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ABSTRACT: 

Background: Vascular smooth muscle cells (VSMC) exhibit phenotypic 
plasticity in atherosclerotic plaques, and among other approaches, has 
been modeled in vitro by cholesterol loading.  

Methods: Meta-analysis of scRNA-seq data from VSMC lineage traced cells 
across five experiments of murine atherosclerosis was performed. In vivo 
expression profiles were compared to three in vitro datasets of VSMCs 
loaded with cholesterol and three datasets of polarized macrophages.  

Results: We identified 24 cell clusters in the meta-analysis of single cells 
from mouse atherosclerotic lesions with notable heterogeneity across 
studies, especially for macrophage populations. Trajectory analysis of 
VSMC lineage positive cells revealed several possible paths of state 
transitions with one traversing from contractile VSMC to macrophages by 
way of a proliferative cell cluster. Transcriptome comparisons between in 
vivo and in vitro states underscored that data from three in vitro 
cholesterol-treated VSMC experiments did not mirror cell state transitions 
observed in vivo. However, all in vitro macrophage profiles analyzed (M1, 
M2, and oxLDL) were more similar to in vivo profiles of macrophages than 
in vitro VSMCs were to in vivo profiles of VSMCs. oxLDL loaded 
macrophages showed the most similarity to in vivo states. In contrast to 
the in vitro data, comparison between mouse and human in vivo data 
showed many similarities.  

Conclusions: Identification of the sources of variation across single cell 
datasets in atherosclerosis will be an important step towards 
understanding VSMC fate transitions in vivo. Also, we conclude that 
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cholesterol-loading in vitro is insufficient to model the VSMC cell state 
transitions observed in vivo, which underscores the need to develop better 
cell models. Mouse models, however, appear to reproduce a number of the 
features of VSMCs in human plaques.  

KEYWORDS: atherosclerosis; smooth muscle cells; macrophages; lineage 
tracing; single cell RNA-seq; cholesterol 

ABBREVIATIONS 

VSMC, vascular smooth muscle cell; scRNA-seq, single cell RNA 
sequencing; UMAP, uniform manifold approximation and projection; 
FACS, fluorescence-activated cell sorting  

INTRODUCTION 

It has been long appreciated that vascular smooth muscle cells (VSMC) 
can exhibit phenotypic plasticity in vivo, especially in atherosclerotic 
plaques [1]. The establishment of model systems in vitro allowed 
mechanistically-oriented investigations of the phenotypic states observed 
in vivo [2]. Studies of arterial VSMC phenotypes tended to focus on two 
major states, named contractile and synthetic (e.g., ref. [3]). “Contractile” 
refers to the cells in the medial layer of a normal artery, which have the 
ability to adjust vessel tone in response to different stimuli. Under 
conditions of vascular pathology, such as atherosclerosis or injury (such 
as following an angioplasty), however, some cells in the media clonally 
proliferate and migrate to enter the intimal (subendothelial) space. These 
are the “synthetic” phenotype, so named because of their increased 
production, or synthesis, of extracellular matrix (ECM). Either in vitro or 
in vivo, the contractile machinery in synthetic cells is dampened, as 
indicated by the lower expression of multiple components, such as smooth 
muscle cell alpha-actin and myosin heavy chain. It has also been found in 
vitro and in vivo that when exposed to lipids or lipoproteins, VSMC could 
assume the appearance of a foam cell, typically identified by the 
accumulation of lipid droplets [4]. 

In 2003, it was reported that cholesterol-loaded VSMC foam cells not 
only had significant downregulation of contractile markers in vitro, but 
also had the induction of markers typically expressed by atherosclerotic 
plaque macrophages [5]. By using a combination of markers [6] or a 
proximity ligation assay [7] for human plaques, or lineage marking in 
mouse plaques [7,8], observations in vivo appeared similar to those in 
vitro, and suggested that a variant of the synthetic phenotype of arterial 
VSMC was a macrophage-like state. It became clear that the existence of 
such cells would have significant implications about the nature of the 
immune cell repertoire in atherosclerosis. Some estimates have reported 
that upwards of 30–40% [5–7] or even more [9] cells identified by 
conventional markers as macrophages in advanced mouse or human 
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plaques were of VSMC origin. This has focused attention on the molecular 
features of these cells and their functional properties, especially in regard 
to plaque inflammation.  

There has been an impressive growth in the number of papers 
exploring VSMC diversity in atherosclerosis, with a consequent 
acceleration of insights into what was known not only about the transition 
to a macrophage-appearing state, but also about the realization that 
VSMCs in plaques acquire features of cell types beyond what was 
previously described. While there is general agreement that VSMCs exhibit 
a higher degree of plasticity in atherosclerosis than previously 
appreciated, controversy lingers over the precise in vivo fate(s) of VSMC 
and their phenotypic states. Questions regarding specific cell states and 
fates of VSMCs remain despite the availability of VSMC lineage-traced 
mouse models and similar manipulations available to the field.  

Thus, we felt it timely to assess the current state of the molecular 
understanding of VSMC phenotypic diversity by performing a meta-
analysis of the available single cell transcriptomic data from VSMC 
lineage-traced cells from atherosclerotic mouse models. We were also 
particularly interested in the molecular features of VSMC-derived 
macrophage-like cells, not only to learn more about mechanisms for this 
transition, but also to infer their functional properties and contributions 
to plaque inflammation, given their aforementioned abundance in 
atherosclerotic arteries. Also, given the value of an in vitro system to 
perform intensive mechanistic investigations with potential in vivo 
relevance, we have also compared transcriptomic and epigenetic changes, 
which were induced in VSMCs by cholesterol-loading, to the emergent 
transcriptional profiles from our in vivo meta-analysis. Together with 
comparisons to single cell transcriptomics in human atherosclerotic 
lesions and in vitro macrophage signatures, we assess the fidelity of simple 
in vitro systems to model key aspects of more complex in vivo settings. 

MATERIALS and METHODS  

Murine Atherosclerosis Public Data Download and Integration 

Count matrices from four different published single cell RNA 
sequencing (scRNA-seq) datasets were downloaded from the NCBI Gene 
Expression Omnibus (accessions listed in Supplementary Table S1) and 
then analyzed using Seurat version 4.0 [10]. Note that one study fit our 
other criteria for lineage mapped VSMCs in atherosclerotic lesions yet was 
not included based on data formatting [11]. Seurat objects were created 
from each dataset, and cells with <200 counts or >20,000 counts were 
removed. This is a quality control step, as it is thought that cells with high 
numbers of counts are more likely to be doublets (two cells caught in the 
same droplet), while cells with low numbers of counts are thought to be of 
poor data quality. Similarly, two additional quality control thresholds 
based on the methods of Alencar et al. [12] were implemented. For each 
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cell, the percentage of counts that come from globin-encoding genes 
(including alpha, beta, and theta globin subunit genes) and mitochondrial 
genes was determined. Cells with >10% mitochondrial gene percent 
expression (which are thought to be of low quality, possibly due to 
membrane rupture) and cells with ≥5% percent globin gene expression 
(which are likely to be contaminating erythroblasts) were excluded. Data 
normalization, variable feature detection, feature scaling, and principal 
component analysis for 50 PCs were performed in Seurat using default 
parameters. The data were then normalized and integrated using 
Harmony [13] using the Seurat wrapper function RunHarmony; the 
group.by.vars parameter was set to each public dataset used in the 
analysis. Harmony embeddings were used in all relevant downstream 
analysis. 

Expression of ZsGreen Transcript in Pan et al. 

