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ABSTRACT 

The increasing demand for food, feed, fuel, and fiber in modern society 
calls for urgent crop improvement, especially when faced with challenges 
such as climate change and decreasing arable land. Therefore, there is a 
constant need for advances in plant breeding. Over the last two decades, 
high-throughput techniques, such as next-generation sequencing, have 
given momentum to multiple omics technologies, including genomics, 
epigenomics, transcriptomics, proteomics, and metabolomics, generating 
an immense amount of data daily. These technologies and advanced 
bioinformatic tools enhance our understanding of agronomically 
important traits, including yield, nutrient content, and tolerance to 
biotic/abiotic stresses. For example, research on nucleotide-binding 
leucine-rich-repeat (NLR) genes, key players in plant immunity, is driven 
by high-throughput gene discovery, functional annotation, and synthetic 
design, accelerating disease resistance breeding. Additionally, high-
throughput techniques facilitate the generation of valuable tools like 
molecular markers, which can be utilized in applications such as marker-
assisted selection, quantitative trait locus mapping, genome-wide 
association study, and genomic selection. As regulations on genetically 
engineered crops move from process-based approaches toward product-
based approaches, omics technologies are expected to play a pivotal role 
in regulating new crop varieties by assessing substantial equivalence. 
Embracing the omics era in plant breeding requires a paradigm shift in 
every aspect of the field, and readiness is essential. 

KEYWORDS: omics; genomics; transcriptomics; proteomics; 
metabolomics; plant breeding; NLR; process-based regulation; product-
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INTRODUCTION 

Crops cover 40% of the Earth’s land area and provide essential 
resources like food, fuel, and fiber to support human society [1]. By 2050, 
as the global population approaches 9.6 billion, the demand for crops is 
projected to rise by 100%–110% compared to 2005 levels [2]. This increased 
demand is further challenged by climate change and a reduction in arable 
land. Sustainable intensification has been proposed by many 
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conservationists as a solution to increase crop yields per hectare without 
causing environmental harm [3]. This approach is particularly crucial as, 
in recent decades, new arable land has predominantly been created 
through deforestation in biodiverse tropical regions, leading to significant 
biodiversity losses [4,5]. Addressing these challenges necessitates 
improvements in a wide range of agronomic traits, such as yield, 
nutritional content, and resistance to biotic and abiotic stresses. 
Consequently, advances in plant breeding remain critical, requiring both 
a deeper understanding of the biochemistry, physiology, biology, and 
agroecology underlying these traits, as well as the development of novel 
genetic engineering technologies [6]. Plant breeding is mainly carried out 
through crossbreeding, mutation breeding, and transgenic breeding in 
modern agriculture. Traditionally, breeding relied solely on phenotypic 
selection of plant germplasm with desirable traits from progeny produced 
via crosses or mutagenesis—a labor-intensive, time-consuming process 
that lacked insights into the genetic composition of selected plants. In the 
1980s, the emergence of molecular biology revolutionized plant breeding 
by enabling the understanding of the genetic basis of traits. This led to the 
advent of marker-assisted selection (MAS), which uses DNA-based 
markers to screen plant germplasm for specific alleles. MAS has 
significantly improved efficiency and reduced costs by permitting the 
selection of desirable individuals from smaller populations and has been 
applied extensively in numerous crops [7]. As genomic information has 
become increasingly available, MAS has become a cornerstone of plant 
breeding programs [6]. Genetic engineering has introduced transgenic 
breeding approaches, allowing for the direct insertion of foreign genes 
into elite crop varieties to confer desired traits. This method bypasses the 
barriers of reproductive isolation inherent in crossbreeding and avoids 
the randomness associated with mutation breeding. Since the introduction 
of genetically engineered (GE) crops in 1994 [8], transgenic breeding has 
gained increasing prominence in modern agriculture, especially with the 
advent of the omics era. Advanced genetic engineering techniques, 
including genome editing and synthetic biology, hold immense potential 
to revolutionize crop production and plant breeding due to their 
unparalleled precision and versatility. Nevertheless, transgenic breeding 
is complementary to traditional breeding, and utilizing both approaches 
could synergistically enhance progress in crop improvement [6]. 

