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ABSTRACT 

Obesity is a widespread health condition, which can lead to the 
development of metabolic disorders, such as type 2 diabetes mellitus, 
nonalcoholic fatty liver disease and cardiovascular diseases. Obesity is 
marked by the excessive deposition of fat in adipose tissue sites combined 
with chronic low-grade inflammation. Within this clinical setting, it is well 
established that adipose tissue macrophages exhibit prominent roles in 
regulating inflammation and metabolism. However, aside from these well-
established roles, the involvement of microenvironmental cues as well as 
underlying cellular metabolism in driving immunological fate decisions 
within macrophages are poorly understood. Here we aim to map the 
different adipose tissue-derived macrophage subsets, together with their 
metabolic and functional profiles. Finally, we discuss their potential 
contribution during homeostasis and disease progression associated with 
obesity. 

KEYWORDS: adipose tissue macrophages; obesity; immunometabolism; 
microenvironmental niche 

INTRODUCTION 

Obesity is a global health pandemic that predisposes individuals to 
develop metabolic disorders, such as type 2 diabetes mellitus and non-
alcoholic fatty liver disease (NAFLD) [1]. In order to face this escalating 
disease burden, there is an urgent need to unravel the molecular 
mechanisms that prevent the life-threatening metabolic comorbidities in this 
expanding patient population and to define novel targets for early 
therapeutic intervention. Although the disease mechanisms remain 
incompletely understood, it is well established that early inflammatory 
events within the expanding adipose tissue compartment significantly 
contribute to dysregulation of metabolic homeostasis [2]. For example, 
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adipose tissue can secrete a variety of adipokines that influence 
inflammation and insulin resistance. Macrophages and their pro-
inflammatory cytokine repertoire are prominent contributors to the adipose 
tissue secretome and have been identified as key early driver of insulin 
resistance [3–6]. Furthermore, adipose tissue macrophages can directly 
influence recruitment of immune cells from the circulation into adipose 
tissue sites but also in distal organs such as the liver [7–10], and their 
frequencies correlate with hepatic histopathological severity [11]. 
Consequently, disruption of macrophages, or their functions, improves 
insulin sensitivity and abrogated hepatic inflammation and steatosis [12–14]. 
These findings support a role for macrophages and adipose tissue 
inflammation in metabolic disorders such as obesity and its complications.  

Macrophages are highly diverse cells in terms of functionality, 
although they all share a common core program directed by lineage-
specific transcription factors [15]. Macrophages can be either 
embryonically seeded in organs where they are maintained through self-
renewal [16], or derived from infiltrating bone marrow monocyte 
precursors [17,18]. Regardless of their origin, they adapt to 
microenvironmental cues within the niche they reside in and become 
imprinted with a unique transcriptional signature [19,20]. Technologies 
such as single-cell RNA sequencing accelerated discoveries in the field and 
even implicated a variety of niche-specific macrophages co-existing within 
one organ [21]. Importantly, these macrophage subsets are specialized in 
exerting functions such as phagocytosis of apoptotic/necrotic cells, 
secretion of cytokines and growth factors and remodeling of the 
extracellular matrix, and all of these processes require mobilization of 
specific intrinsic metabolic processes [22]. Metabolic repurposing could 
therefore potentially aid in fine-tuning and correcting macrophage 
malfunctions during a diseased condition. Notably, as proof of concept, 
our group recently demonstrated that metabolic rewiring improved 
monocyte functionality in patients with acute-on-chronic liver failure [23]. 
Nevertheless, it remains poorly understood how these 
microenvironmental cues affect immune-metabolic functions of 
macrophages, especially within the lipid overload setting of obesity and its 
complications. Here we provide an overview of different subtissular niche 
macrophages with a focus on their immune-metabolic profile within the 
adipose depot and discuss their potential contribution during disease 
progression during obesity. 

REVISITING THE PREVIOUS CONCEPT OF MACROPHAGE 
POLARIZATION IN OBESE ADIPOSE TISSUE  

More than a decade ago, some studies suggested that healthy adipose 
tissue contains alternatively activated macrophages (M2-like). M2-like 
macrophages exhibit an anti-inflammatory function through the actions 
of Interleukin-10 (IL-10) and signal transducer and activator of 
transcription 3 (STAT3) [24]. Additionally, they maintain insulin sensitivity 

