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ABSTRACT 

Beyond oxidative phosphorylation (OXPHOS), mitochondria have also 
immune functions against infection, such as the regulation of cytokine 
production, the generation of metabolites with antimicrobial proprieties 
and the regulation of inflammasome-dependent cell death, which seem in 
turn to be regulated by the metabolic status of the organelle. Although 
OXPHOS is one of the main metabolic programs altered during infection, 
the mechanisms by which pathogens impact the mitochondrial electron 
transport chain (ETC) complexes to alter OXPHOS are not well 
understood. Similarly, how changes on ETC components affect infection 
is only starting to be characterized. Herein we summarize and discuss the 
existing data about the regulation of ETC complexes and super-complexes 
during infection, in order to shed some light on the mechanisms 
underlying the regulation of the mitochondrial OXPHOS machinery when 
intracellular pathogens infect eukaryotic host cells. 
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C; ANT, Adenosine Nucleotide Translocator; UCP, uncoupling proteins; SDH, 
succinate dehydrogenase; mPTP, mitochondrial permeability transition 
pore; TLR, toll-like receptor; PRR, pattern recognition receptor; LPS, 
lipopolysaccharide; HEV, hepatitis E virus; DAMM, Danger Associated 
Metabolic Modification; mΔψ, mitochondrial membrane potential; RET, 
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Intermediate in Toll pathway; TRAF6, TNF receptor associated factor 6; 
TCA, tricarboxylic acid; NO, nitric oxide; RISP, Rieske Iron Dulfur Protein; 
CVB3, Coxsackievirus B3; MAVS, mitochondrial antiviral signaling protein 
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INTRODUCTION 

Although perception of mitochondria as signaling hubs that regulate 
immune responses has exploded in recent years [1–7], how infection 
modulates mitochondrial functions is not well studied. Beyond oxidative 
phosphorylation (OXPHOS), mitochondria have immune functions that 
counteract infection, such as the regulation of cytokine production, the 
generation of metabolites with antimicrobial proprieties or the 
regulation of inflammasome-dependent cell death (recently reviewed 
in [8]). Compelling evidence suggests that the metabolic status of the 
organelle regulates these additional functions of mitochondria, while 
immune signaling can also regulate mitochondrial metabolic 
functions [1,8–10]. Moreover, it seems that metabolic shifts are essential 
in the activation of adaptive and innate immune cells [11–13], and 
metabolic processes such as autophagy are used as cell-autonomous 
defense systems of both immune and somatic cells to degrade invading 
pathogens during infection, a process called xenophagy [14–16]. In order 
to exploit during infection the key roles that these organelles play in the 
host cell, intracellular pathogens have evolved mechanisms to target the 
host metabolism and specifically mitochondria [17–19]. Moreover, as 
intracellular pathogens can obtain the energy resources required for 
their growth only from the infected host cell, any metabolic alteration in 
the host cell should also impact the pathogen, suggesting that the control 
of cellular metabolism might be one determinant for the outcome of an 
infection. Therefore, metabolic interactions are increasingly considered 
when studying the host-pathogen interface [20]. 

OXPHOS is one of the main metabolic programs that is known to be 
modulated during infection [21]. OXPHOS is driven by the orchestrated 
action of different protein complexes located at mitochondrial cristae and 
embedded in the inner mitochondrial membrane, that is known as the 
electron transport chain (ETC)(Figure 1). Although the ETC is composed of 
five complexes (Complex I to V), the action of additional proteins, such as 
the ubiquinone (UQ), the Cytochrome C, the Adenine Nucleotide 
Translocator (ANT), or the uncoupling proteins (UCPs), as well as the 
formation of super-structures, are required to perform OXPHOS at 
mitochondria according to cellular needs [22,23](Figures 1 and 2). The 
structure of mitochondria is determinant for OXPHOS activity at different 
levels. First, the compartmentalization of mitochondria allows the efficient 
performance of the mitochondrial bioenergetics functions. Oxidation of 
acetyl-CoA derived from carbohydrates, fatty acids, and proteins by the 
tricarboxylic acid (TCA) cycle is performed in the mitochondrial matrix, 
while the flow of electrons through the ETC occurs at the inner 
mitochondrial membrane, and the protons pumped by ETC complexes 
accumulate in the inter-membrane space (Figures 1 and 2). Second, the 
assembly of ETC complexes into super-complexes seems to influence 
OXPHOS performance by facilitating proton translocation from the 
mitochondrial matrix to the intermembrane space (Figure 2), which 
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generates the mitochondrial membrane potential (mΔψ). The largest 
assembled super-complex that was named the respirasome is constituted 
of Complex I, two copies of Complex III and up to 4 copies of Complex IV 
[24](Figure 2). In the presence of Cytochrome C and UQ, the respirasome 
creates the predominant part of the proton-motive force as a unique block. 
Thus, the generated mΔψ allows the utilization of this proton-motive force 
to perform OXPHOS-dependent synthesis of ATP through the activity of the 
mitochondrial FOF1-ATP synthase, known as the complex V [21,23]. 
Complex V can oligomerize forming dimers, tetramers or hexamers, which 
might increase cristae stability [25](Figure 2). Interestingly, accessory 
proteins such as ANT have been suggested to form a super-complex with 
the FOF1-ATP synthase, called the ATP synthasome [25]. In contrast, 
Complex II seems not to be part of any super-complex [26]. Importantly, it 
has been recently proposed that different pathological conditions, such as 
neurodegenerative disorders or infection of macrophages with pathogenic 
bacteria, produce alterations in the composition and activity of ETC 
complexes and super-complexes [27–29]. 