Over the past two decades, the development of novel omics 
technologies has enabled high-throughput analyses of biological 
molecules, such as the genome (DNA sequence), epigenome (DNA 
modifications), transcriptome (RNA transcripts), proteome (proteins), and 
metabolome (metabolites) [9–12]. These tools have provided a 
comprehensive understanding of the molecular basis of plant breeding, 
enabling researchers to explore crop biology in unprecedented detail 
[6,11]. With advances in data acquisition, processing, and accessibility (e.g., 
lower costs, increased availability of facilities and expertise), multi-omics 

Crop Breed Genet Genom. 2025;7(2):e250002. https://doi.org/10.20900/cbgg20250002 

https://doi.org/10.20900/cbgg20250002


 
Crop Breeding, Genetics and Genomics 3 of 29 

approaches have been extensively applied to study traits like yield, growth, 
and stress responses in economically important crops, including rice 
(Oryza sativa), wheat (Triticum aestivum), barley (Hordeum vulgare), 
maize (Zea mays), cotton (Gossypium hirsutum), soybean (Glycine max), 
millet (Setaria italica), and tomato (Solanum lycopersicum) [10,13–16]. 
Large-scale omics data have also shed light on crucial topics such as the 
identification of key genes and events during crop domestication, as well 
as genetic bottlenecks that limit breeding advancements. This knowledge 
has greatly enhanced breeding efficiency and strategies employed. For 
example, breeders are leveraging wild relatives, genome-wide association 
studies (GWAS), gene editing, and pangenomics to restore lost genetic 
diversity, enhance disease resistance, and improve yield stability [17–23]. 
In the context of disease resistance breeding, multi-omics approaches are 
also driving advancements in the study of nucleotide-binding leucine-rich-
repeat (NLR) genes. Additionally, fundamental research into each set of 
biological molecules, especially DNA and RNA, has led to the development 
or refinement of essential tools, such as genome sequencing, resequencing, 
and single-nucleotide polymorphism (SNP) assays, which are now integral 
to plant breeding programs [24–32]. Moreover, omics technologies are 
increasingly recognized as valuable tools for evaluating the effects of 
genetic modifications in new crops, aligning with calls for a shift from 
process-based to product-based regulatory approaches for crop evaluation 
[6,33]. 

OMICS IMPROVES BASIC UNDERSTANDING OF AGRONOMIC TRAITS 
AND PROVIDES USEFUL TOOLS IN PLANT BREEDING 

The Advancement of Various Omics 

DNA-genomics 

Genomics investigates the genes and genomes’ structure, function, and 
evolution, and the resulting enhanced understanding of genetic variation 
can significantly boost crop breeding efficiency, thereby enabling genetic 
enhancements in crop species [9]. Pangenomics extends genomics by 
examining the genetic diversity within a species, encompassing both core 
and accessory genomes, providing a more comprehensive view of genetic 
variation. Further, the study of structural genomics involves examining 
the polymorphism of genome sequences and the organization of 
chromosomes. Results lead to the construction of genetic and physical 
maps to aid in the identification of valuable agronomic traits. Structural 
genomics depends on DNA-based markers to tag and map genes of interest. 
Molecular markers generated with genomics approaches, such as 
genotyping-by-sequencing (GBS), have been widely used in MAS by plant 
breeders to improve crop quality [30,34]. SNPs are single nucleotide 
variations in the genome among individuals. Historically, PCR-based 
techniques for testing SNP molecular markers used methods like amplified 
fragment length polymorphisms (AFLP), and random amplified 
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polymorphic DNA (RAPD) [35–37], but the emergence of next-generation 
sequencing (NGS) has made it feasible to identify and utilize a large 
number of SNPs simultaneously in the omics era. Quantitative trait loci 
(QTL) mapping and GWAS are two methods for studying multiple or 
complex traits in crops. Mapping QTLs is a statistical approach that can 
link the data of complex phenotypes to that of genotypes. DNA-based 
markers, including AFLPs and SNPs, are often used to localize traits of 
interest using QTL mapping [24–31,38–41]. While using GWAS, based on 
SNPs identified in genome sequence data, the correlation between genetic 
variants and phenotypes can be determined or it can identify variants 
associated with traits in a population [39,42–44]. GWAS is an indispensable 
genomics approach for studying complex agronomic traits such as 
tolerance to abiotic stress [17,42]. A study using GWAS identified 48 QTLs 
that are linked to maize yield under water and heat stress [45], and 
another study demonstrated the impact of several abiotic stressors on the 
oil content in sunflowers [46]. Numerous studies have used GWAS to 
identify QTLs associated with drought tolerance in sorghum (Sorghum 
bicolor) [47,48], rice [49], and maize [50]. In addition, the association of 
structural variants (SVs), which are vital in controlling agronomically 
essential traits in crops, has been reported in maize [51], soybean [52], and 
oilseed rape (Brassica napus) [53] using GWAS approach. Genomic 
selection (GS) expands upon GWAS and QTL mapping by utilizing genome-
wide markers to predict breeding values, enabling early selection of 
superior genotypes without the need for full phenotypic evaluations [54–
57]. Unlike MAS, which focuses on major-effect loci, GS captures both 
major and minor QTLs, improving accuracy in selecting for complex traits 
such as yield, disease resistance, and stress tolerance [58,59]. As a cutting-
edge breeding strategy, GS accelerates genetic gain, enhances breeding 
efficiency, and is increasingly being integrated into modern crop 
improvement programs to develop resilient and high-yielding cultivars 
[54].  