Fastq files from Pan et al. [14] were downloaded from NCBI GEO using 
the SRA Toolkit and processed using cellranger count v6.0.0 and aligned to 
a custom reference mm10/ZsGreen-WPRE genome. The custom genome 
was constructed using cellranger mkref v6.0.0 on the mm10 reference 
genome v3.0.0 and the ZsGreen-WPRE coding sequence from an Ai6 
construct. The sequence was taken from a plasmid sequence submitted by 
Hongkui Zeng (Addgene plasmid, Seattle, Washington, USA #22798) [15]. 
Following cellranger count, the filtered matrix data was analyzed in 
Seurat as described above. 

Single-Cell Clustering and Annotation  

Nearest neighbor detection and clustering were performed using the 
first 40 Harmony embeddings, followed by dimensional reduction to two 
dimensions using UMAP [16]. Canonical markers for endothelial cells, 
normal VSMCs, and fibroblasts were used to annotate relevant clusters 
(Figure 1). Annotation of fibrochondrocytes (FC) and SEM cells was done 
using previously reported markers [12,14,17] and evidence from relative 
UMAP positions. Annotation of leukocytes was done with published 
scRNA-seq markers [18]. Other immune cell types were annotated using 
Cluster Identity Predictor (CIPR) Shiny app web tool [19] with reference 
dataset ImmGen [20]. In order to achieve higher resolution annotation of 
immune cells, the Seurat object was subset to include only immune cell 
clusters; nearest neighbor detection, clustering, dimensional reduction, 
and cluster annotation were performed as described above. 

Marker Discovery and Differential Gene Expression 

The Seurat functions FindMarkers and FindAllMarkers were used to 
detect cluster markers either between clusters or between each cluster 
and other cells, respectively. To remove potential false positive markers 
driven by different gene symbol annotations between datasets, we subset 
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marker discovery to gene symbols with non-zero counts in all of the 
following publication’s data: Wirka et al., Pan et al., and Alencar et al. (Kim 
et al. was not included because only lineage positive cells were sequenced). 
This intersection of gene symbols was then passed to the FindMarkers and 
FindAllMarkers functions’ “features” parameter. To determine markers 
for lineage positive vs lineage negative cells within a cluster, we stratified 
cells using the “subset.ident” and “ident.1” parameters in FindMarkers. 

Single-Cell Data Trajectory Analysis 

Single-cell trajectory analysis was performed using Monocle3 [21–23]. 
The Seurat object was subset to include VSMC-lineage positive cells. 
Following this, the VSMC-lineage positive data was converted into a 
Monocle3 object using the SeuratWrapper function as.cell_data_set. 
Following this, cluster_cells, learn_graph (use_partition = F), and 
order_cells were used to infer the trajectory between healthy VSMCs and 
VSMC-derived macrophages. Several root nodes were selected from within 
the normal SMC cluster and passed to order_cells. 

Single-Cell Clustering and Annotation of Human Carotid Artery Data 

One scRNA-seq dataset (carotid 1) from Pan et al. [14] of human carotid 
atherosclerotic lesion cells from an endarterectomy sample was 
independently clustered and annotated as described above. Additional 
cluster annotation was performed using manual marker gene queries to 
the Human Protein Atlas [24]. 

Data Visualization of scRNA-seq Data 

Data visualizations of scRNA-seq data were performed using Seurat 
functions DimPlot, DotPlot, FeaturePlot, NNPlot, VlnPlot, 
VariableFeaturesPlot, and ElbowPlot. The Monocle3 trajectory was 
visualized using the Monocle3 function plot_cells (with trajectory graph 
shown and colored by pseudotime). 

Cell Culture and Cholesterol Loading In Vitro  

Mouse VSMCs were isolated from thoracic aortas of 8–10 week-old 
C57BL/6 mice as described [5]. SMC lineage was confirmed by the presence 
of immunoreactivity for α-actin (Sigma, St. Louis, MO, USA) in >99% of the 
cells. Cells were grown in DMEM containing 10% FBS, 100 units/mL 
penicillin, and 100 ug/mL streptomycin. Cells with a passage number <5 
were used in all described experiments. Cholesterol was delivered to 
VSMCs by using Chol:MβCD complex (Sigma, St. Louis, MO, USA, catalog 
#C4951). Sub-confluent VSMCs were incubated with Chol:MβCD (20 ug/mL) 
in 0.2% BSA for 24 or 48 h. Cells incubated with 0.2% BSA for 0, 24, or 48 h 
without Chol:MβCD treatment served as controls [5]. Chol:MβCD 
concentration was determined to be the maximum that would increase the 
cholesterol content of the cells (assessed by enzymatic kits as well as by oil 
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red O staining) but would not cause toxicity for up to 72 h. These 
experiments were performed with approval from the Institutional Animal 
Care and Use Committee (IACUC) protocol IA16-00494 from NYU Langone 
Health (New York) approved on 07/31/2017.  

Mouse immortalized aortic VSMC cell line (MOVAS, purchased from 
ATCC, Manassas, VA, USA) was cultured in DMEM supplemented 10% FBS, 
100 U/mL penicillin, 100 µg/mL streptomycin and 200 µg/mL geneticin, and 
incubated at 37 °C in 5% CO2 environment. Twenty-four hours before 
cholesterol loading, the culture medium was replaced with DMEM 
supplemented with 0.02% BSA. Subsequently, the medium was replaced 
with DMEM supplemented with 0.02% BSA and Chol:MβCD (Sigma, St. 
Louis, MO, USA, catalog #C4951) for 72 h, after which the cells were 
collected for scRNA-seq. Approximately 2000 cells treated with 0, 25, 50 
and 100 µg/mL cholesterol were pooled, yielding a total of approximately 
8000 cells for 10× Genomics Chromium instrument loading. Cell viability 
prior to loading was >85% for all treatments, as measured by 
hemocytometry with Trypan blue staining. 

Transcriptional and Epigenetic Profiling 

RNA was extracted from cultured VSMCs using the Quick-RNA Micro 
Prep kit from ZymoResearch (Irvine, CA, USA, #R1051), including optional 
DNase I treatment. mRNA was selected through poly-A isolation using 
Oligo d(T)25 beads (New England BioLabs, Ipswich, MA, USA, #S1419S). 
Selected RNA was fragmented, followed by single strand cDNA synthesis 
using a SuperScript III First-Strand Synthesis System (ThermoFisher 
Scientific, Waltham, MA, USA, #18080051), followed by second strand 
synthesis using DNA Polymerase I (Qiagen/Enzymatics, Beverly, MA, USA, 
#P7050L). dsDNA ends were repaired with T4 DNA Polymerase 
(Enzymatics, Beverly, MA, USA, #P7080L). Barcode adapters (BIOO 
Scientific NEXTflex, Austin, TX, USA, #514104) were ligated onto the ends 
of sequences using T4 DNA Ligase (Enzymatics, Beverly, MA, USA, #L-6030-
HC-L) and samples were treated with Uracil DNA Glycosylase (UDG) 
(Enzymatics, Beverly, MA, USA, #G5010L). Libraries were then amplified 
by PCR (Phusion Hot Start II, ThermoFisher Scientific, Waltham, MA, USA, 
#F549L) and purified (ZymoResearch, Irvine, CA, USA, #D5205) for high-
throughput sequencing. 