In this review, we summarize and discuss the current understanding of 
the roles that mitochondrial ETC complexes, super-complexes and 
OXPHOS-related proteins play, when eukaryotic host cells are infected by 
pathogens (viruses, bacteria or parasites), as well as some of the 
mechanisms underlying the regulation of mitochondrial OXPHOS 
machinery during infection. 

 

Figure 1. The mitochondrial Electron Transport Chain (ETC) comprises complexes I to V (CI to CV) as 
well as other accessory proteins, such as Ubiquinone (UQ) and Cytochrome C (CytC). These proteins 
work together to oxidize reduced compounds such as NADH, FADH2 or Succinate and finally transfer 
electrons to O2, thereby generating water and creating an electrochemical gradient of protons used by 
Complex V to synthesize ATP (oxidative phosphorylation, OXPHOS). Dotted lines represent the flow of 
electrons. IMM: inner mitochondrial membrane; IMS: inter-membrane space.  
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Figure 2. The mitochondrial cristae is where the ETC and accessory OXPHOS proteins organize in 
individual complexes and supercomplexes (SC). These are embedded in the inner mitochondrial 
membrane (IMM). Complexes and SC pump protons (H+) into the inter-membrane space (IMS) to create the 
electrochemical gradient used by Complex V to generate cellular energy (lyme colored stars) by 
synthesizing ATP from ADP. ADP originates from the cytoplasm (not shown), crosses the outer mitochondrial 
membrane (OMM) and the IMM (not shown), and enters in the matrix by the action of the Adenine 
Nucleotide Translocator (ANT). The electrochemical gradient can be dispersed by the action of uncoupler 
proteins (UCP), which generate heat (red colored star).  

THE MITOCHONDRIAL OXPHOS MACHINERY DURING INFECTION 

Complex I: NADH–Ubiquinone Oxidoreductase 

Complex I is the largest complex of the ETC. Complex I is composed of 
46 subunits in mammalian cells, where seven of the subunits are encoded 
by mitochondrial DNA while the rest are encoded by nuclear genes 
located in different chromosomes. The enzymatic complex oxidizes the 
NADH generated by the TCA cycle and other sources. Complex I transfers 
two electrons from NADH to UQ, a lipid soluble electron carrier 
embedded in the lipid bilayer of the IMM, which is reduced to ubiquinol 
(UQH2). It is thought that Complex I contributes by 40% to the 
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proton-motive energy driving OXPHOS, although the mechanism by 
which protons are translocated is not yet well defined.  

In mammalian cells, Complex I is one of the major sites of production 
of mitochondrial reactive oxygen species (mROS), a class of highly 
reactive molecules that have been showed to provide lifespan proprieties 
[30,31]. The generation of mROS (superoxide O2

•− and hydrogen peroxide 
H2O2) occurs when flowing electrons exit the ETC prior to the reduction of 
oxygen to water, thus reacting instead with oxygen to form superoxide, 
which is quickly dismutated to hydrogen peroxide by superoxide 
dismutases [32]. Generation of mROS by electron leakage at Complex I is 
a well-established phenomenon. Electrons can flow in both directions at 
Complex I depending on the fueling substrates, and in both conditions 
mROS can be produced by electron leakage [33]. During the forward 
transport, electrons from NADH flow from Complex I to Complex III (via 
UQ), and mROS is generated at the flavin mononucleotide (FMN) 
prosthetic group of the enzyme if the NADH/NAD+ ratio is high or if 
Complex I is inhibited (for example, by rotenone)[34]. However, in 
conditions of high mΔψ and high concentrations of succinate, part of the 
electrons at Complex II now flows through the reverse electron transport. 
They flow from Complex II to Complex I via UQH2, where NAD+ is reduced 
to NADH, and higher amounts of mROS are produced by a mechanism 
that seems to involve the reaction of the partially reduced form of the UQ 
(UQH•−) with O2, which forms mROS [34,35]. However, the exact 
mechanisms by which electrons are leaked to generate mROS during 
forward transport or reverse electron transport (RET) are still a matter of 
investigation and debate [33,34]. 

The role of mROS as signaling molecules is well established in the 
regulation of pathways that are important during infection, such as 
activation of inflammasomes or activation of autophagy (reviewed in 
[32]). The inflammasomes are high-molecular-weight protein complexes 
that are assembled in response to inflammatory stimuli through the 
activation of their pattern-recognition receptors (PRRs). The main 
consequence of inflammasome assembly is the activation of Caspase-1, 
which in turn will produce the mature forms of the pro-inflammatory 
cytokines interleukin 1β (IL1β) and IL18. It has been shown that one of 
the inflammasomes named NACHT, LRR and pyrin domain-containing 
protein 3 (NLRP3), can be activated in response to high concentrations of 
mROS [32,36–38], highlighting the role of mROS in the onset of 
inflammatory responses. In addition to inflammasome activation, several 
other downstream effects of mROS have been described [32]. For 
example, it seems that a specific pool of proteins is oxidized by mROS, 
which might account for certain functions of mROS [39]. Mitochondrial 
membrane lipids and mitochondrial DNA can also be affected by the 
oxidative damage of mROS, which modulates OXPHOS levels [40]. 
Moreover, inhibition of Complex I by rotenone triggers autophagy by a 
mechanism involving mROS production, beclin-1 and class III-PI3K [41]. 
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Finally, it is worth to mention that nitric oxide (NO), a small molecule 
induced during inflammation, inhibits the activity of Complex I by 
damaging the iron–sulfur centres, which leads to mROS production [42]. 
We can thus hypothesize that at least some of the major actions elicited 
by Complex I during infection might be linked to mROS production. In 
this regard, it has been shown that mROS signaling has a protective role 
during infection with bacteria, viruses and parasites [1,32,43,44]. 