Functional genomics involves the study of gene functions related to 
trait regulation. For this, different biotechnological tools and global 
experimental approaches have been used to identify, clone, and 
characterize the functions of genes [9]. Gene identification before the 
omics era was a tedious process that relied on procedures such as 
expressed sequence tag (EST), suppression subtractive hybridization (SSH), 
and cDNA-AFLP sequencing. However, the introduction of NGS and the 
vast resources and data generated by genomics has greatly reduced the 
tediousness of these approaches [9]. Mutagenesis is a vital technique to 
develop new crops with desirable traits and is used to determine gene 
functions [60,61]. Reverse genetic approaches including Virus-induced 
gene silencing (VIGS) and RNA interference (RNAi) are often utilized to 
screen/induce mutations to investigate the functions of genes [10,62–64]. 
VIGS has been used to identify various mutants that are linked to crop 
yield, growth, and stress tolerance in rice, wheat, barley, and tomato 
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[10,65]. Some high-throughput genomic technologies such as microarray 
and Targeted Induced Local Lesions IN Genomes (TILLING) are also used 
for characterizing overall mutational events in crops for functional 
analyses [11]. Microarray studies showed that transgene insertion caused 
fewer changes in gene expression profiles compared with changes 
induced by mutagenesis [61]. TILLING was initially developed as a 
functional genomics approach [66], but after its successful application in 
numerous crops to detect and characterize mutations [60,67–73], it 
became a powerful tool for crop breeding, serving as an alternative 
approach to transgenesis [74–79]. To serve functional genomics, genome 
editing tools such as the transcription activator-like effector nuclease 
(TALEN) and cluster regularly interspaced short palindromic repeats 
(CRISPR) systems can be utilized for functional analyses and subsequently 
crop improvement [80–84]. For example, TALEN and CRISPR/Cas9 
technologies were applied on characterized mildew resistance locus in 
bread wheat (TaMlo) or tomato (SlMlo), respectively, and novel mutants 
with resistance to powdery mildew were successfully generated [85,86]. 
Since its introduction in 2011, the CRISPR/Cas system has successfully 
edited the genomes of many important crops through targeted genome 
editing [81,82,87–94]. 

DNA modification-epigenomics 

Epigenetics explores partially heritable modifications that occur 
without alterations to the DNA sequence, such as DNA methylation and 
post-translational modifications of histones [95,96]. Epigenomics is a 
recent omics approach that combines epigenetics and genomics to study 
gene regulation and its role in cellular growth and responses to stress [97]. 
Various environmental factors can affect epigenomics, and genomic-level 
technologies can be utilized to study these epigenetic changes during 
different developmental stages or in response to different environmental 
stimuli [9]. As a result, the study and application of epigenomics could 
contribute to crop improvement by elucidating how plants respond to 
various environmental stresses. The bisulfite sequencing (BS-seq) 
technique has been utilized in various crops, including tomato, maize, and 
soybean, to identify the DNA methylation status of the genome [98–101]. 
The methylation-sensitive amplified polymorphism method, which is used 
to quantify DNA methylation in the genome, has been applied in wheat 
and foxtail millet [102,103]. Chromatin immunoprecipitation sequencing 
(ChIP-Seq) studies both histone proteins and DNA methylation [104,105], 
which has been utilized to study epigenetic alterations in rice in response 
to drought [106]. Various epigenomic studies have identified epigenetic 
changes related to ripening in tomato [107], photosynthesis in maize [108], 
mantled phenotype in oil palm [109], and drought response in cotton [110].  
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RNA-transcriptomics 