ChIP-seq was performed using an H3K27ac antibody (abcam, 
Cambridge, MA, USA, #ab4729 lot GR45787-1) as previously described [25]. 
Briefly, cells were fixed at room temperature with 1% paraformaldehyde 
in PBS for 10 min, and then quenched with glycine. Between 3 and 5 
million cells were used for each ChIP. Fixed lysates were sonicated using 
a BioRuptor Standard (Diagenode, Denville, NJ, USA), and then 
immunoprecipitated using antibodies bound to a 2:1 mixture of Protein A 
Dynabeads (Invitrogen, Waltham, MA, USA, #10002D) and Protein G 
Dynabeads (Invitrogen, Waltham, MA, USA, #10004D). Following 
immunoprecipitation, crosslinking was reversed, and libraries were 
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prepared using the same method described for RNA-seq beginning with 
dsDNA end repair and excluding UDG. For each sample condition, an input 
library was also created using an aliquot of sonicated cell lysate that had 
not undergone immunoprecipitation. These samples were sequenced as 
below and used as background during peak calling. 

scRNA-seq Library Preparation, Sequencing and Data Processing for 
MOVAS Cells 

scRNA-Seq was carried out using the Single Cell 3' Reagent Kit (v3 
Chemistry; 10× Genomics) following the manufacturer's protocol. The 
library was sequenced in an Illumina NextSeq instrument using the 
cycling program Read1: 28 bp, Index1: 8 bp, Read2: 91 bp. The cellranger 
count pipeline (version 3.0.2; 10× Genomics) and the mm10 reference 
package (version 3.0.0; 10× Genomics) were used to process the sequence 
read files, including genome alignment, UMI deduplication, transcript 
counting, cell barcode attachment and cell calling steps. Downstream 
processing was performed using Seurat (version 3.1.0 [26]) in R (version 
3.5.3). For cell quality filtering, cells with 2500–7500 genes detected, 5000–
25,000 total UMI-s and <7.5% mitochondrial reads were retained. This 
resulted in approximately 4300 cells, with a median of 4600 genes and 
15000 UMI-s per cell. The RNA counts were processed using the standard 
scRNA-Seq workflow recommended by the authors of Seurat v3 with a 
clustering resolution parameter of 1.0. Cluster markers were calculated 
using the Wilcox test, requiring expression in at least 10% of cells in the 
cluster and a fold change of at least 0.25. Cluster markers with a positive 
fold change were used for gene ontology enrichment analysis with the 
gProfiler web tool (database release 2020-07-22 [27]) using all GO 
Biological Process gene sets. Gene categories were filtered to exclude 
unenriched (FDR>5%) and very large (>1000 genes) categories, and GO 
semantic similarity filtering (Schlicker’s relevance >0.5 [28]) was used to 
reduce the lists (GOSemSim R package version 2.8.0 [29]). For each cluster, 
up to 7 enriched categories were selected by p value, and the resulting 
categories were plotted for all clusters. 

Sequencing Data Samples, Mapping, and Normalization 

Libraries were sequenced on an Illumina HiSeq 4000 according to 
manufacturer’s specifications at the University California San Diego and 
at the University of Chicago. Reads from ChIP-seq experiments were 
mapped to the mm10 build of the mouse genome with Bowtie2 [30] and 
RNA-seq reads were mapped to mm10 with STAR [31]. Mapped reads were 
organized in HOMER [32] using its preferred data structure using the 
makeTagDirectory function. Expression matrices were calculated in 
HOMER using the analyzeRepeats function counting tags in the mm10 
RefSeq gene body annotations with either no normalization, for input into 
DESeq2, or with -rpkm, for visualization in heatmaps. Because of low read 
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counts (<1 million) and failure to cluster with replicates, control 48hr 
replicate 1 was discarded from all downstream analysis. 

RNA-seq Analysis  

RNA-seq analysis was performed in R (v4.0.2) using DESeq2 package 
v1.28.1 [33]. Only genes with more than 70 raw counts in at least one 
sample were kept. Principal Coordinates Analysis (classical 
multidimensional scaling) was performed using cmdscale() function on 
log2 transformed normalized counts obtained with the 
DESeq2::estimateSizeFactors() function. Differential Expression analysis 
was done by comparing the full model “~time + treatment:time” against 
the reduced model “~time” using a likelihood ratio test (LRT), giving 4143 
genes with an adjusted p-value <0.05. These 4143 DE genes were clustered 
with the pheatmap package (v1.0.12) using “correlation” clustering 
distance after row Z-scaling of normalized counts, and genes were split 
into their main four clusters by cutting the dendrogram tree row with 
cutree() at k = 4. We then further filtered each cluster by only keeping 
genes with an absolute log fold change of 0.6 or larger in either the 24 or 
48 h pairwise contrast between cholesterol and control samples. This 
resulted in a total of 1702 genes with both padj < 0.05 and |logFC| ≥ 0.6 
across all 4 clusters (C1 = 684, C2 = 264, C3 = 225, C4 = 529), also visualized 
as volcano plots generated with ggplot package (v3.3.2). Next, we 
calculated the mean of mean-centered and variance-scaled normalized 
counts for the genes in each of the clusters at every control and treatment 
time point, as performed previously [34]. Heatmaps of Cholesterol 
Biosynthetic and Unfolded Protein Response genes were made using the R 
package “gplots” heatmap.2 function. Genes sets for all 4 clusters were 
input in separate analyses using Ingenuity Pathway Analysis (Qiagen) 
“Core Analysis” option.  

ChIP-seq Analysis 

ChIP-seq H3K27ac-defined genomic regions were identified relative to 
un-immunoprecipitated, fixed chromatin, or “input”, as a negative control. 
Peaks were called using HOMER with the findPeaks program using the -
histone option. Differential peaks between experiments were determined 
using the getDifferentialPeaks program with default parameters 
(normalized tag count difference >4 fold and poisson enrichment p-value 
< 0.0001). Peak merging was performed in HOMER using the “mergePeaks” 
program to define the union of H3K27ac regions. Each region was centered 
on the calculated greatest Nucleosome Free Region (NFR) using the -nfr 
option. The center of the NFR generally has very few H3K27ac tags because 
this corresponds to the location of TF binding and histone/nucleosome 
exclusion. In Figure 5B, the central 200 bp sequences of all promoter distal 
H3K27ac regions (defined as > 3kb from promoter start sites using RefSeq 
annotations in getDistalPeaks.pl in HOMER) were input for de novo motif 
analysis using HOMER’s “findMotifsGenome.pl” program. GC-matched 200 
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bp background sequences are sampled from the genome and used as 
background for enrichment analysis. Differential H3K27ac regions in 
cholesterol loading relative to control were defined using 
“getDifferentialPeaks.pl” with the 24 h cholesterol loaded sample as the 
foreground and the 24 h control as the background. Motif finding was 
calculated using the central 100 base pair sequences for cholesterol-up-
regulated regions as the foreground and control-up-regulated sequences 
as the background. Histograms of motif frequency were calculated in 
annotatePeaks.pl using the -m and -hist options, which output the 
frequency (y-axes) relative to the center of the NFR (0 bp on x-axes).  

Comparison of in vivo scRNA-seq Data to In Vitro Bulk RNA-seq and In 
Vitro Microarray Data 

Meta-analyzed murine scRNA-seq data and in vitro cholesterol treated 
murine VSMC bulk RNA-seq data were compared along with five other 
publicly available datasets (described in Supplementary Table S1). Gene 
expression values for each cell cluster were produced using the 
AverageExpression function in Seurat (which exponentiates log data, 
therefore output is depth normalized in non-log space); gene symbols were 
again filtered to included symbols at the intersection of three publications’ 
data (see explanation above in “Marker Discovery/Differential Gene 
Expression”). Following this, mean expression values for replicate 
experiments were calculated; two replicates from the in vitro RNA-seq 
data were not included (control 48 h replicate 1, as noted above, and 
control 0 h replicate 1) because of their failure to cluster with other 
replicates of the same condition. Hierarchical clustering of each 
experimental observation or cell cluster was then performed using the 
scipy.clustering.hierarchy function linkage (with method = “complete” 
and a user defined distance metric) in python(v3.8.5). Spearman 
correlation was used as the distance metric (1 minus Spearman 
correlation co-efficient); we reasoned that a non-parametric correlation 
metric should be robust to differences in distributions between the 
datasets. Sample clustering was performed using the top 2000 most 
variable genes in the meta-analyzed mouse in vivo data (this number was 
pre-specified before our analysis based on the default argument of 
Seurat’s FindVariableFeatures). Only genes/orthologs measured across all 
platforms were used for pairwise distance calculations, which involved 
excluding some of the 2000 most variable genes. For bulk RNA-seq  
VSMC samples, expression values were normalized using RPKM. oxLDL 
and M1/M2 macrophage bulk RNA-seq data were analyzed using  
reported expression values (TPM and featureCounts, respectively). 
Human/mouse orthologs were determined using gene symbol sharing. 
Dendrogram figures were generated using the scipy.clustering.hierarchy 
dendrogram function, and heatmaps plots were generated using 
pandas.DataFrame.corr (method = “spearman”) and the seaborn (version 
0.11.1) clustermap function. 
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RESULTS 

