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ABSTRACT 

An increasing number of findings highlight the fundamental role of 
metabolism in autoimmunity. This growing recognition of metabolic 
irregularities being a factor of immune dysregulation in autoimmunity 
has provided novel therapeutic opportunities. Although there have been 
advancements in the field of immunometabolism, it is important to note 
that strategies to engineer the immune system can also be utilized to 
modulate immunometabolism of specific immune cells that are involved 
in autoimmune rheumatoid arthritis (RA). Herein, we review the 
metabolic heterogeneity within RA, and discuss the potential therapies 
based on immunometabolism and immunoengineering concepts that may 
reinstate immune tolerance by targeting the metabolic irregularity within 
specific immune cells involved in the pathogenesis of RA.  

KEYWORDS: immunometabolism; immunoengineering; autoimmunity; 
rheumatoid arthritis 

INTRODUCTION  

Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disorder 
marked by joint pain, synovial inflammation, and destruction of cartilage 
and bone in inflamed tissues [1,2] As a leading cause of disability, RA 
hinders the work ability and quality of life of millions of adults [3]. 
Although present therapies such as disease modifying anti-rheumatic 
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drugs (DMARDs) can lower disease activity, there is currently no cure for 
RA, and its exact origin remains unknown [1,2]. Abnormal levels of 
autoantibodies, namely rheumatoid factor (RF) and anti-citrullinated 
protein antibodies (ACPA), often precede the onset of RA symptoms [4], 
and irregular immune regulation induces migration of T and B cells into 
the synovium. Because lymphocyte activation is crucial for RA 
pathogenesis, altering the metabolism of these immune cells presents a 
novel opportunity for RA treatment. 

Understanding the importance of energy metabolism in immune cell 
function has allowed metabolic pathways to become a novel target for the 
treatment of autoimmunity [5,6]. Although energy metabolism is an 
essential chemical process that is utilized for cellular function, alteration 
of metabolism is an important regulator of immune cell activation and 
differentiation. Interestingly, this malfunction in energy metabolism has 
been linked to the development of autoimmune diseases such as systemic 
lupus erythematosus (SLE), multiple sclerosis (MS) and RA[5]. Specifically, 
in RA, reports have demonstrated an increase in glycolytic activity within 
autoimmune tissues [7]. For example, positron emission 
tomography/computed tomography (PET/CT) scans from RA patients have 
shown high levels of fluorodeoxyglucose (18F-FDG) uptake, a glucose 
analogue, in both inflamed joints and axillary lymph nodes [8].  

Nonetheless, immune cell subsets within RA have unique alterations 
within their energy metabolism pathways, therefore, making RA a 
heterogenous autoimmune disease [9–11]. Recent progress in the field of 
immunometabolism has provided insight into the metabolic heterogeneity 
of RA and how metabolic processes can be modulated for the treatment of 
RA [5]. However, in order to overcome current clinical challenges in 
treating RA, therapeutics in developmental stages should consider 
incorporating strategies for targeted drug delivery to avoid non-specific 
immune modulation. Applying engineering principles to 
immunometabolism concepts can lead to the metabolic reprograming of 
specific immune cells that are implicated in the development and 
progression of autoimmunity. Herein, we review metabolic alterations 
within several immune cells implicated within the pathogenesis of RA, and 
discuss how an immunoengineering approach may reinstate immune 
tolerance by targeting the metabolism of specific immune cells. 