Immunometabolism. 2020;2(1):e200001. https://doi.org/10.20900/immunometab20200001 

https://doi.org/10.20900/immunometab20200001


 
Immunometabolism 3 of 15 

through peroxisome proliferator-activated receptor gamma (PPARγ), 
which promotes tissue remodeling and consequently resolves 
inflammation [25,26]. In support of this concept, interfering with M2-like 
activation by inhibiting expression of parameters within the downstream 
IL-4 receptor signaling pathway hampered insulin sensitivity via 
components such as PPARγ, PPARδ and KLF4 [25,27,28]. To support these 
homeostatic and restorative functions, M2-like macrophages exhibit a 
metabolic profile that relies on fatty acid oxidation (FAO) to fuel tricarboxylic 
acid (TCA) cycle-coupled oxidative phosphorylation [29], which relies on free 
intracellular coenzyme A (CoA) availability as a regulator of oxidation, as 
recently been described [30,31]. Furthermore, a role for the mammalian 
target of rapamycin complex 2 (mTORC2) and interferon regulatory factor 4 
(IRF4) in M2 polarization have been demonstrated. Towards this end, 
elevated expression of mTORC2 and IRF4 increased glucose-dependent 
oxidative phosphorylation and upregulated the characteristic M2 
parameters arginase 1 and resistin-like molecule α [32]. 

In contrast, classically activated (M1-like) macrophages are recruited 
and retained in adipose tissue in NAFLD subjects, where they secrete pro-
inflammatory mediators and disturb insulin sensitivity [6,33,34]. Deletion 
of the pro-inflammatory signaling molecule IKKβ in myeloid cells preserved 
insulin sensitivity and reduced adipose tissue inflammation [13]. Similarly, 
macrophage-specific deletion of stress-activated c-Jun NH2 terminal 
kinases, JNK, protects against high-fat diet-induced obesity and insulin 
resistance and reverted M1 polarization [35]. To meet the energy demand 
required to exert these acute inflammatory actions, M1 macrophages rely 
on increased glucose uptake and glycolytic flux [29]. They also feature an 
interrupted TCA cycle whereby citrate and succinate intermediates 
accumulate within the cell [36]. Interestingly, the build-up of succinate 
leads to stabilization of hypoxia-inducible factor (HIF)-1α, a master 
transcriptional regulator of pro-inflammatory and glycolytic genes [37]. 
HIF-1α regulates important downstream target genes such as the glucose 
transporters, GLUT1 and GLUT3 [38], as well as the pyruvate 
dehydrogenase kinase 1 (PDK1), a metabolic checkpoint directing glucose 
metabolism towards glycolysis and away from oxidative phosphorylation 
[39,40]. Finally, macrophage HIF-1α was increased in human and mouse 
Nonalcoholic steatohepatitis subjects and deletion of myeloid HIF-1α 
impaired macrophage pro-inflammatory function and adipose tissue 
inflammation while restoring glucose tolerance [41–43].  

Notably, in the in vivo setting and especially in obesity, many different 
stressors can lead to the activation of inflammatory pathways within 
adipose tissue macrophages [44]. In addition, macrophages can reside in 
very different subtissular microenvironments where they give rise to a 
spectrum of subtypes not accounted for in the oversimplified M1/M2 
paradigm. Thereby, macrophages can be located in hypoxic regions or can 
be found in the vicinity of blood vessels, -nerve fibers, -extracellular 
matrix or -dying adipocytes. To this end, several studies have 
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demonstrated that macrophages exhibit distinct transcriptional 
signatures and epigenetic traits that are specific to their location [45–47]. 
This underscores the role of tissue factors in imprinting the macrophage 
transcriptional program and consequently underlines the importance of 
studying these tissue microenvironments during obesity and its 
complications. 