One example of which mechanisms may underlie the production of 
mROS and Complex I during infection is the activation of the PRRs called 
toll-like receptors (TLRs) by microbial compounds, such as 
lipopolysaccharide (LPS), that lead to the translocation of TNF receptor 
associated factor 6 (TRAF6) to mitochondria, where it interacts with 
Evolutionarily Conserved Signaling Intermediate in Toll pathway (ECSIT), 
a protein involved in the assembly of Complex I [45,46]. Consequently, 
TRAF6-mediated ubiquitination of ECSIT leads to increased mROS 
production in murine macrophages. Therefore, activation of TLR 
signaling leads to the modulation of Complex I activity through the action 
of ECSIT. Interestingly, Salmonella replicates intracellularly to higher 
numbers within ECSIT-deficient macrophages [46]. As ECSIT is a protein 
involved in Complex I assembly, it might be possible that 
bacteria-induced TLR-TRAF6-mediated ECSIT modifications compromise 
the flow of electrons through the Complex I, which presumably leads to 
electron leakage and mROS production. However, how mROS contributes 
then to bacterial clearance was not addressed in this study. Although ROS 
generated by the NADPH oxidase in the cytoplasm or phagosomes has 
been shown to posses direct anti-microbial actions, and ROS are exploited 
as anti-microbial treatments in the clinic [47,48], direct killing of bacteria 
through mROS (i.e., ROS generated within mitochondria) has not been 
proven. We can thus speculate that the control of bacterial infection by 
the TRAF6/ECSIT/mROS axis might be related to the mROS-dependent 
activation of defense pathways such as the NLRP3 inflammasome or 
autophagy/xenophagy [32]. Interestingly, it has been recently showed 
that ECSIT-deficient murine macrophages have a dysfunctional Complex I 
and rely on a metabolic state that is characterized by reduced OXPHOS 
and increased glycolysis [49]. 

GRIM19/NDUFA13 is a Complex I subunit that has also been shown to 
interact with a PRR, in this case Nucleotide Oligomerization Domain 2 
(NOD2), which recognizes bacterial peptidoglycan [50]. GRIM19 seems 
essential for NF-κB activation downstream of NOD2, and its activity 
seems protective against Salmonella infection, as silencing GRIM19 in 
infected host cells increases the numbers of intracellular bacteria [50]. 
Another study showed that GRIM19 levels and Complex I activity are 
induced during infection with Staphylococcus saprophyticus, while 
macrophages deficient for GRIM19 have a reduced ability to kill bacteria 
and also showed impaired cytokine production [51]. In contrast, for 
Escherichia coli or Salmonella enterica it has been shown that when 

Immunometabolism. 2019;1:e190011. https://doi.org/10.20900/immunometab20190011 

https://doi.org/10.20900/immunometab20190011


 
Immunometabolism 7 of 25 

infecting murine macrophages, the ETC is reorganized by decreasing 
Complex I levels and increasing Complex II activity, which impacts also 
the distribution of Complex I-containing super-complexes at the ETC [28]. 
Therefore, some bacterial species seem to increase Complex I levels, 
while other species reduce Complex I levels and exclude it from the ETC. 

In addition to bacteria, viruses can also target GRIM19. Human 
cytomegalovirus (hCMV) encodes a 2.7-kilobase RNA that binds GRIM19 
and protects infected cells from apoptotic pathways activated by 
metabolic stress of Complex I [52]. Avoidance of host cell apoptosis 
during hCMV infection was due to the metabolic shift from OXPHOS to 
glycolisis induced by the virus [53], similarly to the metabolic shifts that 
help cancer cells to avoid cell death [54]. Thus, hCMV-induced inhibition 
of host cell death can be caused by several mechanisms and not 
exclusively by the regulation of GRIM19/Complex I. 

Finally, recent reports showed the importance of Complex I activity in 
the production of the pro-inflammatory cytokine IL1β via reverse 
electron transport -generated mROS, as LPS-activated macrophages 
decrease OXPHOS-dependent ATP production, increase oxidation of 
succinate by Complex II, decrease forward transport at Complex I, and 
increase mΔψ, which all together triggers reverse electron transport and 
mROS production at Complex I [10]. Reverse electron transport 
-generated mROS at Complex I in turn activates the transcription of IL1β 
by an HIF1α-dependent mechanism [10]. Blocking reverse electron 
transport with Complex I inhibitors (e.g., rotenone or metformin) 
reduced LPS-induced mROS and IL1β production [10,55]. Moreover, 
deletion of a Complex I subunit named NDUFS4 showed a profound 
inflammatory phenotype in mice that includes increased mROS 
production and metabolic abnormalities [56]. Together, these studies 
demonstrate that appropriate Complex I functions are necessary to 
regulate inflammation and, in particular, macrophage metabolism and 
IL1β production. 