ENERGY METABOLISM OF IMMUNE CELLS INVOLVED IN THE 
PATHOGENESIS OF RA 

The pathogenesis of RA is associated with several different immune cell 
types, including T cells, B cells, macrophages, dendritic cells (DCs), 
fibroblast-like synoviocytes (FLS), neutrophils, granulocytes and innate 
lymphoid cells (ILCs) [12]. Metabolic pathways play a significant role in the 
behavior of each of these cell types, and the specific pathways utilized by 
different cell types can be targeted to slow RA pathogenesis. For example, 
under normoxic conditions, a cell produces adenosine triphosphate (ATP) 
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by converting glucose into pyruvate via the glycolytic pathway. Pyruvate 
is then converted into acetyl coenzyme A (acetyl CoA) to fuel the 
tricarboxylic acid (TCA) cycle for the production of nicotinamide adenine 
dinucleotide (NADH) and flavin adenine dinucleotide (FADH2). This then 
feeds into the electron transport chain (ETC) for the synthesis of thirty-six 
ATP molecules [13]. Several immune cells with anti-inflammatory 
properties are known to rely on the TCA cycle and ETC to fulfill their 
cellular energy demand [14]. However, under hypoxic conditions, 
pyruvate is rerouted, and instead of entering the TCA cycle, it is converted 
into lactate for the quick generation of two ATP molecules [13]. Various 
immune cell types with pro-inflammatory properties rely on rapid ATP 
synthesis via glycolysis to meet their cellular energy demand [14–17]. The 
glycolysis pathway is also linked to the pentose phosphate pathway (PPP). 
Furthermore, the TCA metabolite, citrate, can initiate fatty acid synthesis 
(FAS) while fatty acid oxidation (FAO) generates acetyl CoA to further fuel 
the TCA cycle (Figure 1, All figures created using BioRender.com).  

 

Figure 1. Crucial metabolic pathways utilized to meet cellular energy requirements. Under normal 
oxygen conditions, a cell utilizes the glycolysis pathway to metabolize one glucose molecule into two 
pyruvate molecules. Pyruvate then enters the TCA cycle for the synthesis of thirty-six ATP molecules via the 
ETC. However, in the absence of oxygen, pyruvate is instead utilized to synthesize lactate for the quick 
generation of two ATP molecules.  

In RA, several cell types, including macrophages [15] and DCs [18,19], 
predominantly rely on aerobic glycolysis upon activation, a phenomenon 
known as the Warburg effect [20]. DCs and macrophages can be found in 
inflamed joints and lymph nodes, which PET imaging has shown through 
increased 18F-FDG uptake in these areas in RA patients [21,22]. Therefore, 
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glucose hypermetabolism in lymph nodes demonstrates the importance of 
secondary lymphoid organs in the pathogenesis of the disease [15,22]. 
Nonetheless, understanding the immunometabolism of not only the tissue 
that is affected but the associated lymphoid organs is paramount for 
developing effective therapies.  

Cluster of Differentiation 4 (CD4+) T cells. In contrast to macrophages 
and DCs, T cells in RA have a low glycolytic flux, unlike healthy effector T 
cells, due to the downregulation of the glycolytic enzyme PFKFB3, which 
has been termed the anti-Warburg effect [23]. However, unsimilar to this 
finding, studies have also discovered increased glycolytic activity within T 
follicular helper (TFH) cells. TFH and T helper (TH)17 cells in RA mouse 
models [19,24]. Additionally, elevated levels of a glycolytic enzyme, 
hexokinase-2 (HK2), within lymphocytes infiltrating the joints of RA 
patients have been reported. Therefore, the glycolytic activity within T 
cells in RA has yet to be elucidated. Nonetheless, T cells play an important 
role in the induction and progression of RA.  

Generally, when autoimmunity is not present, resting CD4+ T cells 
utilize oxidative phosphorylation (OXPHOS) and break down fatty acids 
for generating energy, while activated CD4+ T cells, which have a high need 
for nutrients, conduct aerobic glycolysis. However, CD4+ T cells in patients 
with RA may downregulate PFKFB3, an allosteric enzyme that catalyzes an 
early step in glycolysis and plays an important role in CD4+ T cell 
activation. As a result, CD4+ T cells in RA patients can have a low glycolytic 
flux, ATP, lactate and pyruvate, in turn reducing mitochondrial 
metabolism [15,23]. Nevertheless, unlike other cell types, CD4+ T cells may 
have the unique ability to proliferate and secrete cytokines even when 
energy-deprived [25], and consequently, CD4+ T cells in RA can hyper-
proliferate despite their downregulation of PFKFB3 [15]. However, as 
previously mentioned, this finding of RA CD4+ T cells displaying low 
glycolytic flux is still highly controversial. Studies have claimed that TFH, 
TH1, TH17 cells in RA rely on glycolysis, similar to activated healthy T cells 
[24,26,27]. However, T cells within RA modify the glycolysis pathway to 
result in decreased ATP production and increased production of molecular 
precursors required for rapid proliferation. This in turn leads to a 
reduction of reactive oxygen species (ROS) and an ultimate irregularity in 
cellular behavior, resulting in increased proliferation and differentiation 
of inflammatory T cell subsets [28].   