Meta-Analysis of VSMC Lineage Traced scRNA-seq Datasets 

To gain insight into the diversity of VSMC-derived cell types in murine 
arterial plaques, and to evaluate their relationships to an in vitro system, 
we analyzed public data from four recent publications that utilized VSMC 
lineage tracing in mouse models of atherosclerosis [12,14,17,35] (Table 1). 
Criteria for inclusion included the availability of scRNA-seq (scRNA-seq) 
data that were generated from arteries over a time course of high fat 
feeding in Apoe−/− or Ldlr−/− (also called Apoe and Ldlr knock out (KO)) mice 
whose VSMCs were lineage traced through tamoxifen induction of Cre-ERt 
downstream of the Myh11 promoter that ultimately causes a fluorescent 
protein to be permanently expressed in lineage positive cells [36]. To 
generate a normalized and integrated dataset for meta-analysis, we 
employed Harmony [13] on over two dozen different experimental 
conditions including FACS-sorted VSMC lineage traced cells, lineage 
negative cells, and unsorted cells (Supplementary Table S1). This resulted 
in a dataset of >70,000 cells after quality control filtering (METHODS). 
Clustering of cells in Seurat [10] resulted in 24 different clusters. We 
visualized the integrated data using uniform manifold approximation and 
projection [16] (UMAP) for dimensionality reduction (Figure 1A). Cells in 
the UMAP were colored as VSMC lineage positive, negative, or unsorted 
based on the relevant experiments from the included datasets (Figure 1B). 
We annotated the clusters using cell type markers available defined in 
previous reports, using CIPR [19], and using a recent meta-analysis of 
leukocytes in atherosclerosis [14,18]. This led to the following cluster 
designations: 3 SMC clusters, 1 SEM cluster (stem-cell, endothelial cell, 
monocyte) that has been proposed to represent an intermediate VSMC 
phenotypic switching state [14], 1 fibro-chondrocyte (FC) cluster, 4 
fibroblast (fibro.) clusters, 3 endothelial (endo.) cell clusters, 2 T-cell 
clusters (one IL17+ and one CD8+), 1 B-cell cluster, 3 macrophage clusters, 
2 monocyte/dendritic (mono/DC) cell clusters, 1 neutrophil (neutro.) 
cluster, and 3 other clusters of various cells (neurons, striated muscle, and 
mesothelial, which was annotated based on its expression of Msln and 
Upk3b [37]) (Figure 1A). We find that the greatest proportion of VSMC 
lineage-positive cells reside in the SMC, SEM, and FC clusters with notable 
representation in the macrophage clusters as well. 
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Figure 1. Meta-analysis of scRNA-seq on VSMC-lineage traced atherosclerotic lesions across 4 studies. 
(A) UMAP of single cells from 33 scRNA-seq samples across 4 studies are colored by cluster. (B) Cells are 
colored as VSMC-lineage positive (blue), as VSMC-lineage negative (red), or as unsorted cells (grey). (C) 
Marker expression for relevant cell types and UMAP locales. (D) On the left, clusters (y-axis) are paired to 
the negative log10 p-value from pathway enrichment analysis (x-axis). On the right, markers for VSMC 
(Myh11-Cspg4), endothelial cell (Vwf-Ly6a), myeloid cells/macrophages (Lgals3-Cd68), T-cells (Cd3e and Lat), 
fibroblasts (Serpinf1-Dcn1), B-cells (Igkc and Ighm), and fibrochondrocytes (Spp1-Ibsp) are shown by 
percentage of cluster cells (dot radius) and average expression (dot color). 
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Table 1. Studies of SMC-lineage tracing and scRNA-seq in murine atherosclerosis analyzed into our meta-
analysis. 

Publication Model 
Duration of 

diet (weeks) 
Artery section(s) PMID GSE 

Alencar et al. Circulation 2020 [12] ApoE−/− 18 

microdissected BCA 

(lesions); aorta healthy 

control 

32674599 GSE150644 

Pan et al. Circulation 2020 [14] ApoE−/− 0, 8, 16, 22 
ascending aorta, BCA, 

thoracic aorta  
32962412 GSE155513 

Pan et al. Circulation 2020 [14] LDLR−/− 0, 8, 16, 26 
ascending aorta, BCA, 

thoracic aorta  
32962412 GSE155513 

Wirka et al. Nature Medicine 2019 [17] ApoE−/− 0, 8, 16 aortic root, ascending aorta 31359001 GSE131780 

Kim et al. Circulation 2020 [35] ApoE−/− 16 aortic root, ascending aorta 32441123 GSE150768 

We plotted the expression of several marker genes in Figure 1C, 
including myosin heavy chain (Myh11), whose promoter sequence is used 
to drive the VSMC lineage tracing. As previously shown, Myh11 expression 
is most prevalent in the VSMC clusters with decreasing expression into the 
SEM locale where Vcam1 is characteristically expressed. Expression of 
Acta2 (smooth muscle cell alpha-actin) shows a similar pattern as Myh11. 
Macrophage-related markers Lgals3 and Cd68 are most highly expressed 
in the macrophages, though Lgals3 is also expressed in the FCs and SEMs. 
Additional markers are expressed in various combinations of cell types 
with FCs and Fibros, including Spp1 (FC and Macs), Serpinf1 (Fibros), Dcn 
(Fibros and FCs), Clec3b (Fibros) and Fn1 (SEMs, FCs, Fibros, and Macs). 
While few of these transcripts define absolute boundaries between 
clusters, their distributions remain useful for interpreting cell state and 
fate. More quantitative representations are shown in Figure 1D for these 
and additional transcripts. Marker genes for cell clusters are recorded in 
Supplementary Table S2. 

Next, we submitted the top 100 differentiating transcripts per cluster 
(versus all other cells, sorted by ascending P-value) to the pathway analysis 
enrichment program Metascape [38]. The 20 enriched terms are shown in 
Figure 1D. As expected, immune cell clusters were highly enriched in 
immune-related ontologies such as ‘inflammatory response’ and ‘regulation 
of cytokine production’. Non-immune cell cluster enrichments included 
‘blood vessel morphogenesis’ (SMCs/FCs/Endos/Fibros), and ‘extracellular 
matrix proteoglycans’ (FCs). Interestingly, the macrophage cluster Mac2 was 
highly enriched for the ‘cell division’ ontology, indicating this population to 
be highly proliferative.  

  

Immunometabolism. 2021;3(3):e210022. https://doi.org/10.20900/immunometab20210022 

https://doi.org/10.20900/immunometab20210022


 
Immunometabolism 13 of 31 

Transcriptome-Based Cell Type Characterization Is Variable across 
Five Studies  

Given the presence of VSMC lineage positive cells across multiple 
clusters in our meta-analysis, we next sought to identify patterns of 
transcriptionally defined populations of VSMC positive and VSMC negative 
cells in atherosclerotic lesions over time and across studies. Five datasets 
(Table 1) in our meta-analysis were fit for this analysis, including two from 
Pan. et al. [14]: one with Apoe−/− mice fed a HFD (high fat diet; synonymous 
WD, or western diet herein) for 8, 16, and 22 weeks, and another with 
Ldlr−/− mice for 0, 8, 16, and 26 weeks on an HFD. The third was reported 
by Wirka et al. [17] using Apoe−/− mice with HFD for 0, 8, and 16 weeks. The 
fourth and fifth datasets did not evaluate VSMC lineage negative cells, and 
were excluded from this analysis. Clusters were combined for each cell 
type (i.e., SMC1, SMC2, and SMC3 became SMC) and proportions were 
computed for both VSMC lineage positive and lineage negative cells 
(Figure 2A).  