REFINING MACROPHAGE FUNCTIONAL STATES BASED ON THE 
MICROENVIRONMENTAL CUES THEY ENCOUNTER 

Metabolic Activated Macrophages—Metabolism in Overdrive 

As mentioned above, we are only starting to grasp the extent of these 
macrophage phenotypes and their accompanying metabolic signatures. 
These various macrophage phenotypes located in the adipose tissue are 
depicted in Figure 1 and further reviewed here. For instance, it is possible 
that lipids released by dying adipocytes are excessively engulfed by 
resident adipose tissue macrophages giving rise to unique macrophage 
phenotypes. Indeed, recent studies have characterized metabolic 
signatures of murine adipose tissue, defining two new phenotypes, termed 
redox-regulatory (Mox) and metabolically activated (MMe) macrophages. 
Mox macrophages feature enhanced antioxidant gene expression profiles 
and a quiescent metabolic state, and were reported to be present primarily 
in lean adipose tissue following truncated oxidized lipid exposure [48]. On 
the contrary, obese adipose tissue macrophages featured a metabolically 
activated state (MMe) with increased lipid catabolism and lysosomal 
biogenesis [49]. Genes such as perilipin-2 and lysosome-associated 
membrane protein 2 were specifically upregulated in these macrophages. 
Notably, a cocktail of glucose, insulin and palmitate could recapitulate this 
metabolically activated state in vitro [50]. Furthermore, MMe 
macrophages featured a mixed metabolic program with simultaneous 
upregulation of glycolysis and oxidative phosphorylation pathways 
following saturated fatty acid exposure. By promoting inflammatory 
cytokine production as well as lysosomal exocytosis to adipocytes they also 
participated in both detrimental and beneficial actions during obesity [51]. 
Additional studies merging metabolomics, transcriptomics and 
subtissular locations will be critical in further unravelling the potential 
heterogeneity within MMe macrophages.  
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Figure 1. Functional and metabolic overview of adipose tissue macrophages in their subtissular 
niches. (A) Glucose, insulin and palmitate can induce the metabolically activated (MMe) macrophage state 
with upregulated Perilipin-2 and LAMP2, leading to increased pro-inflammatory cytokine secretion and 
inducing lysosomal exocytosis. (B) CD9+ Foamy macrophages form a CLS around the adipocytes, and take 
up triglycerides and fatty acids released by stressed hypertrophic adipocytes resulting in secretion of 
exosome-size vesicles and pro-inflammatory cytokines. Macrophages release lysosomal content by forming 
hydrolytic synapses with stressed adipocytes, called exophagy. (C) The CD9+ lipid-associated macrophages 
form a CLS and transcribe Lgals1 and Lgals3. The Trem2 lipid sensor drives phagocytosis and lipid 
catabolism. (D) Norepinephrine, released by sympathetic neurons, is transported via SLC6A2 and is 
degraded by the sympathetic neuron macrophages. This leads to an upregulated transcription of pro-
inflammatory genes and increased obesity. (E) Adipogenic macrophages over-express osteopontin and are 
involved in tissue repair and adipogenesis. (F) The Lyve1hi vasculature-associated macrophages are 
localized with the vasculature, engulfing blood-born macromolecules and noxious catabolites, while 
secreting MMP-7, MMP-9, MMP-12, VEGF and PDGF. Their anti-inflammatory gene transcription profile 
ensures an involvement in tissue repair and leukocyte migration. CLS, Crown-like structure; LAMP2, 
Lysosome-associated membrane protein 2; LD, Lipid droplet; LYVE1, Lymphatic vessel endothelial 
receptor 1; MMe, metabolically activated; MMP-(7, 9, 12), Matrix-metalloproteinase-(7, 9, 12); PDGF, Platelet-
derived growth factor; SLC6A2, Sodium-dependent noradrenaline transporter; VEGF, Vascular endothelial 
growth factor.  
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Crown-like Structure (CLS) Macrophages—Facing the Heat Zone 

Foamy macrophages—clearing the dead and fueling inflammation and 
systemic insulin resistance 

Under normal conditions, resident adipose tissue macrophages 
phagocytose adipocyte debris in order to maintain normal adipocyte 
turnover and tissue homeostasis. However, during obesity progression, 
adipocytes undergo plasma membrane rupture, endoplasmic reticulum 
stress and necrosis-like death [33,52]. Following this event, macrophages 
rapidly surround and engulf the dying adipocytes, thereby creating a 
characteristic microenvironment known as a crown-like structure (CLS). 
Because of the size of the stressed hypertrophied adipocytes, macrophages 
implement an innovative mechanism by forming hydrolytic synapses in 
which they secrete their lysosomal content to ingest the dying adipocytes—
a process termed exophagy [53]. The enlarged insulin-resistant adipocytes 
also release triglycerides and non-esterified fatty acids that are 
continuously scavenged by surrounding macrophages. Combined, this 
heightened demand on their endocytic capacity may overwhelm the 
underlying metabolic state giving rise to metabolically activated 
macrophages (as described above) [49–51]. Additionally, this process may 
impede efficient dead cell clearance, similar to what happens in foam cells 
within atherosclerotic plaques [54], culminating in an aberrant 
inflammatory response [55]. Important differences between foamy 
macrophages described here and those present in atherosclerotic plaques 
also exist. For example, excessive lipid loading appears to suppress 
inflammatory responses due to a defective pentose phosphate 
pathway [56–58]. 

