. Candidate genes 
underlying these QTLs were further identified, rendering deeper insights 
into the genetic basis of these complex traits in Capsicum. 

Population Structure in Chile Pepper was Related to Genetic 
Differentiation Based on Species 

Population stratification for the NM-CAMP was inferred using a 
Bayesian iterative algorithm approach implemented in STRUCTURE. 
Accordingly, the optimal number of clusters K derived from using an ad-
hoc Evanno criterion was observed to be at K = 5, where the C. frutescens, 
chinense, baccatum, and chacoense formed a complex, whereas the C. 
annuum was further divided into four distinct clusters. Our results support 
recent phenotypic and phylogenetic analyses by Parry et al. [84] that 
demonstrated a more complex genetic relatedness within the C. annuum, 
whereas the other Capsicum species are more clustered together. These 
observations highlight the high genetic similarity present in the different 
species grouped in the same cluster, and the potential for crop 
improvement by using the wild relatives having close genetic 
relationships for hybridizations [84]. As a species, the genetic variability 
of the C. annuum was demonstrated on another study where the annuum 
genotypes clustered into two different groups based on pod types (New 
Mexican, jalapeno, ornamental types, etc.) [57]. The “biological 
significance” of the number of inferred clusters is of prime relevance 
when interpreting results from STRUCTURE, as the optimal K might not 
essentially reflect the ideal number of groups, a consequence of it being 
determined exclusively by a predetermined sampling scheme [68]. 
Differences in terms of the inferred optimal K value and the number of 
groups based on other approaches, such as PCA, have been observed in the 
Capsicum. For instance, in a recent genetic diversity study using a different 
population of New Mexican chile pepper consisting of 165 genotypes, we 
observed that K = 2 is the optimal K; however, PCA revealed four different 
groups based on species [57]. Analysis of linkage disequilibrium showed a 
moderate LD decay (~2.82 Mb) for the population indicating that a higher 
number of markers might be necessary in implementing association 
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mapping for the whole population. In the present study, the C. annuum 
group (PCA Cluster III) showed the highest extent of LD (2.74 Mb), whereas 
in other studies, a rapid LD decay was observed for the annuum [57,85]. It 
should be noted that LD, as a phenomenon itself, is affected by multiple 
factors including the degree of inbreeding, population structure, 
recombination, rare alleles, etc., where one factor is not considered more 
dominant over the other [11,74,86]. The presence of potential selective 
sweeps, as demonstrated by the Tajima’s D values, could have also affected 
the genome-wide LD on the respective species. Among the PCA groups, 
Cluster I, comprised of the baccatum, chinense, and frutescens complex, 
had the lowest value for Tajima’s D. Similarly, the C. frutescens and C. 
chinense have been observed previously to have low Tajima’s D [57,87], 
indicative of the presence of rare alleles and differences in allele 
frequencies, which could have resulted in a more extensive LD compared 
to the other species. A kinship-principal component (K-PC) model (number 
of PC = 3) was utilized to correct for genetic (population) stratification, that 
can cause genome-wide LD between unliked loci consequently resulting to 
confounding effects for GWAS [29], to identify QTL for yield and 
agronomic traits in chile pepper. 

Co-localization of Quantitative Trait Loci with Previously Identified 
Significant Marker-trait Associations 

In the past, only few single-locus association mapping studies that 
focused exclusively on a set of traits such as capsaicinoid content, fruit 
morphology, and fruit weight have been conducted in chile pepper, where 
QTL in chromosomes P1, P2, P3, P4, P7, P8, P9, and P10, among others, have 
been identified [21–23,88,89]. Among these traits, five candidate genes, 
namely, pAMT, C4H, 4Cl, CSE, and FatA, involved in various biosynthetic 
pathways, were identified for capsaicinoid content [88]. Phenotypes such 
as total yield, yield components, and phenology-related traits, including FT, 
have not been previously evaluated. In the present work, 215 QTL were 
identified across the 12 chromosomes of chile pepper for yield and 
agronomic traits using six multi-locus methodologies. Among these QTL, 
eight multi-trait loci distributed in six chromosomes were identified across 
multiple GWAS models and environments, which can be targeted for 
future molecular breeding. These identified SNP markers can be used for 
designing allele specific assays to be used in MAS. 

Yield and yield components 

In this study, the TYP and its component trait, GYP shared genetic 
control on chromosomes P2 and P6, whereas the phenology-related traits, 
FPD and FT, had common QTL on chromosomes P1, P6, and P7. These QTL 
colocalized with markers previously identified to be associated with 
various agronomic traits in chile pepper, indicating potential effects of 
linkage due to genomic location or pleiotropy. The QTL 
SCM002817.1_189395041, associated with both GYP and TYP, for example, 
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is located upstream of a cluster of SNP markers associated with fruit 
weight in chromosome P6 of C. annuum [21]. 