The primary observation from these data was the considerable 
variability across studies, which was further confirmed when looking at 
each sample individually (Supplementary Figure S1; origin of samples in 
Supplementary Table S1). In particular, proportions of VSMCs and 
macrophages were most variable with relatively more VSMCs, and fewer 
macrophages, observed in Wirka and Kim datasets relative to Pan and 
Alencar. 

We sought to determine whether auto-fluorescence could explain the 
high prevalence of lineage positive macrophages in the data from Pan et 
al., so we downloaded their raw sequencing data and mapped it to a 
custom mm10 genome with the ZsGreen1-WPRE sequence from the Cre-
inducible Ai6 reporter [15]. We find that expression of ZsGreen transcripts 
are highly variable between cell type clusters; we also find that ZsGreen 
transcript is consistently higher in lineage-positive sorted cells compared 
to lineage-negative cells of the same cluster (Supplementary Figure S2). 
This result suggests that lineage positivity of sorted macrophages is 
unlikely to be the result of auto-fluorescence. 

Despite these differences, we found that the proportion of ‘contractile’-
like VSMCs consistently decreases with weeks on HFD, whereas 
proportions of SEMs and macrophages increase. Together, the high degree 
of variability in cell proportions for atherosclerotic scRNA-seq data raises 
questions as to the sources of this variation.  
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Figure 2. Proportions of VSMC-lineage traced and untraced cell populations vary by study and time 
on pro-atherogenic diet. (A) Relative proportions of VSMC-lineage sorted negative (left) and positive 
(right) cells are shown by publication and time on pro-atherogenic diet. Note that Alencar et al. 
microdissected BCA lesions whereas others dissected lesioned portions of arteries. (B) SMC-lineage positive 
cells only were re-visualized by UMAP and colored according to cluster annotations in Figure 1. (C) 
Pseudotime analysis in Monocle3 results are shown for lineage positive cells according to UMAP in B.  

Analysis of only VSMC Lineage Positive Cells Discloses a Trajectory 
Linking VSMCs to Macrophages 

Over 40 thousand VSMC lineage positive cells were present in this meta-
analysis, which we reasoned would allow us to make inferences about the 
re-differentiation trajectories of VSMCs in atherosclerosis. Therefore, we 
submitted only VSMC lineage positive cells to Seurat’s dimensionality 
reduction and visualization (Figure 2B). We found that the 
SMC/SEM/FC/Fibro clusters remained adjacent to one another, whereas 
cells in macrophage clusters Mac1 and Mac3 were now adjacent to cells in 
Mac2 that stretched toward the SMC/SEM/FC/Fibro clusters along UMAP 
axis 1 (Figure 2B). We applied pseudotime analysis in Monocle3 [21–23], 
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which resulted in many trajectories originating in the SMC1 cluster. 
Interestingly, one trajectory included a link connecting the Fibro1 cluster 
to Mac2 and concluding in Mac1 (Figure 2C). Notably, several trajectories 
were drawn among non-macrophage clusters with many traversing the 
SEM population. This result is consistent with the proposed model that 
SEMs are a de-differentiated VSMC state from which other VSMC-derived 
cell types arise [14]. Interestingly, we find that the Mac2 cells are enriched 
in pro-proliferative transcripts, including Plk1, Birc5, and Ccna2 (Figure 
1D and Supplementary Figure S3). This may represent a transitory 
proliferative VSMC phenotype that occurs upon trans-differentiation to a 
macrophage-like state. We sought to further investigate the hypothesis 
that VSMCs transdifferentiate into macrophages first through an SEM 
phenotype and then through a fibroblast-like phenotype followed by a 
proliferative macrophage-like state. For each cell in the Mac2 cluster, we 
visualized the twenty nearest neighbors to that cell in high dimensional 
space (the Harmony embedding). We find that many nearest neighbors of 
Mac2 fall in the other macrophage clusters (consistent with our 
hypothesis), and many nearest neighbors of Mac2 are scattered across the 
SMC, SEM, FC, and Fibro clusters, which is inconsistent with our 
hypothesis; specifically, it demonstrates that the trajectory through a 
fibroblast-like state is likely an oversimplification resulting from the 
dimensionality reduction. Thus, we conclude that while Mac2 may 
represent a phenotypic intermediate between VSMCs and VSMC-derived 
macrophages, it is unclear what other intermediate states a VSMC must 
progress through to re-differentiate into a macrophage. 

Re-Clustering of Immune Cells Shows Cellular Subtypes and 
Differential Expression between Lineage Positive and Lineage 
Negative Macrophages  

We next reasoned that re-clustering and re-visualizing non-
SMC/SEM/FC/Fibro/EC cells could provide better resolution of immune cell 
states. The UMAP from this analysis, from 13.4 thousand cells in Figure 3A 
consisted of 18 cell clusters with the following annotations derived from 
marker genes reported by the recent meta-analysis of leukocytes in 
murine atherosclerosis [18]: 6 Trem2+ Foamy Macrophage clusters 
(FoamyMac1-6), 1 resident macrophage cluster, 1 inflammatory 
macrophage cluster, 1 macrophage/monocyte mixed cluster, 3 monocyte 
and dendritic cell mixed clusters (mono/DC1-3), 1 neutrophil cluster, 1 
CD8+ T cell cluster, 1 IL17+ T cell cluster, 1 B cell cluster, and 2 other stromal 
clusters (Figure 3A). Marker genes for the re-clustered immune cells are 
displayed in Supplementary Table S3. The comparison of VSMC lineage 
positive to negative cells in this UMAP supported that VSMC positive 
immune-like cells are most similar transcriptionally to macrophages 
because they align with those clusters (Figure 3B). Using reported markers 
from a recent meta-analysis of leukocytes in atherosclerosis, we annotated 
each immune population [18]. Discriminating markers from this analysis 
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are shown in Figure 3C. We found VSMC lineage positive cells were most 
prevalent in foamy macrophage clusters (between 23–68% of cells in 5 of 
6 foamy macrophage clusters; Figure 3C,D). We also found VSMC lineage 
positive cells composed more than 50% of inflammatory macrophages, 
cells in the mono/CD cluster, and greater than 30% of resident 
macrophages. Next, to ascertain which transcripts were most specific to 
VSMC lineage positive versus negative cells in these clusters, we identified 
the top 50 most up-regulated genes (Figure 3E; top heatmap colors are log2 
fold changes of lineage pos versus lineage neg). We next queried which in 
vivo clusters these genes are abundantly expressed in and found that they 
are generally highly expressed in one of a variety of cell types within the 
atherosclerotic plaque, including SMCs, SEMS, FC and macrophages 
(Figure 3E, bottom). Notably, Acta2 is more highly expressed among 
lineage positive macrophages than among lineage negative macrophages. 
Considerable variability in lineage positive cells per cluster is observed 
across individual samples and studies (Supplementary Figure S4), 
making absolute quantification of lineage positive cells challenging. 