Transcriptomics investigates the transcriptome, which is the complete 
set of RNA transcripts produced by an organism’s genome. Transcriptome 
profiling is a promising technique that has emerged to analyze time-
dependent gene expression in response to internal or external stimuli 
[111]. Traditional RNA profiling techniques, such as cDNAs-AFLP and SSH, 
provide low-resolution data [112], but this has greatly improved with the 
advent of high-throughput approaches such as microarray, RNA 
sequencing (RNA-seq), and Serial Analysis of Gene Expression (SAGE) 
[113,114]. These high-throughput approaches are frequently utilized to 
examine the variances in expression patterns of genes or regulatory 
networks at various developmental stages and/or in response to stress. The 
obtained information can aid in functional analyses and could be used to 
create molecular markers for linking phenotypes in plant breeding aimed 
at enhancing crops [11]. For example, numerous transcriptomics studies 
using microarray or RNA-seq have revealed the differentially expressed 
genes in soybean, barley, sorghum, maize, rapeseed, foxtail millet, sweet 
potato, and rice at different developmental stages under various stresses 
[20,115–127]. Notably, some novel advancements in transcriptomics have 
brought new insights into this field. Spatially resolved transcriptomics is a 
technique that allows for the detection of gene expression and its spatial 
distribution within cells or tissues [128], and in situ RNA-seq aims at 
profiling RNA in living cells or tissues [129]. Comparative transcriptomics 
identifies the differential expression profiles across different crops in 
response to stress, and a total of 16 common stress-responsive genes were 
identified by comparing transcriptomes of wheat, maize, and rice to that 
of switchgrass under heat stress [130,131]. Recently, alternative splicing 
transcriptomics was employed to investigate how splicing factors control 
abiotic stress responses in key crops such as maize, rice, and sorghum 
[132,133].  

Protein-proteomics 

Proteomics involves the analysis of the entire set of proteins expressed 
in an organism, encompassing sequence, structural, functional, and 
expression aspects. [134,135]. Sequence proteomics identifies amino acid 
sequences via high-performance liquid chromatography (HPLC), while 
structural proteomics investigates protein structure using computer-
based modeling, crystallization, electron microscopy, nuclear magnetic 
resonance, and X-ray diffraction [136,137]. High-throughput techniques 
like X-ray crystallography and Nuclear Magnetic Resonance (NMR) 
spectroscopy have recently been developed to determine protein structure 
[138]. Functional proteomics determines protein functions through 
methods like yeast-two-hybrids and protein microarray profiling. 
Expression proteomics identifies differentially expressed proteins (DEPs) 
in response to stress conditions through techniques like Stable Isotope 
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Labeling by Amino acids in Cell culture (SILAC), Isotope-Coded Affinity Tag 
(ICAT) labeling, and Isobaric Tags for Relative and Absolute Quantification 
(iTRAQ). Proteins can be separated using techniques like Two-Dimensional 
Gel Electrophoresis (2-DE), Two-Dimensional Difference Gel 
Electrophoresis (2D-DIGE), and Sodium Dodecyl Sulfate-Polyacrylamide 
Gel Electrophoresis (SDS-PAGE), and analyzed for molecular mass via 
Mass Spectrometry (MS), Ion Trap (IT)-MS, Liquid Chromatography (LC), 
Matrix-Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF), 
Electrospray Ionization (ESI), or Collision-Induced Dissociation (CID) [139–
141]. Using functional proteomics approaches, many important proteins, 
such as reactive oxygen species (ROS) scavengers and molecular 
chaperones, have been identified in tomato, sunflower, wheat, and 
sugarcane under various stress conditions [142–145], which depicts their 
crucial function in the defense response of crops. Quantitative proteomics 
has employed the iTRAQ technique to discover numerous stress-
responsive DEPs in potato and coconut [146,147]. Furthermore, using 
proteomic techniques such as MALDI-TOF, LC-MS/MS, 2-DE, and SDS-PAGE, 
numerous studies have been conducted to determine the stress-response 
pathways in rapeseed, soybean, sugarcane, cotton, and chickpea [145,148–
152]. Collectively, these proteomic researches have illustrated the 
significant role of those identified proteins for relevant crops in response 
to diverse stress conditions. Advancements in the extraction and 
separation techniques of protein have improved plant proteomic research 
at both sample and genome scales [153], but there are still limitations to 
current techniques. One major limitation is sensitivity as proteomic 
studies typically can only identify the most abundant proteins [154]. 
Additionally, a variety of sample-preparation methods must be employed 
to provide a comprehensive assessment of the proteome [154]. Lastly, 
interpreting the proteomic differences is challenging due to limited 
knowledge of the functions of many proteins in a plant cell.  