However, in addition to impaired glycolysis, RA CD4+ T cells can have 
upregulated levels of glucose-6-phosphate dehydrogenase (G6PD), which 
shunts glucose into the PPP. Utilizing the PPP increases levels of NADPH, 
which converts glutathione disulfide to its reduced form glutathione [23]. 
Glutathione, an antioxidant, is responsible for scavenging ROS, which is a 
chemically reactive species that can cause cell senescence and tissue 
damage [15,29]. In healthy cells, NADPH oxidase (NOX)-dependent ROS 
production balances ROS scavengers, so the excess production of 
glutathione in CD4+ T cells with RA can causes low cellular ROS. In fact, 
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lower levels of ROS production in CD4+ T-cells due to NOX2 deficiency have 
been shown to cause an increased risk for arthritis and more severe 
inflammation [23,30]. Although increased ROS has been associated with 
many diseases, such as cardiovascular diseases, due to its ability to 
damage cellular lipids, proteins, and deoxyribonucleic acid (DNA), low 
levels of ROS is also harmful due to the suppression of redox-sensitive 
signaling which can be utilized for effective intracellular communication 
[23]. The scavenging of ROS caused by the PPP impairs redox-signaling, 
which can lead to the hyperproliferation of CD4+ T cells. Low levels of ROS 
can inhibit the activation of the protein kinase Ataxia telangiectasia 
mutated (ATM), which is redox-sensitive and regulates the process of the 
cell cycle in dividing cells. The diminished activation of ATM may allow RA 
CD4+ T cells to bypass the G2/M cell cycle checkpoint and hyper-proliferate, 
causing premature senescence, and drives T-cell differentiation into pro-
inflammatory TH1 and TH17 lineages. Consequently, artificially increasing 
the levels of ROS using menadione (an analog of 1,4-naphthoquinone) or 
buthionine sulphoximine (BSO) (limits tissue glutathione concentration), 
downregulates pro-inflammatory transcription factors and cytokines, 
decreasing T cell hyperproliferation and synovial inflammation [7].  

However, different autoimmune diseases have a unique pattern of 
metabolic changes that occur during pathogenesis and disease 
progression [23]. For example, T cell metabolism also plays an important 
role in other autoimmune diseases, such as SLE and experimental 
autoimmune encephalomyelitis (EAE), which is the mouse model for 
human MS. In contrast to T cells from RA patients, in EAE, the metabolism 
of T cells is similar to that of normal healthy effector T cells, with a reliance 
on aerobic glycolysis for energy needs. Increased expression of glycolytic 
enzymes was found to fuel aerobic glycolysis in EAE T cells and promote 
the production of pro-inflammatory interferon γ (IFN-γ) and interleukin 2 
(IL-2) cytokines [31]. Similarly, T cells in progressive MS patients 
upregulate glycolysis and are characterized by higher lactate levels[32]. 
However, similarities within T cell metabolism between RA and SLE have 
been reported. Similar to RA, T cells from SLE patients predominately rely 
on mitochondrial oxidation for their energy needs, however, SLE T cells 
have increased ROS production [33]. Additionally, SLE T cells contain 
defects in lipid metabolism and membrane raft formation which leads to 
an alteration in T-cell receptor (TCR) signaling and causes abnormal T cell 
activation [23]. Interestingly, both in RA and SLE, as well as in a number 
of other autoimmune diseases, the activation of these abnormal T cells 
leads to the generation of autoantibodies via activation of B cells. In SLE 
specifically, these changes in adaptive immune cell activity (B and T cells) 
can be traced back to the effects of lupus susceptibility genes (Sle1-Sle3). A 
study crossing NZM2410 and C57BL/6j mice found that Sle1 and Sle2 
contribute to aberrant B cell activation by stimulating the production of 
autoantibodies and lowering the activation threshold of B cells. Moreover, 
Sle3 promotes T cell dysregulation and reduces activation-induced cell 
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death in CD4+ T cells, in turn prompting irregular T cell activation [34]. It 
will be interesting to study if some of these irregular activities are indeed 
caused by the increased ROS production. Nonetheless, in RA, SLE, EAE, and 
MS changes in T cell metabolism heavily influence the development of 
chronic autoimmunity and inflammation.  