In summary, Complex I activity seems to have a protective role during 
bacterial infection, as deficiency of certain Complex I subunits reduces the 
clearance of bacteria during infection (Figure 3). Certain of these actions 
could be mediated by increased mROS at Complex I. Moreover, Complex I 
levels seem to be decreased during bacterial infection of murine 
macrophages, which might increase mROS production. Finally, mROS 
generated at Complex I via reverse electron transport is involved in the 
production of IL1β, a key pro-inflammatory cytokine to fight infection. 
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Figure 3. Pathogens influence the levels and activity of ETC complexes and super- complexes. 
Infection by viruses (black), bacteria (blue), and parasites (green) impact the levels and activity of several 
ETC complexes. Black arrows: induction. Red lines: inhibition. The influence of pathogens in the formation 
of super-complexes has been only addressed during E. coli or S. enterica infection of murine macrophages. In 
addition, ETC complexes also affect infection, as Complex I and Complex II protect from S. enterica and 
P. syringae infection, respectively. 

Complex II: Succinate Dehydrogenase (SDH)  

Complex II is the smallest complex of the ETC that is comprised of four 
subunits (SDHA, SDHB, SDHC, SDHD) and represents the second entry 
point of reducing agents into the ETC. Complex II is the only complex 
where all subunits are encoded by nuclear DNA, and it is also the only 
complex that does not pump protons across the inner mitochondrial 
membrane. In addition to its role in OXPHOS as an ETC component, the 
complex also participates in the TCA cycle, providing a functional link 
between these two essential processes [57]. Therefore, Complex II has two 
intrinsic enzymatic activities, succinate dehydrogenase (SDH activity) 
and succinate UQ reductase activity (SQR activity). The SDH activity 
generates FADH2 by the oxidation of succinate to fumarate as part of the 
TCA cycle, and is performed at the matrix. The SQR activity occurs at the 
inner mitochondrial membrane where Complex II uses the electrons 
provided by FADH2 (from the TCA cycle or other sources) to reduce UQ to 
UQH2, which is further shuffled along the ETC. 
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As explained before, Complex II has a key role in the production of 
IL1β via RET/mROS/HIF1α and in antibacterial defense [10,28]. 
LPS-induced TLR activation of murine bone-marrow derived 
macrophages (BMDMs) breaks the mitochondrial TCA cycle by a 
mechanism involving pyruvate kinase M2, leading to increased succinate 
production and increased Complex II activity [58], which leads to RET 
and mROS generation at Complex I.  

In addition to the aforementioned role of Complex II on RET-derived 
mROS generation at Complex I, and although it has long been assumed 
that OXPHOS-derived mROS are only produced at Complex I and Complex 
III, some reports indicated that Complex II is also a significant direct 
source of mROS relevant in certain pathological conditions and in cell 
death [57]. In this regard, a role of complex II as a pH sensor of cell death 
has been suggested [59]. In this model, a decrease in intracellular pH 
leads to the specific dissociation of the SDHA/SDHB subunits from 
membrane-anchored Complex II, thus disappearing from the ETC and 
accumulating in the matrix. Independent of the ETC, SDH activity of 
SDHA/SDHB oxidizes succinate to fumarate, while SQR activity cannot be 
performed, as the downstream acceptors for the electrons (SDHC/SDHD) 
are missing. In this case, the electron flow is blocked and the electrons 
are transferred to molecular oxygen instead, generating mROS that can 
activate apoptosis [60]. However, this mechanism might not operate 
during bacterial infection, as Complex II seems to remain at the ETC and 
even increases its activity, while Complex I levels are decreased as 
mentioned before, upon stimulation of BMDMs with living E. coli or S. 
enterica [28]. Interestingly, these rearrangements of ETC complexes are 
absent when BMDM are stimulated with dead bacteria. Increased 
Complex II activity upon stimulation with living E. coli depend on TLR 
and NLRP3 signaling, subsequent ROS production by phagosomal NADPH 
oxidase and the ensuing actions of the ROS-dependent tyrosine kinase 
Fgr. Moreover, inhibition of Complex II during infection of macrophages 
with living bacteria led to cytokine levels similar to those of macrophages 
stimulated with dead bacteria [28]. This study thus identified ETC 
rearrangements as an early immunometabolic checkpoint that adjusts 
innate immune responses to bacterial infection, and highlighted the 
anti-bacterial role of Complex II in murine macrophages. 

Complex II activity seems also altered during viral infection in a 
virus-specific manner. By a non-identified mechanism, the activity of 
both Complex I and Complex II decreases during infection of a mouse 
neuroblastoma cell line by Sindbis virus (SINV)[61]. However, in response 
to Rubella virus infection, a strong increase in complex II activity, a 
moderate increase of Complex III activity, and a decreased activity of 
Complex IV was observed in three different human cell lines [62], which 
seems to indicate that not all viruses increase Complex II activity during 
infection. Finally, also mitochondrial Complex II is essential for 
antibacterial and antifungal defense in plants, as plants with a point 
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mutation on Complex II produced less mROS and were more susceptible 
to infection by the necrotrophic root fungus Rhizoctonia solani as well as 
by the bacterium Pseudomonas syringae [63]. 

Therefore, in addition to its role on IL1β production via RET/mROS, 
Complex II activity seems increased after infection with some viruses and 
bacteria (Figure 3) and seems essential for antibacterial and antifungal 
defenses in plants.  