During obesity however, an important study by Hill et al. describes a 
CD9+ CLS macrophage population that exhibit a crucial role in storage of 
excess lipids and that express genes related to lysosomal-dependent lipid 
metabolism [59]. Interestingly, the authors of this latter study suggest that 
CD9+ macrophages metabolically resemble activated macrophages (see 
above) as well as the previously described CD11chigh macrophages [60], 
since they similarly reside predominantly in the CLS and secrete  
pro-inflammatory cytokines. Implicating a pathogenic role for these 
macrophages, the authors demonstrated that adoptive transfer of CD9+ 
macrophages into healthy animals was sufficient to propagate obesity-
associated adipose tissue inflammation [59]. CD9+ macrophages also seem 
to play a role in regulating metabolism through secretion of exosome-size 
vesicles. Indeed, miRNA containing extracellular vesicles (e.g., miR-155) 
constitute an important part of the adipose tissue macrophage secretome 
and act as a signaling mechanism to regulate local and systemic insulin 
signaling [61].  
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Lipid-associated macrophages—regulators of adipocyte hypertrophy 

Further refining the diversity of macrophages during obesity, an 
elegant study by the group of Ido Amit characterized a number of distinct 
myeloid cell populations within adipose tissue [62]. One population 
resembled the transcriptional profile of interstitial perivascular 
macrophages (described below) [63], and another fitted the signature 
described by Hill et al., described as CD9+ macrophages (described 
above) [59]. Strikingly, their results implicate the presence of a third 
unique macrophage subset, which they termed lipid-associated 
macrophages (LAMs). The authors demonstrate that LAMs are derived 
from circulating monocytes and arise specifically under obesity conditions 
where they are positioned around enlarged adipocytes in crown-like 
structures [62]. Although also expressing CD9, LAMs seem to be distinct 
from the pro-inflammatory subset described by Hill et al., and express 
genes associated with immune suppression such as Lgals1 and Lgals3 
[59,62]. The transcriptional signature of LAMs is very close to that 
described for disease-associated microglia (DAM) cells in the brains of 
subjects with neurodegenerative disorders and in aortic macrophages 
during atherosclerosis [64,65]. Another important finding was that LAMs 
played a crucial role in preventing adipocyte hypertrophy through a 
Trem2-mediated mechanism. Trem2 acted as a lipid sensor, driving a gene 
expression program involved in phagocytosis, lipid catabolism and energy 
metabolism [62]. Abrogating Trem2 signaling caused massive adipocyte 
hypertrophy, systemic hypercholesterolemia, inflammation and glucose 
intolerance [62]. This study supports a beneficial role for LAMs in obesity 
and potentially in other disease-associated comorbidities such as NAFLD. 

Sympathetic Neuron Macrophages—Soaking up Neuronal Insults 

Recently also a subset of sympathetic neuron-associated macrophages 
(SAMs) within adipose tissue has been discovered [66]. Sympathetic 
neurons typically produce the neurotransmitter norepinephrine (NE) that 
facilitates lipolysis and fat mass reduction. Under stress conditions, 
however, overproduction and systemic NE can lead to hypertension and 
cardiopathy due to its direct action on cardiovascular tissues [67]. In this 
regard, Pirzgalska et al., demonstrated that SAMs play a tissue-protective 
role by scavenging and catabolizing regional NE levels, thereby serving as 
a local sink that prevents the dangerous effects of systemically increased 
NE [66]. Such tissue-protective responses have also been described in the 
intestinal muscularis nerve-associated macrophages that protect against 
pathogenic insults via B2 adrenergic receptor signaling [68]. In sharp 
contrast to the anti-inflammatory state of intestinal nerve-associated 
Cx3cr1-GFP+ macrophages, SAMs exhibit a pro-inflammatory profile at 
steady state [66,68]. Regardless of this functional difference, the 
importance of this population in obesity has been highlighted by the fact 
that ablation of NE importer, SLC6A2, in these macrophages induced 
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weight loss and lipid mobilization [66]. Along the same lines of 
investigation, a complementary study demonstrated that brown adipose 
tissue deletion of macrophage methyl-CpG binding protein 2 (MECP2), a 
factor important in neurodevelopment, resulted in spontaneous 
obesity [69]. This was attributed to the inhibition of brown adipose tissue 
sympathetic innervation, and thus a reduction of NE tissue levels, 
ultimately leading to altered thermogenesis [69]. Finally, such nerve-
associated macrophages appear to be present in a number of different 
tissues, and at least in mouse models they exhibit a common 
LYVE1loMHCIIhigh phenotype [70]. This common signature include genes 
such as Axl, Ccr2, Cx3cr1 and MHCII-related genes such as H2-DMa, H2-Aa, 
H2-Eb1, H2-Ab1, CD74 and H2-K1 [70]. Combined, these studies highlight 
the fact that macrophages associated with the sympathetic neuronal 
system exhibit specialized molecular programs and thus they provide 
insight into neuronal-macrophage crosstalk mechanisms. 