Targeting the alterations in CD4+ T cell metabolism during autoimmune 
disorders offers a unique method to treat these diseases. The use of the 
PPP and the subsequent lack of ROS in RA CD4+ T cells can be responsible 
for T cell hyperproliferation, as the impairment of redox-sensitive 
signaling may allow CD4+ T cells in RA to bypass cell checkpoints. 
Consequently, replenishing the levels of ROS has shown to inhibit this 
hyperproliferation and reduce synovial inflammation, making an increase 
in ROS a potential therapy for RA [7]. In contrast to RA, in SLE, the 
pathological reliance on mitochondrial metabolism in T cells is consistent 
with the discovery that SLE is suppressed by the inhibition of 
mitochondrial F1/F0-ATPase by the immunomodulatory benzodiazepine 
Bz-423 [33,35]. Moreover, since T cell metabolism in EAE is dependent on 
glycolysis, a delivery of the glycolytic inhibitor 2-deoxyglucose (2-DG) was 
found to lower production of the pro-inflammatory cytokine IL-17 and 
reduce T cell proliferation [33,36]. Although there is a variance in which 
bioenergetic pathways are utilized within T cells of RA, SLE and MS 
patients, T cell metabolism does present a potential target to treat and 
prevent autoimmunity.  

TFH cells. A subset of CD4+ T cells that express CXC-chemokine receptor 
5 (CXCR5), play an important role in the pathogenesis of RA and the 
development of chronic autoimmunity[37]. TFH cells are known to regulate 
B cell activation, promote antibody affinity maturation, and initiate the 
germinal center (GC) reaction. In RA, autoreactive TFH cells are essential 
for the production of autoantibodies by B cells and the formation of 
synovial ectopic lymphoid structures (ELS) (aggregates of B and T cells in 
chronically inflamed tissues that resemble GCs) [37,38]. Additionally, 
levels of circulating TFH (c TFH) cells and activated B cells have been shown 
to increase with the onset of RA and are correlated with disease severity, 
suggesting that these cells may be used as biomarkers for RA[39].  

Although the joint is the main site of inflammation and metabolic 
changes, emerging studies have found a correlation between gut 
metabolism and RA [40]. The gut microbiome, which is the collection of 
microbes in the intestines, has been shown to influence RA pathogenesis by 
accelerating the production of pro-inflammatory mediators [40–42]. A study 
using the K/BxN arthritis model found that gut microbiota such as 
segmented filamentous bacteria (SFB) induce TFH differentiation in Peyer’s 
patches (PP) via DC-mediated inhibition of the IL-2 signaling pathway [40]. 
These PP TFH cells later migrate into systemic sites to promote autoantibody 
production there. An additional study utilizing a K/BxN mouse model found 
that autoreactive TFH cells are highly dependent on glycolysis, and the 
inhibition of glycolysis through 2-DG significantly reduced levels of 
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autoreactive TFH cells and alleviated synovial inflammation[24]. In contrast, 
glycolytic inhibition does not affect levels of pathogen-specific TFH cells, 
indicating that non-autoreactive TFH cells do not rely on glycolysis for energy 
in K/BxN mice. Consequently, lowering glycolytic flux may be useful for 
treating RA by reducing levels of autoreactive TFH cells while maintaining 
immunity against pathogens [43,44]. 