Widespread Transcriptional Changes Are Induced by VSMCs 
Cholesterol Loading In Vitro 

To model gene expression changes consequent to high cholesterol 
exposure as occurs in atherosclerotic lesions, we exposed murine VSMCs 
isolated from aortic segments of C57BL6/J mice to 20 ug/mL cyclodextrin-
cholesterol complexes or control (0.2% BSA) for 0, 24, and 48 h in vitro 
(METHODS, “Cell culture and cholesterol loading in vitro”) RNA 
sequencing (RNA-seq) was performed on biological triplicates yielding an 
average of 21.46 million mapped reads per sample following the removal 
of one sample for low read count (<1 million, control 48 rep1) 
(Supplementary Table S4). To explore the unbiased global expression 
changes, we performed Principal Coordinates (PC) Analysis and observed 
tight concordance between replicates of the same condition (Figure 4A). 
The 1st PC corresponded with duration of cholesterol loading and the 2nd 
PC diverged with time. Differential expression analysis identified 4143 
differentially expressed genes across the dataset at a False Discovery Rate 
(FDR) [39] of 5%. Together, these findings demonstrate that exposure of 
VSMCs to a cholesterol-rich environment reorganizes their transcriptional 
program.  
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Figure 3. Further analysis of immune cells reveals 18 clusters with VSMC lineage positive cells most 
closely resembling macrophage subsets. (A) UMAP reduction and clustering of only immune clusters from 
Figure 1 found 18 clusters that were annotated by leukocyte markers in Zernecke et al. (B) SMC lineage 
positive cells are shown in blue, lineage negative in red, and unsorted cells in grey. (C) Dotplot depiction of 
key immune cell marker genes. (D) Proportion of lineage positive cells (x-axis) by immune cell cluster (y-
axis) are shown. (E) The top heatmap shows the log2 fold change of VSMC lineage positive over lineage 
negative expression of transcripts (x-axis) in the different immune cluster (y-axis) for the 50 most up-
regulated genes in lineage positive cells. The bottom heatmap shows the relative expression of these same 
genes (x-axis) for mouse atherosclerotic lesions (unit = Z-scores for each transcript across clusters).   
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Figure 4. Primary cultured mVSMCs exhibit widespread transcriptional changes upon cholesterol 
loading. (A) Principal Coordinates (PCo) Analysis of mVSMC RNA-seq samples ± cholesterol at 0 h, 24 h, and 
48 h timepoints. (B) Transcript expression values per condition are shown by heatmap as normalized per 
row with cluster designation along left side bar. (C) Mean expression of transcripts per gene set over time. 
(D) Most enriched pathways are shown from Ingenuity Pathway Analysis. None were significant for cluster 
3. (E) Cluster 2 Cholesterol Biosynthetic Pathway transcript expression across conditions. (F) Cluster 4 
Unfolded Protein Response transcript expression across conditions. 
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To better understand the biological pathways regulated by cholesterol 
in VSMCs, we utilized the hierarchical relationship among differential 
gene profiles to identify distinct patterns of gene expression. This resulted 
in 4 regulatory profiles, or clusters (Figure 4B,C; Supplementary Figure 
5SA). Cluster 1 transcripts (n = 684) summarizes a profile of stepwise 
down-regulation by cholesterol loading compared to control (Figure 4C). 
Pathway analysis found this gene set to be significantly enriched for 
kinetochore metaphase signaling pathway genes, as well as genes involved 
in the G2/M DNA damage cell cycle checkpoint (Figure 4D; green bars). 
Cluster 2 transcripts (n = 264) fit a pattern whereby time in control media 
up-regulates expression and exposure time to cholesterol down-regulates 
expression (Figure 4C). This gene set is highly enriched in members of the 
super-pathway of cholesterol biosynthesis that is known to be inhibited by 
high extracellular cholesterol levels [40,41]. Expression for genes in this 
pathway is visualized by heatmap in Figure 4E, and with respect to their 
location in the metabolic pathway in Supplementary Figure 5SB. Notably, 
cholesterol loading down regulated nearly every enzyme in the cholesterol 
biosynthetic pathway in vitro. The behavior of transcripts in cluster 3 (n = 
225) is described by progressive down-regulation in control media; 
however, this set is not enriched in any pathways tested. Lastly, transcripts 
in cluster 4 (n = 529) exhibit progressive up-regulation by cholesterol over 
time relative to controls (Figure 4C). This gene set is enriched in the 
Unfolded Protein Response (UPR) pathway. Expression profiles across 
conditions of UPR genes are shown by heatmap in Figure 4F and in 
network format in Supplementary Figure 5SC. Notably, several 
Transcription Factors (TFs) in the UPR are up-regulated by cholesterol 
including members of all three branches of the UPR: Atf4, Atf6, and Xbp1 
(Figure 4F).  

Cholesterol Loading of VSMCs In Vitro Modestly Reorganizes the 
Active Epigenetic Landscape 

To gain insight into how cholesterol reorganizes the epigenetic 
landscape in mVSMCs we performed Chromatin Immuno-Precipitation 
with high-throughput sequencing (ChIP-seq) for histone H3 acetylation on 
lysine 27 (H3K27ac), which is a post-translational modification present on 
nucleosomes surrounding active regulatory elements, including 
promoters and enhancers [42]. An average of 19.9 million mapped 
sequence tags were analyzed for the 24 h and 48 h control and cholesterol 
conditions in the same experimental in vitro model as for transcriptomics 
(Supplementary Table 4S). Analysis of the top 5000 most variable 
H3K27ac-marked loci are shown in Figure 5A, where we generally did not 
observe large changes in the amount of this epigenetic mark between 
control and cholesterol conditions. We therefore submitted the union of 
these datasets (n = 28,514; 200 bp sequences) to de novo motif finding 
analysis to return the TF motifs that are utilized in this cultured VSMC 
model. The top ten most enriched motifs are shown in Figure 5B, topped 
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by the AP-1 and TEAD motifs. Notably, the frequency of these motifs in 
their genomic context were greatest near the center of the nucleosome-
free regions as defined by H3K27ac ChIP-seq, consistent with their cognate 
TFs binding to these peak centers (Figure 5C,D). Notably, TEAD and KLF 
motif frequencies were similar in control and cholesterol-treated 
conditions, suggesting proteins of these TF families bind DNA in both 
conditions.  

 

Figure 5. 48 h of mVSMCs cholesterol loading in vitro has a subtle effect on histone acetylation. (A) The 
top 5000 most variable H3K27ac gene-distal regions (>3 kb from TSS) across experimental conditions. (B) De 
novo motif analysis of combined H3K27ac+ regions are shown with predicted factor family TFs, enrichment 
p-value, and percent occurrence in the data (fgnd) compared to random GC-match genome (bgnd). (C) 
Frequency of the TEAD motif (y-axis) is plotted relative to the center of H3K27ac+ nucleosome free peak 
centers (x-axis). (D) The enriched KLF motif is shown as in C. (E) Fosl2/AP-1 and ATF4 motifs are more 
enriched at H3K27ac+ regions in cholesterol loaded VSMCs relative to the negative (neg) control. (F) The 
Fosl2 motif is more frequent in cholesterol H3K27ac+ peak centers relative to neg. (G) The ATF4 motif is 
more frequent in cholesterol H3K27ac+ peak centers relative to neg. 

Although we observed little re-distribution of H3K27ac signal upon 
cholesterol exposure, 813 regions, representing 1.6% of all H3K27ac 
regions identified after cholesterol exposure, were differentially enriched 
for two motifs when compared to control (Figure 5E). These motifs were 
for Fosl2 (a member of the AP-1 family), and ATF4 (a member of the 
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ATF/CREB family). Albeit modest, frequencies for each of these motifs were 
greater in H3K27ac regions defined with cholesterol-loading compared to 
control (Figure 5F–G). Extracellular matrix and actin-based processes 
were enriched pathways for the genes nearest to H3K27ac regions 
containing ATF4 and Fosl2 motifs (Supplementary Table 5S). These data 
are consistent with induction of the UPR by cholesterol, where ATF4 
expression is upregulated and active [43] (Figure 4F). We also found that 
Fosl2 RNA is up-regulated by cholesterol relative to control in our 
transcriptomic data (10 to 14 rpkm at 24 h. and 9 to 14 rpkm at 48 h; 2-
tailed t-test P < 0.05), consistent with its role in regulating the VSMC 
transcriptional response to cholesterol.  