Metabolite-metabolomics 

Metabolomics investigates the entire set of metabolites produced by 
metabolic pathways in a biological system using advanced analytical 
techniques such as MS and NMR spectroscopy [155,156]. Its importance is 
particularly evident in plant systems, as plants synthesize more 
metabolites than animals or microbes. Metabolites form a complex 
defense system in plants against abiotic stress and pathogens, and 
numerous studies have identified metabolite changes in response to stress 
in crops such as rice, wheat, maize, tomato, and soybean through targeted 
and untargeted metabolomics approaches [157]. Using metabolomics 
methods such as LC-MS, gas chromatography (GC)-MS, and HPLC coupled 
with tandem MS, several studies have identified some metabolites in rice 
in response to pathogens like gall midge biotype 1 (GMB1) pathogen, and 
rice bacterial blight pathogen (Xanthomonas oryzae pv. oryzae) [158,159]. 
Using similar approaches in wheat, phenolic and phenylpropanoid 
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metabolites were found to be responsive to biotic stress [160]. Additionally, 
metabolic fingerprinting and metabolic profiling techniques have 
identified metabolite changes related to drought, cold, and heat stress in 
wheat, maize, tomato, and soybean [161–167]. Phenotype is bridged with 
genotype via metabolome [168], thus metabolomics is often integrated 
with other omics such as genomics, and proteomics to obtain a more 
comprehensive understanding of biological processes and phenotypes 
[169]. Under various abiotic stresses, the integrated omics approach has 
revealed strong correlations among different omics data in crops, 
providing novel insights into stress response mechanisms [170,171]. 

Integrated-panomics 

Omics technologies could provide “big data” encompassing the entire 
set of certain biological molecules, but it is still a sectional view with 
limited information on the complex behaviors of biosystems. To better 
understand valuable agronomic traits, especially those which are 
biologically complex (e.g., yield, nitrogen-use efficiency, drought tolerance, 
etc.), an integration of different omics approaches is beneficial due to their 
complementary nature. Besides, integrating multi-omics data can help to 
reduce false positive results and improve the accuracy of genotype-
phenotype predictions [172]. To that end, the idea of panomics was 
proposed [173], which is a platform that enables the integration of diverse 
omics datasets for the prediction of complex traits [169,174]. For example, 
the integration of multi-omics datasets has revealed the epigenetic basis of 
staged single-cell differentiation in cotton fiber [175]. Datasets obtained 
with different omics approaches need to be merged and analyzed with 
special tools [176]. For example, PAINTOMICS is an internet-based tool that 
offers the visual presentation of integrated transcriptomics and 
metabolomics datasets on Kyoto Encyclopedia of Genes and Genomes 
(KEGG) maps [177]. Online software tools for multi-omics analysis have 
been reviewed by Yang et al. [11]. The integration of panomics with GWAS 
has also been used to study phenotypic variance in crops, potentially 
leading to the discovery of new genes and functional pathways that 
underlie valuable but complex agronomic phenotypes [173]. For example, 
combining GWAS with metabolomics has emerged as an effective method 
for analyzing the genetic and biochemical mechanisms in model crops like 
rice, maize, and tomato [178–180]. In recent years, genome editing 
technologies (such as the CRISPR/Cas9 system) were proposed to be 
integrated with panomics for precision breeding [173]. 

The Role of Omics in Advancing NLR Research 

Plants possess sophisticated immune systems to combat diverse biotic 
stresses, with NLR proteins playing a pivotal role in pathogen recognition 
and defense activation [181,182]. NLR genes encode intracellular immune 
receptors that detect pathogen-derived effectors, initiating robust immune 
responses through a process termed effector-triggered immunity (ETI). 
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This defense mechanism represents the second layer of plant innate 
immunity, complementing pattern-triggered immunity (PTI), which 
responds to conserved pathogen-associated molecular patterns (PAMPs) 
[183–185]. NLR genes are central to plant immunity and have immense 
potential as targets for crop improvement [186]. The integration of multi-
omics approaches has significantly advanced our understanding of their 
structure, function, and regulation. By combining high-throughput gene 
discovery, functional annotation, and synthetic design, these approaches 
are unlocking the full potential of NLR genes for developing resilient and 
sustainable crops. As these technologies continue to evolve, they will 
undoubtedly drive further breakthroughs in plant immunity and 
agricultural biotechnology. 

NLR and disease resistance breeding 

NLR proteins are modular in nature, consisting of three core domains: 
an N-terminal domain, a central nucleotide-binding (NB-ARC) domain, and 
a C-terminal leucine-rich repeat (LRR) domain. The N-terminal domain, 
often a Toll/interleukin-1 receptor (TIR) or coiled-coil (CC) domain, 
facilitates downstream signaling. The NB-ARC domain functions as a 
molecular switch, cycling between inactive (ADP-bound) and active (ATP-
bound) states, while the LRR domain mediates effector recognition 
[183,186–189]. NLR proteins detect pathogen effectors either directly, 
through physical binding, or indirectly, by sensing effector-mediated 
modifications of host proteins. For example, the Arabidopsis Resistance to 
Pseudomonas syringae 2 (RPS2) NLR protein recognizes the bacterial 
effector Avirulence protein Rpt2 (AvrRpt2) through its interaction with the 
host protein RPM1-Interacting Protein 4 (RIN4) [190]. Upon activation, 
NLRs trigger a cascade of immune responses, including ROS production, 
and transcriptional reprogramming of defense genes, which results in a 
hypersensitive response (HR) whereby localized cell death restricts 
pathogen spread. 