Complex III: Cytochrome bc1 Complex  

In human cells Complex III is composed of 10 subunits, which are 
encoded by both the mitochondrial (cytochrome b) and the nuclear 
genome (all other subunits). Complex III oxidizes ubiquinol UQH2 and 
transfers two electrons to two molecules of cytochrome c, a water-soluble 
electron carrier located within the intermembrane space. During this 
electron transfer reaction, two protons are taken up from the 
mitochondrial matrix and four protons are deposited on the other side of 
the inner mitochondrial membrane. When electron transfer is reduced 
(by a high membrane potential or Complex III inhibitors such as 
antimycin A), electrons can leak at complex III and react with molecular 
oxygen, resulting in the generation of mROS.  

Complex III has been shown to be involved in the replication of 
Hepatitis E virus (HEV). Pharmacological inhibition of Complex III 
restricted HEV replication at an equivalent level to that observed by 
ribavirin treatment, a widely used drug for patients with chronic 
HEV [64]. This restriction of HEV replication seems to involve the 
mitochondrial permeability transition pore (mPTP), which is a highly 
evolutionarily conserved, non-selective and regulated pore formed 
within the inner and outer mitochondrial membrane, permeable to 
molecules less than 1.5 kDa in size. Its opening connects the 
mitochondrial matrix and the cellular cytoplasm and results in loss of 
mΔψ of the proton gradient and of ATP production, which eventually 
leads to mitochondrial dysfunction and cell death. HEV infection robustly 
blocked the opening of the mPTP. As inhibition of the mPTP opening with 
cyclosporin A also attenuated the anti-HEV effect of Complex III 
inhibitors, the mechanism supporting the antiviral effects of Complex III 
inhibitors seems to involve the opening of the mPTP. However the 
mechanism remains unclear as the mPTP composition is still a matter of 
debate and multiple models have been put forward (reviewed in [65]). 
For example ETC complexes and OXPHOS-related proteins, such as 
Complex V or Adenine Nucleotide Translocator [65], have been proposed 
to be part of the mPTP. Therefore, these results might suggest that during 
infection HEV blocks mPTP opening, which could delay cell death and 
support viral replication. In this case, the induction of mPTP opening 
with Complex III inhibitors would kill the host cells and restrict HEV 
replication. How Complex III inhibitors induce mPTP opening in the 
context of HEV infection remains unknown.  
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Infection of mice with Coxsackievirus B3 (CVB3), which causes 
myocarditis, revealed that Complex III activity is increased on infected 
myocardium during viral infection [66]. Increased Complex I and 
Complex III activity correlated with increased oxidative stress and active 
cell death. As CVB3 titers were reduced, it was suggested that elevated 
activities of Complex I and Complex III contribute to mROS generation 
leading to subsequent mitochondria-related cell death and virus 
elimination [66]. In contrast, myocardium of mice infected by the 
parasite Trypanosoma cruzi showed decreased Complex III activity, 
which compromised respiration and ATP synthesis of infected 
myocardium [67]. A reduced expression of cytochrome b caused the loss 
of Complex III activity constituting one mechanism leading to decreased 
OXPHOS and ATP production in the myocardium of infected mice [67]. 
Complex III has thus different roles in the myocardium of mice infected 
by CVB3 or T. cruzi. When mice are infected by the virus, Complex III 
activity is increased and seems protective, while infection by the parasite 
decreased Complex III activity and seems deleterious. 

For bacterial infections no studies directly investigating the role of 
Complex III in infected cells are published. However, it was reported that, 
by using mice with T-cell-specific reduction of the Complex III subunit 
Rieske Iron Dulfur Protein (RISP), mROS generated at Complex III was 
required for antigen-specific T cell expansion upon infection with Listeria 
monocytogenes. RISP was also necessary to generate memory responses 
[68], highlighting a role of T cells and Complex III in the clearance of L. 
monocytogenes. 

In summary, although Complex III activity seems induced by HEV and 
CVB3 viruses, it seems protective or deleterious for host cells depending 
on the virus (Figure 3), but they always seem to involve the regulation of 
cell death. While Complex III activity is reduced during parasitic 
infections, its direct role in bacteria-infected host cells remains to be 
addressed. 

Complex IV: Cytochrome c Oxidase 

Complex IV is composed of 20 subunits in human cells, three of which 
are encoded by the mitochondrial genome. Complex IV is the last enzyme 
of the ETC. It receives an electron from each of four cytochrome c 
molecules, and transfers them to O2, converting it into two molecules of 
water while four protons are translocated across the inner mitochondrial 
membrane. 

Complex IV activity is regulated during viral infection in a virus- or 
host cell-specific manner. Rubella virus infection decreased activity of 
Complex IV in three different human cell lines [62]. However, an increase 
in Complex IV activity has been described to occur after HIV-1 infection 
of CD4+ T cell lines, which was associated with viral-induced apoptosis 
because inhibition of Complex IV by potassium cyanide reduced 
apoptosis of infected cells [69]. Therefore, the increased Complex IV 
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activity observed might be a specific T cell response to HIV-1 infection. 
Furthermore, the COX5B subunit of Complex IV was shown to interact 
with the mitochondrial antiviral signaling protein (MAVS), a 
mitochondrial outer membrane protein involved in antiviral responses 
[70,71]. Upon detection of viral genomes by PRRs, MAVS induces the 
assembly of a signalsome that activates the IRF3- and NF-κB-dependent 
cytokine production leading to the antiviral immune response [72]. The 
physical interaction of COX5B with MAVS negatively regulates 
MAVS-mediated antiviral pathways. While activation of MAVS lead to 
increased mROS production and COX5B expression, COX5B in turn 
down-regulated MAVS signaling by reducing mROS production [70]. 
Importantly, the role of COX5B in the regulation of mROS production was 
also evidenced in another study [73], thereby highlighting the functions 
of the COX5B subunit in the regulation of mROS levels, MAVS signaling 
and the antiviral response [70,71,73]. 