Cholesterol Loading of VSMCs In Vitro Fails to Recapitulate Cell State 
Transitions Observed in Atherosclerosis whereas oxLDL 
Macrophages Show Similar Transcriptomes to In Vivo States 

A major motivation to transcriptionally characterize VSMCs in vitro 
under untreated and cholesterol-treated conditions was to compare these 
transcriptomic signatures to VSMC lineage positive cells from 
atherosclerotic lesions in vivo. In this way, we could determine whether 
the in vitro system was a useful model with which to study changes that 
occur in atherosclerosis. Our approach was to compare the average 
expression profiles of major cell states observed in murine atherosclerotic 
lesions (Figure 1) to expression profiles measured in vitro VSMCs ± 
cholesterol using Spearman correlation (using the top 2000 most variably 
expressed genes from the in vivo scRNA-seq data). Clustering of these 
pairwise relationships showed that all in vitro VSMC conditions were more 
similar to one another than to any in vivo mouse cell clusters (Figure 6; in 
vitro in orange; in vivo in green side bar). These data suggest that up to  
48 h cholesterol loading in vitro is not sufficient to reproduce cell state 
transitions observed in vivo; yet, we questioned whether or not longer 
cholesterol exposure or differences in platforms measuring expression 
(i.e., bulk vs scRNA-seq) were responsible for differences to in vivo. We 
therefore retrieved a public 72 h. cholesterol loaded VSMC dataset [44] as 
well as collected scRNA-seq data in the mouse VSMC MOVAS cell line ± 
cholesterol for 48 and 72 h. Interestingly, we observed 13 cell clusters from 
the scRNA-seq in vitro experiment, suggesting notable heterogeneity exists 
in vitro, especially in the proliferative and fibrotic and inflammatory 
states (Supplementary Figure S6). Nonetheless, neither the bulk nor the 
scRNA in vitro cell profiles clustered with in vivo cell states from lesions 
(Figure 6; 72 h. bulk in blue and MOVAS scRNA-seq in yellow side bars).  

Next, we sought to understand if any in vitro cell model would cluster 
with in vivo cell profiles, and so we retrieved two datasets of mouse 
thioglycolate-elicited peritoneal macrophages that were exposed in vitro 
to oxidized LDL (oxLDL), or to lipopolysaccharide and Interferon gamma 
(to mimic M1 polarization), or to Interleukin 4 (to mimic M2 polarization) 
[39]. The macrophages treated with oxLDL are denoted in Figure 6 by red 
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side bar, and M1 and M2 macrophages are denoted by purple. We found 
that the oxLDL treated macrophage profiles closely clustered with the 
Mac1 and Mono/DC1/2 in vivo clusters from mouse lesions, suggesting this 
model closely resembles in vivo macrophage biology in lesions. Lastly, we 
utilized this comparison approach to test how well human and mouse in 
vivo cell clusters from scRNA-seq data resembled one another. For this, we 
retrieved scRNA-seq data from human carotid lesion endarterectomy 
samples [14], performed clustering, and sample annotations similar to the 
mouse data (Supplementary Figure S7). Clustering of the resulting cell 
state profiles showed close relationships between human and mouse in 
vivo data (Figure 6; mouse in green, human in pink). We found that 
human VSMCs clustered closest to mouse SMCs, Fibros, and SEMs, human 
and mouse Endos clustered together, and immune cells from each species 
clustered together as well. One interesting finding from this analysis is that 
although they do not cluster together, there is correlation between the in 
vivo mouse Mac3 cluster and the in vivo mouse Fibro4, SEM, and FC 
clusters (Figure 6), which supports that these cells might be related by 
lineage in vivo.  

This comparison of average expression profiles among several in vitro 
and in vivo datasets demonstrates that cholesterol treatment of VSMCs in 
vitro fails to recapitulate the full extent of cell state transitions observed 
in murine models of atherosclerosis. We sought to test this conclusion 
using a second analysis of differentially expressed genes that were defined 
either in vitro or in vivo and compared profiles across datasets. As shown 
in Supplementary Figure S8 (left), the genes from the four clusters 
identified in our analysis of in vitro VSMCs ± cholesterol in Figure 4 were 
not similarly regulated across in vivo mouse cell clusters nor in the scRNA-
seq in vitro data. Similarly, gene sets that are differentially expressed 
between in vivo mouse clusters are not regulated by cholesterol in vitro 
by analysis of either bulk or scRNA-seq (Supplementary Figure S8, right). 
Taken together, results from our analyses demonstrate that in vitro 
cholesterol loading in VSMCs fails to model the VSMC plasticity that is 
observed in vivo. 
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Figure 6. In vitro models of VSMCs and macrophages, with or without pro-atherosclerotic stimuli, fail 
to segregate with their presumed in vivo counterparts. Pairwise Spearman correlation (given the 2000 
most variable genes in the mouse scRNA-seq data) across in vitro and in vivo datasets and/or single cell 
clusters from mouse and human atherosclerotic lesions are shown. 

DISCUSSION 

With over 70,000 single cell transcriptomes incorporated, this analysis 
serves as the largest interrogation of VSMC lineage positive cells in 
atherosclerosis to date. The relatively large number of cells enabled fine-
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grained clustering of VSMC lineage positive cells, which as a whole 
underscore the well-appreciated notion that VSMCs are highly plastic in 
their vascular phenotypes. VSMC lineage-positive cells in atherosclerotic 
plaques were observed to comprise significant proportions of contractile 
VSMCs, de-differentiated VSMCs (termed SEMs), fibroblasts, FC, 
macrophages, and smaller proportions of endothelial and other cell types. 
While our meta-analysis supported that VSMCs may take on each of these 
phenotypic states, notable heterogeneity across studies was observed that 
obscures precise quantification and raises questions as to the sources of 
variation. In addition, we found that the expressions of many genes were 
altered by in vitro cholesterol loading with less profound alterations in the 
histone acetylation profile. Comparison of these signatures with 
expression changes across in vivo VSMC lineage populations revealed 
significant discrepancies between in vivo and in vitro, demonstrating an 
outstanding need for developing cell culture models of VSMC modulation 
that better capitulate the phenotypic plasticity of VSMCs in atherosclerotic 
lesions. These points are further discussed below.  

The large number of lineage positive VSMCs in SEM, FC, and fibroblast 
populations in this meta-analysis provides perhaps the clearest 
delineation between contractile VSMCs, FCs and fibroblasts to date (Figure 
1A; Supplementary Figure S8). Therefore, transcripts that distinguish 
these cell states may serve as valuable phenotypic markers for future 
studies (Supplementary Table S2). Data presented here supports the 
hypothesis that VSMCs can transition to either fibroblast-like or FC-like 
cells but are more likely to transition to FC-like cells than fibroblast-like 
cells (Figure 2A). The pseudotime analysis performed here in Figure 2C 
supports the notion that VSMCs can traverse several different trajectories 
in atherosclerotic lesions with many of these transitioning through the 
SEM state, which has been proposed to represent a de-differentiated stem-
like cell state [14].  