NLR genes have been widely utilized in plant breeding due to their 
ability to confer race-specific resistance to pathogens. For instance, the 
Resistance to Phytophthora infestans-blb1 (Rpi-blb1) gene from wild potato 
confers resistance to Phytophthora infestans, the causative agent of late 
blight [191]. Similarly, the Xanthomonas resistance 21 (Xa21) gene in rice 
provides resistance to bacterial blight caused by Xanthomonas oryzae 
[192]. Leveraging NLR genes has been instrumental in enhancing crop 
resilience; however, traditional introgression of NLR genes can be labor-
intensive and may result in linkage drag. Advances in genome editing 
technologies, such as CRISPR/Cas9, have enabled precise manipulation of 
NLR genes to enhance resistance while minimizing trade-offs [193,194]. In 
addition to their utility in conferring resistance, stacking multiple NLR 
genes or engineering synthetic NLRs with broader specificity holds 
promise for durable and broad-spectrum resistance [195,196]. 
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Understanding the molecular mechanisms underlying NLR function and 
diversity is critical for their effective utilization in breeding programs. 

Omics and NLR research 

The advent of multi-omics approaches, including genomics, 
transcriptomics, proteomics, and epigenomics, has revolutionized our 
understanding of NLR genes. These integrative strategies have facilitated 
high-throughput NLR gene discovery, functional annotation, and 
elucidation of their regulatory networks. 

Genomic studies employing NGS and pan-genome analyses have 
greatly expanded our knowledge of NLR gene diversity [197–199]. By 
leveraging comparative genomics, researchers have identified lineage-
specific expansions and conserved NLR gene clusters, shedding light on 
their evolutionary trajectories. For instance, GWAS has pinpointed novel 
NLR loci associated with disease resistance traits, enabling targeted 
breeding efforts [200]. Transcriptomic and proteomic studies have been 
instrumental in characterizing NLR gene expression and activity. RNA-seq 
analyses under pathogen challenge have revealed dynamic expression 
patterns of NLR genes, providing insights into their roles in specific 
defense responses [201]. Proteomic approaches, including co-
immunoprecipitation and mass spectrometry, have identified NLR protein 
complexes and downstream signaling components, further elucidating 
their mechanisms of action [202]. Epigenomic studies have uncovered 
regulatory elements that modulate NLR gene expression, such as DNA 
methylation and histone modifications [203–205]. These findings have 
highlighted the importance of chromatin accessibility in fine-tuning NLR-
mediated defense responses. Multi-omics approaches are also paving the 
way for the rational design of synthetic NLRs. By integrating structural 
genomics and computational modeling, researchers have engineered 
synthetic receptors with enhanced specificity and durability [206]. 
Directed evolution experiments, coupled with high-throughput screening, 
are enabling the development of NLR variants with novel resistance 
capabilities. 

OMICS TECHNOLOGIES SERVE A REGULATORY ROLE IN PLANT 
BREEDING 

In addition to facilitating crop improvement through enhanced 
understanding and the development of valuable tools, omics methods can 
also play a regulatory role in plant breeding by assessing the health and 
environmental impacts of new crop varieties developed through both 
traditional breeding and genetic engineering.  