Measurements of OXPHOS protein levels during Toxoplasma gondii 
infection showed that the expression of Complex IV is decreased 24 h 
post-infection [74]. Thus in parasitic infections, Complex IV levels are 
regulated, what does not seem to be the case during bacterial infection. A 
role of Complex IV in sepsis, the systemic inflammatory response to 
infection, has been suggested as myocardial Complex IV is inhibited 
during sepsis in animal models [75–77]. In these models, oxygen 
utilization but not delivery seems impaired, a condition referred to as 
cytopathic hypoxia, suggesting that Complex IV, which is the terminal 
acceptor of oxygen, might function differently during sepsis [76]. Indeed, 
septic patients who survived have increased Complex IV activity as 
compared to non-survivors, independently of the bacterium causing the 
sepsis [78], which might emphasize the importance of rescuing Complex 
IV activity to improve survival during sepsis. Importantly, inflammatory 
signaling triggered by septic conditions leads to the inhibition of Complex 
IV via tyrosine phosphorylation. Furthermore, similarly to Complex I, NO 
also inhibits the activity of Complex IV [76,77]. Therefore, for bacterial 
infections, Complex IV inhibition was addressed during sepsis and are 
thought to be related to the inflammatory conditions of septic patients 
and not to a direct regulation of Complex IV by pathogenic bacteria. As 
rescuing Complex IV activity correlates with a good prognosis, targeting 
NO-induced Complex IV inhibition may also have a therapeutic interest 
for sepsis patients. 

In summary, Complex IV activity is modulated by viral infection in a 
virus- or host cell-specific manner, and is decreased during parasitic and 
bacterial infection (Figure 3), which might be related to 
infection-associated inflammatory signals. 
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Complex V: FOF1 ATP Synthase 

Complex V is composed of 29 subunits in human cells, which 
collectively form a rotating molecular machine that consists of two main 
functional regions, FO and F1, in charge of ATP synthesis. The 
translocation of protons by Complex I, Complex III and Complex IV 
creates an electrochemical gradient (a difference in proton concentration 
across the inner mitochondrial membrane) that fuels the rotation of the 
motor mechanism of Complex V when protons return to the matrix, 
allowing the Complex V machinery to synthesize ATP from ADP + Pi. 
Thus, the mitochondrial FOF1 ATP synthase couples the return of protons 
located at the intermembrane space by oxidative reactions to the 
synthesis of ATP, which represents the core of OXPHOS. Besides its ATP 
synthase activity, Complex V possesses also ATP hydrolase activity, which 
is supported by an alternative functioning of the motor protein known as 
the “reverse mode”. This reverse mode of Complex V is induced mainly 
when proton leakage occurs at the inner mitochondrial membrane or 
when OXPHOS is compromised in the cell [79]. 

It has been reported that bacterial infection regulated the levels of 
diverse Complex V subunits. For example, the protein levels of the ATP5O 
subunit were markedly enhanced during infection of THP-1 
macrophage-like cells with Mycobacterium tuberculosis, while ATP5B and 
ATP5A1 levels were down-regulated [80]. In the case of murine 
macrophages infected with Streptococcus pneumoniae, mRNA expression 
of ATP12A, ATP4A, ATP4B, ATP5J and ATP6V1C2 subunits, as well as 
ATP5A protein levels, were induced during infection [81]. Interestingly, 
when macrophages from young and aged mice were compared, 
infection-associated up-regulation of the Complex V subunit levels only 
occurred in young macrophages [81], suggesting that aging impacts how 
Complex V is regulated during infection. However the exact mechanisms 
of regulation of Complex V subunits during bacterial infection remain to 
be elucidated. 

In the case of viral infections, a report identified ATP5B as having high 
affinity to the Rotavirus 3’UTR consensus sequence. During Rotavirus 
infection, ATP5B is bound to the Rotavirus 3’UTR and co-localized with 
viral RNA and viroplasm, which identifies ATP5B as host factor that 
supports late-stage virus replication [82]. Another study reported a single 
amino acid mutation in the cucumber mosaic virus capsid protein that 
elicits unusual symptoms when plants were infected. This single 
mutation induced a strong interaction of the virus surface with the F1 
region of the Complex V in infected plants, which lethally blocks the 
rotation of the ATP synthase motor and leads to cell apoptosis and plant 
death [83]. Therefore, these studies showed that direct interaction of viral 
proteins with Complex V subunits could regulate the functions of 
mitochondrial FOF1 ATP synthase and affected viral replication within 
host cells. 
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Complex V is also regulated during parasitic infections. Defects on the 
Complex V activity of cardiac mitochondria appeared in the chronic 
phase of T. cruzi infection of mice [84], which contribute together with 
Complex III to the aforementioned decrease of OXPHOS and ATP 
production in the myocardium of T. cruzi-infected mice [67]. This study 
suggested a role of ETC complexes and heart mitochondria on the altered 
cardiovascular functions seen in T. cruzi-infected patients [67]. Another 
report showed that infection with the yeast-like fungus Pneumocystis 
carinii induces the over-expression of ATP6 subunit mRNA in the lungs of 
infected rats [85]. The ATP6 subunit is a key component of the proton 
channel and one of the two Complex V subunits encoded by the 
mitochondrial genome. Although the impact of ATP6 mRNA 
over-expression on the metabolism of host cells during infection was not 
addressed [85], this study demonstrated that infection by pathogenic 
fungi altered the expression of Complex V subunits in host cells. 