We also found in our meta-analysis of lineage traced VSMCs in murine 
atherosclerotic plaques that as many as 66% of foamy macrophages across 
all studies examined were VSMC lineage positive (Figure 3), which is 
consistent with a recent report [9]. Trajectory analysis also revealed one 
trajectory that traversed from VSMCs to a fibroblast-like state to the Mac2 
population and termination in the macrophage state. This result is 
provocative insofar as it implies a cell state conversion through a 
proliferative macrophage-like state (Mac2) and final differentiation into 
macrophage-like cells. Such a process mirrors experimental observations 
in Rainbow mice that randomly recombine combinations of florescent 
markers only in the VSMC lineage [45]. In that study, clones of 
proliferating and migrating VSMCs become ‘synthetic’ and take on foamy 
appearances in the sub-endothelial locale. The proliferative and 
macrophage-like signature in Mac2 could also resemble stem-like 
monocyte cells reported by Lin et al. in lesions in both atherosclerosis 
progression and regression, with their ultimate phenotypic state likely 
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determined by the microenvironment [46]. We also found that the Mac3 
in vivo population has similarities to SEMs and FCs, suggesting that there 
might be a developmental similarity between them (Figure 6). 

An important consideration surrounding the possibility that VSMCs 
differentiate into macrophages is the marked difference in VSMC-lineage 
positive macrophage-like cells across studies (Figure 2A, Supplementary 
Figures S1 and S4). In particular, Wirka et al. [17] and Kim et al. [35] do 
not report nearly as many VSMC-lineage positive macrophage-like cells as 
Pan et al. [14] or Alencar et al. [12]. We speculate that technical differences 
may be the source of this difference, such as mode and/or dose of 
tamoxifen administration, leaky Cre expression, cell dissociation protocols 
(with possible biased recoveries), sorting parameters including gating 
strategies, and downstream processing of samples through data quality 
control. Because we observe higher ZsGreen transcript among lineage 
positive macrophages than among lineage negative macrophages in the 
Pan et al. data, we suggest that auto-fluorescence is not a sufficient 
explanation for the high number of apparently SMC-derived macrophages 
observed. Macrophages and/or lipid-laden cells are most variable across 
studies, which is consistent with such cells being among the most fragile 
and thus difficult to isolate intact in order to interrogate them using these 
methods [18]. Studies that overcome these limitations and sources of 
variability will be of great value to definitively laying this important 
question to rest.  

One of the motivations for this meta-analysis was to enable a 
comprehensive glimpse into the expression changes that occur to VSMCs 
in vivo to enable comparison to models of VSMC modulation in vitro. For 
VSMCs loaded with cholesterol in vitro, we observed robust alterations in 
transcript regulation with notable induction of the UPR and repression of 
cholesterol biosynthetic pathway genes (Figure 4). Each of these pathways 
have been described to be regulated by cholesterol loading, with most 
work on the UPR in atherosclerosis occurring in macrophages. There, 
cholesterol loading was shown to induce the UPR in vitro and in vivo 
leading to macrophage apoptosis [47]. For VSMCs, a recent report used 
marker genes as evidence that the UPR is similarly activated in VSMCs in 
atherosclerotic lesions as occurs upon cholesterol loading in vitro [48]. The 
authors further conclude that activation of the UPR, as elicited by 
cholesterol, is the direct mechanism of phenotypic modulation; however, 
our study indicates that the UPR is induced by cholesterol in vitro, but that 
this induction is insufficient to reproduce the phenotypic states observed 
in vivo, as perhaps best illustrated by the heat map in Figure 6.  

Because of the convenience of assessing chromatin organization in vitro, 
we also wished to extend our analysis beyond transcriptome profiling. Based 
on previous experience studying changes in the histone acetylation changes 
to pro-atherogenic stimuli in endothelial cells [49] and macrophages [50], we 
interrogated the cholesterol-loaded and control VSMC epigenomes. Despite 
the >4000 differentially expressed genes across the dataset, we found that the 
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epigenomes were surprisingly similar. Still, we found evidence that VSMCs 
utilize AP-1, TEAD, and KLF motifs for regulating gene expression with 
enrichment of motif frequencies for Fosl2 and Atf4 in cholesterol-induced 
elements (Figure 5).  

Finally, our comparison of expression changes across the in vivo 
populations and in vitro samples revealed considerable dissimilarity in 
the VSMC cell states, with each data type clustering in their own branches 
of the dendrogram (Figure 6). More targeted analysis from both the in 
vitro-defined differential genes and the in vivo-defined differential genes 
underscored general discordance between datasets (Supplementary 
Figure S8), which remained dissimilar for longer (72 h) cholesterol 
treatments. Because it is the rare VSMC in the arterial media that gives rise 
by clonal expansion to the cells of VSMC origin in the intima [45], we 
thought bulk RNA-seq on the cholesterol-loaded VSMC may have obscured 
changes in a small subpopulation of cells relevant to the in vivo setting. 
Thus, we collected and analyzed a scRNA-seq dataset from a mouse VSMC 
cell line loaded with cholesterol or treated with buffer. Interestingly, we 
did observe multiple cell populations for cholesterol loaded VSMCs in 
culture (Supplementary Figure S6), and although none were very similar 
to in vivo transcriptomes, this finding underscores that phenotypic 
transitions may exist for some cells in culture and that single cell 
approaches may be necessary to capture the molecular basis for this 
heterogeneity.  

Although we were able to resolve multiple cell populations using 
scRNA-seq, that we still were not able to qualitatively recapitulate the in 
vivo findings, particularly the transitional state, may reflect that either the 
cholesterol-loading methods (cyclodextrin complexes) was unphysiologic 
or that three-dimensional co-culture systems with other cell types are 
needed to mimic the complex environment in an atherosclerotic plaque. 
That macrophages loaded with oxLDL did invade an in vivo macrophage 
branch of the dendrogram (Figure 6) supports the notion that some in 
vitro models are more appropriate for modeling in vivo than others. 
Interestingly, M1 and M2 polarized macrophages in culture were less 
similar to in vivo gene signatures than oxLDL macrophages, indicating 
that pure M1/M2 responses are not as important as the effect of oxLDL for 
modeling the transcriptional state of atherosclerotic macrophages. We 
also note that oxLDL treatment of VSMCs has not, to our knowledge, been 
investigated using scRNA-seq; we suggest that such an experiment may 
shed light on microenvironmental cues for VSMC phenotypic plasticity. 

Lastly, we tested and confirmed that signatures of cell populations from 
human atherosclerotic lesions resembled those discovered in mouse 
(Figure 6). Taken together, these data suggest that in vitro models of VSMC 
phenotypic transitions, which are valuable for mechanistic interrogations, 
need refinement, but also that continued studies of mouse models are 
likely to yield clinically relevant findings. Greater clarity into the 
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microenvironmental signals and cell-cell interactions that govern 
phenotypic switching should propel this area of research. 

CONCLUSIONS 

Based on the meta-analysis of multiple mouse studies with lineage 
marked VSMC and comparisons to data from human plaques and VSMC in 
culture, we offer the following conclusions: (1) There is broad agreement 
over the plasticity of VSMC in atherosclerosis, with a convergent finding 
that there is a set of cells called SEM, which has been proposed to represent 
an intermediate VSMC phenotypic switching state [14] that serves as a 
platform to lead to a variety of ultimate fates; (2) transcriptome-based cell 
type characterization is variable across the studies. In particular, while 
there was clear evidence for macrophage-like cells originating from VSMC 
in the aggregated data, there was a wide quantitative range between 
studies. In addition, based on trajectory analysis, there was a path from 
contractile VSMC to macrophage-like cells by way of a proliferative cell 
cluster, but it remains incomplete what are the intermediate states a VSMC 
must progress through; (3) The mouse and human data have many 
similarities, supporting the continued use of mouse models to draw 
inferences about VSMC fates in human atherosclerosis; and, (4) though 
cholesterol-loading of VSMC in vitro resulted in thousands of DEGs, the 
analyses of either bulk RNA-seq or scRNA-seq data did not reveal striking 
resemblances to the meta-analysis of the in vivo data. Thus, more progress 
in model development will be needed before the clinical relevance of 
results from in vitro systems can be assumed. 
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