From Process-based to Product-based Regulation of Crops 

Over the past four decades, the worldwide safety regulations for GE 
crops have been crafted and updated to exempt conventionally bred crops 
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[33]; however, differentiation no longer makes sense in light of the 
advances in genetic engineering technologies. Convincing arguments have 
been made that the current “process-based” safety regulations, which 
discriminate against GE crops simply because they are developed by 
genetic engineering technologies, are scientifically invalid and unfit for 
their original purpose [6,33,207,208]. Product-based regulation, which 
focuses on the characteristics of the final product rather than the method 
used to develop it, offers a more relevant approach. This approach 
considers the actual genetic composition and traits of the crop, ensuring 
that safety assessments are based on the potential risks posed by the 
product itself, rather than the technique used to create it. Although 
authorities may recognize the importance of considering the biological 
characteristics of new plant products in a process-based regulatory regime, 
the safety regulations applied are typically determined by the specific 
technology used to develop the plant variety. However, emerging genetic 
engineering technologies have increasingly blurred the distinction 
between conventionally bred crops and their genetically engineered 
counterparts, causing governing authorities to struggle with redefining 
which plants require regulation. “Process-based” regulations assume the 
safety of conventional breeding due to its long familiarity. When GE crops 
were commercialized in the 1990s, concerns arose over the potential risks 
to the environment and health due to the random insertion of transgenes 
in the genome. The argument critics raised was that only 70 plant-
synthesized chemicals were monitored and limited animal testing  was 
insufficient to establish the safety status of GE food [6]. Nowadays, genetic 
engineering technologies, such as the CRISPR/Cas system and other site-
specific nucleases (SSNs), can modify a plant’s phenotype significantly by 
altering a single nucleotide or inserting/deleting genetic sequences of 
different sizes [81,82]. Some regulatory authorities, such as the United 
States Department of Agriculture (USDA), believe that such changes could 
happen naturally and, as a result, are safe and not subject to regulations. 
Additionally, many current and proposed regulations assume that genes 
from closely related species are less risky to use than those from distant 
relatives [208–210]. However, as the 2016 National Academies of Sciences, 
Engineering, and Medicine (NASEM) report pointed out, the biological 
effect of genetic transformation and thus the safety risk to environment or 
health is relatively independent of its size and extent [6]. All genetic 
alterations, no matter large or small, are aimed at changing a plant’s 
phenotype to develop a new variety, and these alterations have no 
fundamental differences when it comes to potential safety risks. Therefore, 
a revised regulatory framework is necessary, where the need for safety 
testing is determined by modern molecular technologies such as omics 
that assess the overall physical and biological traits of new crop varieties 
[33]. This product-based regulatory approach would ensure a more 
scientifically sound and effective governance structure.  
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Evaluation of Substantial Equivalence with Omics Technologies 

Regulatory authorities worldwide have typically relied on the concept 
of “substantial equivalence” to ensure that newly developed crop varieties 
have a similar food composition to existing ones and pose no additional 
risks. While not mandated by regulators, many academic researchers and 
commercial entities have adopted omics technologies to evaluate 
substantial equivalence beyond traditional measures of food composition. 
Ricroch [211] reviewed 60 omics studies of plants, which mainly used a 
single omics approach like transcriptomics, proteomics, or metabolomics 
for evaluation. Since then, there has been an increase in the volume of 
omics studies, and many have used multiple omics methods 
demonstrating increasing sophistication in this type of assessment [212]. 
This tendency also indicates that there is a need to establish integrated and 
shared networks of omics databases serving the evaluation purpose 
[6,213,214]. The integration of these omics technologies can offer a 
comprehensive and non-specific evaluation of numerous plant 
characteristics, encompassing the levels of mRNA, proteins, and 
metabolites in the plant of interest. Therefore, it is more effective in 
detecting changes in a GE crop than the evaluation methods currently 
suggested by regulatory authorities. Some studies have found almost no 
changes in the transcriptome of GE plants with an added marker gene 
[215], but the use of metabolomics methods detected changes in the same 
plants [216]. Adding a gene for a nonenzymatic protein, like the 
insecticidal Bt toxin, to a GE plant is predicted to result in few changes in 
the plant’s metabolism. In contrast, when a gene is added to a plant to 
specifically alter a certain metabolic pathway, several predicted and 
unpredicted changes can potentially occur. For instance, Shepherd, et al. 
[217] observed that when the enzymes responsible for the biosynthesis of 
either of the two toxic glycoalkaloids (alpha-chaconine and alpha-solanine) 
were downregulated in GE potatoes, the other compound typically 
increased; while another two compounds, fucosterol and beta-sitosterol, 
increased with the down-production of both toxic glycoalkaloids. Several 
studies employing omics methods have identified variations between GE 
crops and their conventionally-bred counterparts. Nevertheless, in 
numerous plant characteristics analyzed, the variability among 
conventionally-bred varieties is greater than that between GE and non-GE 
varieties. Besides, the developmental stage of the crop and the 
environmental conditions also affect the findings [211,218].  