Collectively, these studies show that viral, bacterial, fungal and 
parasitic infections influence the levels of Complex V subunits and their 
activity (Figure 3). Whether these changes are induced by the pathogens 
or are a response of host cells to infection remain to be determined. 

Non-ETC Accessory OXPHOS Proteins: Adenine Nucleotide 
Translocator and Uncoupler Proteins  

Some proteins, not strictly belonging to the ETC, have important roles 
in the regulation of OXPHOS, such as the adenine nucleotide translocator 
(ANT) and uncoupler proteins (UCP). They are also located at the inner 
mitochondrial membrane (Figure 2) and seem regulated by infection. 

ANT is the most abundant protein in the inner mitochondrial 
membrane and belongs to the mitochondrial carrier family. It exchanges 
free ATP with free ADP across the inner mitochondrial membrane. As 
ADP is the substrate of Complex V, its activity regulating ATP/ADP 
exchange across the inner mitochondrial membrane also regulates 
OXPHOS levels [79]. Indeed, the ANT and the FOF1 ATP synthase are not 
necessarily in directional synchrony, and the conjugation of their 
forward/reverse directionalities determines mΔψ and OXPHOS levels 
[79]. Four ANT tissue-specific isoforms exist in humans, ANT1 (SLC25A4), 
ANT2 (SLC25A5), ANT3 (SLC25A6) and ANT4 (SLC25A31). In addition to 
their role in ADP/ATP exchange, ANT has been proposed to be also part of 
the mPTP, thus triggering inner mitochondrial membrane 
permeabilization and leading irreversibly to cell death [65]. Interestingly, 
some viral products interact with mitochondrial ANTs, because of their 
role in apoptosis. Some examples are the porcine circovirus type 2 
protein ORF4 that triggers cell death by direct binding to ANT3 [86], the 
HIV-1 viral protein R that impairs mitochondria axonal transport in 
primary neuronal cultures by its interaction with ANT [87], the 
hcmv-miR-UL36-5p miRNA encoded by human cytomegalovirus that 
inhibits cell death by inhibiting ANT3 expression [88], or the interaction 
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of UL7 with ANT2 in the case of infection by herpes simplex virus 1b [89]. 
Taken together, these reports suggested that ANT activity is targeted by 
viruses in order to regulate host cell death.  

UCPs are inner mitochondrial membrane proteins that regulate a 
proton channel that dissipates the electrochemical gradient generated by 
Complex I, Complex III and Complex IV. However, the energy lost in 
dissipating the proton gradient via UCPs is not used for biochemical 
functions, but heat is generated, thus UCP are responsible for 
thermogenesis. Therefore, UCPs and the ATP synthase, which is also a 
proton channel, work in parallel at the inner mitochondrial membrane 
with the electrochemical proton gradient and, although mitochondrial 
respiration is coupled to ATP synthesis during OXPHOS thanks to the 
Complex V, this process is finally regulated by UCPs through the 
controlled dissipation of the gradient. There are five UCP isoforms in 
mammals, named UCP1 to UCP5, but UCP2 has been the only one linked 
to infection. It was shown that UCP2-KO mice exhibited increased 
resistance to microbial infections as compared to wild-type mice. Animals 
lacking UCP2 were protected against infection with Listeria 
monocytogenes or T. gondii [44,90]. Interestingly, these studies showed 
that macrophages from UCP2-KO mice generated more mROS than 
wild-type mice in response to T. gondii infection but, conversely, another 
study showed that overexpression of UCP2 reduced mROS production in 
vitro [91]. Although contradictory, these results suggest a role of UCP2 in 
the regulation of mROS and thus UCP2 might be a promising target to 
reduce mROS production in some pathologies [92,93]. In addition, some 
pathogens seem to induce UCP2 levels. For instance, infection by the 
bacterium Porphyromonas gingivalis elicited a strong and 
time-dependent increase in mitochondrial UCP2 levels [94], as well as 
infection by the parasite Leishmania donovani, which also increases UCP2 
activity to suppress mitochondrial oxidative burst and inflammasome 
activation [95,96]. 

In summary, pathogens can regulate directly or indirectly accesory 
OXPHOS proteins such as ANT and UCPs in addition to ETC complexes, 
which might have an effect on the bioenergetics of the host cells during 
infection.  

CONCLUDING REMARKS AND FUTURE PERSPECTIVES 

The activity of mitochondrial ETC complexes is modulated by viruses, 
bacteria and parasites during infection of eukaryotic host cells. This 
mainly leads to bioenergetic alterations in the host cell related to changes 
in OXPHOS levels and, in many cases, to a regulation of cell death. The 
link between mitochondrial ETC, OXPHOS levels and cell death remains 
recurrent not only in infection. One well-known example is CytC, which 
binds to cardiolipin when it is anchored to the inner mitochondrial 
membrane and part of the ETC, and it can be released from the 
mitochondria to initiate apoptosis [65]. Regulation of cell death during 

Immunometabolism. 2019;1:e190011. https://doi.org/10.20900/immunometab20190011 

https://doi.org/10.20900/immunometab20190011


 
Immunometabolism 16 of 25 

infection represents an important strategy for pathogens, which can 
maintain their niche or kill the host cells depending on their needs. 
Therefore, the regulation/modulation of ETC activity and OXPHOS levels 
by pathogens might have not only bioenergetic benefits, but also it might 
also initiate or delay host cell death.  