Adipogenic Macrophages—Guiding Adipocyte Formation 

During pathological conditions such as NALFD, where chronic over 
nutrition prevails, not only the size but also the number of adipocytes 
increases to compensate for the excessive lipid availability. In this regard, 
macrophages participate in the (patho-)physiological remodeling of 
adipose tissue by guiding new adipocyte formation (adipogenesis). 
Supporting this concept, a recent study implicated an adipogenic- and 
tissue reorganization role for monocyte-derived Ly6C macrophages that 
are uniformly distributed throughout the adipose interstitium [59]. 
Additionally, a population of osteopontin over-expressing adipose tissue 
macrophages has been demonstrated to establish an adipogenic niche for 
tissue repair and remodeling in diet-induced obesity models [71]. The 
authors of this study also demonstrated the importance of this population 
by showing that osteopontin-deficient mice fail to form these adipogenic 
nodes. Additional studies are required to further characterize this subset 
and its importance in obesity and its complications. 

Vasculature Macrophages—Gatekeepers to Systemic Circulation 

With the expansion of the adipose tissue, local macrophages have been 
implicated to direct the formation of new blood vessels and as such, play a 
role in the process of angiogenesis. These macrophages express lymphatic 
vessel endothelial receptor 1 (LYVE1) and secrete tissue remodeling factors 
(e.g., matrix metalloproteinase (MMP)-7, MMP-9, MMP-12), and factors 
promoting the formation of endothelial cell tubes (e.g., VEGF, PDGF) 
[72,73]. A recent study provides a comprehensive overview of the 
transcriptome, phenotype and tissue-localization regarding these 
vasculature-associated macrophages (VAMs) [63]. More specifically, the 
authors show that steady-state VAMs display an anti-inflammatory gene 
signature, are self-maintaining and exhibit an extremely rapid capacity to 
engulf blood-born macromolecules or noxious catabolites from the 
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surrounding adipose tissue [63]. Strikingly, VAMs are suggested to be 
highly sensitive to cell death since they are rapidly depleted under acute 
infectious- or metabolic stress [63]. The loss of these valuable macrophages 
seems to be only transient, as the vascular niche can be repopulated 
through the recruitment of a monocyte-derived pre-VAM population [63]. 
Finally, another important study characterized VAMs by reporting that 
they exhibit a LYVE1hiMHCIIlo phenotype, and that this was a conserved 
characteristic for infiltrating monocyte-derived cells across a number of 
different tissues, including fat. Notably, the common gene signature that 
depicted this population involves genes such as Lyve1, Timd4, CD5l, Fcna 
and Vsig4 [70]. The authors further demonstrate that LYVE1hiMHCIIlo 
macrophages expressed higher levels of genes involved in blood vessel 
morphology, leukocyte migration, tissue repair and fibrosis [70]. Arterial 
LYVE1 macrophages therefore play a role in maintaining normal 
vasculature structure, an attribute that could be linked to the regulation 
of collagen production [74]. Importantly, depleting LYVE1hiMHCIIlo during 
the induction of fibrosis, exacerbated inflammation and the degree of 
fibrosis in the lung and heart of their experimental mouse model [70]. It 
will be intriguing for future studies to explore whether similar 
mechanisms are in place during fibrosis and cirrhosis development in 
chronic liver diseases such as NAFLD. 

CONCLUSIONS 

Increasing evidence highlights the close association between adipose 
tissue macrophage function and their importance in advancing metabolic 
disorders such as obesity and its complications. Accordingly, adipose 
tissue macrophage-targeting approaches have underscored their 
importance in the development of liver inflammation and insulin 
resistance. Strategies that inhibit the recruitment of macrophages to the 
adipose tissue compartment are currently being investigated. However, in 
view of the latest findings regarding the vast diversity of adipose tissue-
derived macrophage subsets (reviewed here) it becomes clear that these 
subsets also portray distinct subtissular-associated functions that can be 
either beneficial or pathological during disease progression. In addition, it 
remains to be determined whether these subsets represent distinct subsets 
or represent merely altered functional states of the same cell. It will 
therefore be crucial for future studies to integrate transcriptional, 
metabolic and location signatures at a single-cell level in order to clarify 
these discrepancies and to define highly specific molecular targets. The 
latter may reveal important mechanisms that could potentially be 
exploited to counteract the emerging obesity pandemic. 
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