To regulate new crops in the future based on the core concept of 
“product-based regulation” and “substantial equivalence”, the omics 
features of any new crop variety could be compared to all the current 
varieties across a country or reference panel to determine whether they 
are substantially different. In this way, both GE and non-GE crops could be 
regulated, and the regulation efforts could be concentrated on the omics 
features of the plants and products from new potential varieties. A tiered 
regulatory approach has been proposed based on the comparison of omics 
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characteristics of a new crop variety with a panel of existing commercial 
varieties. This panel could consist of conventionally bred varieties 
representing the genetic and phenotypic diversity of the species. 
Depending on the results of the omics evaluation with various omics 
technologies, four paths could be taken [6,33]. In Tier 1, no differences 
between the new variety and the panel varieties are detected by any omics 
technologies. In Tier 2, the differences detected by any omics technologies 
are known to have no adverse effects on human/animal health or the 
environment. New varieties evaluated as Tier 1 or Tier 2 crops shall 
require no further testing. In Tier 3, the differences detected are 
understood to have potential adverse effects. In Tier 4, the detected 
differences cannot be interpreted. Thus new varieties evaluated as Tier 3 
or Tier 4 require further safety testing. For instance, introducing a 
previously approved GE trait into a new variety of the same species and 
comparing its omics profile to another deregulated GE variety already in 
use establishes substantial equivalence and categorizes the new variety as 
Tier 1. If omics analyses detect differences that may have potential adverse 
health effects or changes of a protein or metabolite whose consequences 
are unknown, they are categorized as Tier 3 and 4, respectively, and 
require further safety testing. The tiered regulatory approach would 
provide a structured framework for the use of omics evaluation methods 
in regulatory decision-making [6].  

Ideally, panomics data including all omics data available such as 
genomics, transcriptomics, proteomics, and metabolomics, should be used 
for the evaluation of substantial equivalence. To leverage the potential of 
omics technologies for substantial equivalence assessment, it is crucial to 
develop comprehensive species-specific omics databases that showcase 
the transcriptome, proteome, and metabolome variations of diverse 
genotypes grown under various environmental conditions. Currently, 
state-of-the-art different omics technologies vary considerably. New 
developments in DNA/RNA sequencing, such as NGS, have made it possible 
to acquire complete genomes or transcriptomes at acceptable speed and 
cost. Therefore, transcriptomics and genomics have the potential to play a 
crucial role in evaluating substantial equivalence. In contrast, proteomic 
and metabolomics technologies cannot produce a comprehensive catalog 
of the proteome or metabolome at present [219,220], but they can still 
contribute to the evaluation. For instance, if a new crop variety has a 
proteome or metabolome similar to a de-regulated variety, it may indicate 
substantial equivalence, whereas a difference suggests the need for 
further evaluation. Scientists understand that the current technical 
limitations of omics technologies for plants must be overcome by new 
research [219,220], and much greater investment especially from the 
public sector will be needed. To avoid the long-term backlash from the 
public like the first generation of GE crops, scientists, regulators, and 
diverse members of the public must work together to guide the research, 
and they should all be included in the deliberations on those important 
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questions like what differences between new crops and existing ones 
would be significant enough to warrant safety regulation [6,33]. The most 
comprehensive evidence of substantial equivalence would involve a 
complete understanding of the biochemical makeup of a given crop 
variety in comparison to others, but current technology does not yet allow 
for the development of extensive species-specific proteome or 
metabolome databases. Looking into the future, ongoing advances in 
omics technologies will surely expand basic knowledge of those 
agronomical traits in plants and thus greatly fuel molecular plant breeding. 

SUMMARY AND PROSPECTS 

At the time of writing the review, a reference genome was available for 
almost all major crop species. In addition, an immense amount of multi-
omics data is being generated and uploaded to online databases daily. 
With the help of advanced bioinformatic tools, the omics data are being 
utilized by scientists to improve our understanding of valuable agronomic 
traits such as disease resistance, stress tolerance, and yield in crops, and 
ultimately used in plant breeding and crop improvements. Besides, as the 
regulation regime of GE crops worldwide shifts towards product-based 
approaches, omics technologies are expected to play a crucial role in the 
evaluation of substantial equivalence. With all these clear signs showing a 
bright future for the vast potential of omics technologies, we should all get 
ready to embrace the omics era for plant breeding. This could mean 
changes in every aspect of crop science including our understanding of 
plant traits, tools we use, and even working logic or concepts. However, it 
is important to view this paradigm shift as complementary to our current 
work routine, as we still face several challenges in the omics era. First, 
omics data are incomplete, with varying quality of reference genomes 
depending on technical and cost limitations. Therefore, multiple high-
quality reference genomes are needed to capture diversity within a crop 
variety adequately. Second, users may not fully utilize omics data due to 
the lack of access, computational tools, or analytical skills. These 
limitations can be overcome with the development of omics and 
bioinformatics technologies. Finally, phenotyping technologies are still 
limited compared to fast-evolving omics technologies [221], and in the 
future, field-based high-throughput phenotyping approaches with 
increased efficiency and reduced cost are likely to be developed to parallel 
datasets with omics technologies and aid in plant breeding [222,223]. 
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