Single-trait QTL such as SCM002819.1_133495639, associated with TPW 
in chromosome P8 (Supplementary Table S6), was mapped closed (~0.09 
Mb) to a SNP marker previously related to weight per fruit in a pepper 
mapping population [90]. Two other QTL for TPW, namely, 
SCM002816.1_169617895 and SCM002823.1_197062622, were mapped in 
proximity (~1.08 and 3.73 Mb, respectively) to loci associated with weight 
per fruit in chromosomes P5 and P12 [90]. A study by Lee et al. [23] 
identified a fruit weight-related locus, S06_194967541, on chromosome P6 
downstream of the QTL SCM002817.1_189395041, associated with TYP and 
GYP in the NM-CAMP. More similar to yield, significant QTLs for total fruit 
weight were reported on chromosomes P1, P2, and P3 by Dwivedi et al. [91] 
using biparental mapping. High broad-sense heritability (H2 = 0.97) has 
been reported for fruit shape (i.e., fruit length divided by fruit width) in 
chile pepper [92], and a QTL on chromosome P3 has been reported to 
contribute to this trait [93], in addition to QTLs on P8 and P11. We observed 
high H2 value (0.88; COM) for TPW, which is supported by previous work 
demonstrating a strong genotype contribution to the variability of fruit 
weight, as compared to the environment [94]. A single-trait QTL, 
SCM002819.1_133495639, associated with TPW on chromosome P8, was 
mapped closed (~0.09 Mb) to a SNP marker previously related to weight 
per fruit in a pepper mapping population [90], but was in contrast to 
previous findings [91,93,95]. 

Plant architecture and morphology 

Plant height for the NM-CAMP has been found to have moderate to high 
broad-sense heritability, ranging between 0.61 and 0.97. These results 
were consistent with previous observations for PHT, where an H2 value of 
0.91 and narrow-sense heritability (h2 = 0.55) suggesting additive effects, 
were reported [92]. Utilizing a RIL population, Han et al. [93] identified 
plant height associated QTLs on chromosomes P2, P4, P6, P7, and P8 as well 
as QTLs on P2 and P5 associated with plant width, supporting our findings 
of significant QTL on chromosomes P2 and P4 for plant height and width. 
Conversely, Dwivedi et al. [91] identified a QTL on P5 contributing to 47% 
of the total phenotypic variance for plant height. Altogether, our results 
indicated that QTL controlling these traits across different pepper 
populations are located on similar genomic regions suggesting pleiotropy 
and/or linkage due to genetic distance and location. Moreover, we 
demonstrated the potential of multi-trait genetic improvement in chile 
pepper by targeting breeding and selection across these specific regions of 
the genome. 
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Epigenetic Factors Might Play a Role for Phenology-Related Traits in 
Chile Pepper 

The genetic complexity of the evaluated traits was further revealed by 
the diverse functions of the candidate genes predicted for the identified 
QTL. Epigenetic mechanisms including methylation and chromatin 
remodeling and organization were predicted for the candidate genes for 
the QTL SCM002817.1_37397491 mapped on chromosome P6 and 
associated with FPD and FT. The role of epigenetic factors in gene 
expression in chile pepper is currently not well established, although a 
denser methylation profile for chile pepper compared to the potato 
(Solanum tuberosum) and tomato (S. lycopersicum) genomes has been 
documented [96]. Recent evidence on the potential involvement of 
epigenetic mechanisms on different traits (e.g., disease resistance) in 
Capsicum have been reported. Results from transcriptomic, QTL mapping, 
and meta-analyses supported the putative effects of these epigenetic 
factors, particularly of their association with a cluster of major 
Phytophthora capsici resistance loci in the short arm of chromosome P5 of 
chile pepper [57,97,98]. The involvement of non-coding RNAs (ncRNAs) 
and cytosine methylation in regulating fruit development and ripening in 
chile pepper has also been suggested [99,100]. It might be relevant, 
therefore, to examine the epigenomic landscape of the Capsicum spp. to 
gain a better understanding of gene expression and how this process is 
regulated by different epigenetic mechanisms to affect the terminal 
phenotype. 

CONCLUSIONS 

The potential of using multi-locus GWAS approach in dissecting the 
genetic architecture of complex traits in chile pepper was demonstrated 
in the current study. Genome-wide QTL were identified for yield, plant 
morphology, and phenology-related traits. Candidate gene analysis 
revealed diverse functions related to different biological processes 
including oxidation-reduction, phosphorylation, defense response, and 
epigenetic mechanisms demonstrating the genetic complexity of the 
evaluated traits. The QTL identified in this study will assist in developing 
molecular markers and genome-wide prediction for breeding and 
selection of traits toward genetic improvement in Capsicum. Validation of 
the QTL identified from GWAS will be performed using biparental and 
other diverse populations in the NMSU chile pepper breeding program. 

SUPPLEMENTARY MATERIALS 

The following supplementary materials are available online, 
Supplementary Table S1: Genotypes for the New Mexico Capsicum 
association mapping population and their inferred clusters based on 
hierarchical and Bayesian-based model clustering for number of clusters, 
K = 5. The inferred group designation for each genotype is highlighted. 
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Supplementary Table S2: Mean of squares from analysis of variance 
(ANOVA) for yield and agronomic traits in chile pepper. Supplementary 
Table S3: Phenotypic variation for the New Mexico Capsicum association 
mapping panel. Supplementary Table S4: Overview of linkage 
disequilibrium for the intrachromosomal marker pairs in the New Mexico 
Capsicum association mapping population. Supplementary Table S5: 
Coefficient of linkage disequilibrium (r2) for intrachromosomal SNP loci 
associated with yield and other agronomic traits in significant LD (P < 0.05). 
Supplementary Table S6: Significant SNP markers identified for the New 
Mexico Capsicum association mapping panel using multi-locus GWAS 
approaches. Supplementary Table S7: Candidate genes for the multi-trait 
quantitative trait loci (QTL) and their potential biological functions for C. 
annuum. 
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