OXPHOS seems to be a cellular checkpoint. An adequate OXPHOS 
performance represents normal cellular functions, and an altered, 
non-adequate OXPHOS performance represents a danger signal for the 
host cell. We have recently proposed the term DAMM for 
Danger-Associated Metabolic Modifications [97]. In this model, OXPHOS 
alteration during infection might be a DAMM for host cells. In this case, 
the fine-tuning of the ETC machinery and its associated signaling 
pathways would be key for pathogens to avoid triggering DAMMs and the 
subsequently elicitied immune defense mechanisms such as 
inflammasome activation, IL1β production or programmed cell death. 

Metabolic shifts from OXPHOS-based metabolic programs to 
glycolytic-based ones have been observed in multiple cell types and 
conditions, including immune cells upon activation and infection 
[4,12,21,54,97]. In the case of infection, the relative contribution of the 
host and the pathogen to these metabolic shifts remains a matter of 
debate, as host-driven and pathogen-driven metabolic alterations seem to 
co-exist during infection [97]. During infection, host cells partially 
prevent an energetic crisis upon decreased OXPHOS levels by 
up-regulating glycolytic-based ATP production [76]. On the other hand, 
pathogens induce metabolic shifts to glycolytic-based programs coupled 
with biosynthetic pathways to create the conditions allowing their 
multiplication within infected cells [21]. This debate may be extended to 
other metabolic shifts seen when OXPHOS is reduced, such as 
mitochondrial substrate-level phosphorylation (mSLP), a pathway where 
ATP is generated in the mitochondrial matrix independently of the ETC, 
mainly by the action of the mitochondrial phosphoenolpyruvate 
carboxykinase (PEPCK-M) or the succinate-CoA ligase [98,99]. As it has 
been shown that mSLP is inhibited upon stimulation of murine 
macrophages with LPS [100], one might argue that mSPL does not 
energetically compensate bacterial-induced reduction of OXPHOS due to 
the blockage by bacterial LPS. However, the finding that patients infected 
with the hepatitis C virus have up-regulated levels of PEPCK-M might 
suggest that viral infection induces mSPL [101]. Whether this effect can 
be seen in other infections, and whether mSLP pathways benefit host 
cells or pathogens, are interesting questions that remain to be answered. 

The study of the OXPHOS machinery during infection has been mainly 
restricted to the analysis of individual ETC complexes and their subunits. 
However, although it is well known that ETC complexes assemble at 
mitochondria in super-complexes during OXPHOS, the investigation of 
the super-complexes functions and configurations during infection 
remains scarce. Only one recent report explored this topic by 
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investigating ETC super-complex configuration during infection of 
murine macrophages with E. coli or S. enterica [28], showing that 
infection downregulated all Complex I-containing super-complexes.  

A very interesting aspect that should be addresed in the future is 
whether genetic deficiencies of ETC complexes, which are frequent in 
patients with neurodegenerative, motor and/or cognitive problems, also 
predispose to infection. Some case reports of patients harboring 
mitochondrial ETC dieseases include recurrent infections as symptoms, 
and some reports showed that patients initiated their neurological 
symtomps after suffering feaver or a well identified infection (Table 1). 
These clinical cases of patients with deficiencies in ETC complexes might 
point to a functional link between mitochondrial ETC complexes and 
infections [102–107]. 

Table 1. Genetic deficiencies of ETC complexes seem to be linked to infection. 

ETC Complex 
deficiency 

Mutation found in the patient Symptoms of infection References 

Complex I 
Heterozygous mutations within exon 2 
of NDUFAF1 gene 

Pneumonia, fever of 39°C, 
confirmed lung infection 

[102] 

Complex II 
Heterozygous missense mutations 
within exon 3 and exon 4 of SDHD gene 

Frequent respiratory or 
gastrointestinal infections 

[103] 

Complex III 
Homozygous mutations in the LYRM7 
gene (Complex III assembly factor) 

Subacute neurological 
deterioration in infancy or 
childhood, preceded by a 
febrile infection 

[104] 

Complex IV 
Homozygous splice site mutation in the 
COX8A gene 

Febrile state due to 
pneumonia and urinary tract 
infection 

[105] 

Complex IV 
Homozygous nonsense mutation in the 
gene PET117 (Complex IV assembly 
factor)  

Recurrent respiratory 
infections 

[106] 

Complex V 
Homozygous mutation in the ATP12 
gene  

Died from intercurrent 
infection 

[107] 

Mitochondrial ETC complexes have been thus proposed as therapeutic 
targets for human diseases such as autism, cancer or viral infections 
[64,108,109]. However, their roles regulating host responses to infection 
or their targeting by pathogens during infections remain largely 
unknown. Thus the study of ETC complexes during infection will not only 
bring fundamental knowledge about metabolic host-pathogen 
interactions, but might also determine whether mitochondrial ETC 
complexes can be used as targets in the host to tackle infection. 
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