TH17 and TH1 cells. While TFH cells contribute to RA pathogenesis by 
influencing B cells, TH17 cells directly contribute to synovial inflammation 
and bone erosion through their production of pro-inflammatory 
cytokines, including IL-17, TNF-α, IFN-γ, and granulocyte-macrophage 
colony-stimulating factor (GM-CSF) [9]. Gut microbiota have been shown 
to influence the progression of RA via TH17 cells. K/BxN mice housed under 
germ-free (GF) conditions has been shown to have decrease TH17 levels 
and the introduction of SFB was shown to accelerate the pathogenesis of 
RA by promoting TH17 levels [42]. In terms of metabolic pathways, TH17 
cells have shown to upregulate glycolytic flux through hypoxia-inducible 
factor 1-alpha (HIF-1α) induction and mechanistic target of rapamycin 
(mTOR) signaling [45]. Notably, HIF-1α deficiency has been shown to 
reduce the expression of glycolytic molecules and therefore limit TH17 
development [9,36]. Additionally, de novo FAS is essential for TH17 cell 
differentiation, and therefore, inhibiting acetyl-CoA carboxylase 1 (ACC1), 
an enzyme required for de novo FAS, with the ACC-specific inhibitor 
soraphen A (SorA) has been shown to limit TH17 production[9,45,46]. 
Consequently, targeting the mTOR/HIF-1α pathway and activating 
adenosine monophosphate-activated protein kinase (AMPK), which is an 
inhibitor of de novo FAS, are both possible therapies for TH17-mediated RA 
symptoms [45]. Similar to TH17 cells, TH1 cells are known to be highly 
glycolytic with increased expression of the glucose transporter 1 (GLUT1) 
[47,48]. Interestingly, TH1 cells have shown to have an increased frequency 
within the joint of RA patients [27] and have also shown to heavily rely on 
glycolysis or glutamine pathways for cellular function [47]. A recent study 
by Pucino et al. found that lactate buildup in the synovium due to higher 
rates of aerobic glycolysis promotes pro-inflammatory metabolism in CD4+ 
T cells. High levels of extracellular lactate upregulate the lactate 
transporter SLC5A12, which is expressed by CD4+ T cells, and contribute to 
increased IL-17 production and fatty acid synthesis [49]. Furthermore, in 
vitro, studies reported that L-type amino acid transporters, which 
influence the uptake of phenylalanine, tyrosine, leucine, arginine, and 
tryptophan, are necessary for TH1 and TH17 expansion and differentiation 
[47,50]. However, there is currently limited research regarding the 
metabolism of TH1 cells in RA in patients specifically.  

Regulatory T (TREG) cells. Another type of T cell that can be targeted in 
RA are TREGs, which can prevent autoimmunity by suppressing the function 
of autoreactive lymphocytes [51,52]. Several studies have found elevated 
levels of TREGs in RA SF, but studies have found conflicting results regarding 
the levels of TREGs in peripheral blood of RA patients [43]. Similarly, it is 
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unclear whether RA affects the ability for TREGs to suppress effector T cell 
proliferation [51]. One study found that TREGs in RA are unable to block the 
secretion of pro-inflammatory cytokines by effector T cells, although anti-
TNFα therapy restored normal functions [53]. In contrast, another study 
has found that TREGs in RA retain their suppressive functions and proposed 
that synovial inflammation occurs because CD4+Foxp3−CD25− T cells in RA 
are activated to an extent that their hyperproliferation cannot be 
efficiently suppressed by TREGs [54]. Consequently, further research is 
necessary to clarify the role of TREGs in RA pathogenesis. TREG metabolism 
has been shown to influence cell proliferation and function, and the 
metabolism of these cells alters due to a balance between toll-like receptor 
(TLR) signaling and the transcription factor Foxp3 [55]. Upon activation by 
TLR signals that promote proliferation, TREGs mainly utilize aerobic 
glycolysis, as TLR-induced phosphoinositide 3‐kinase (PI3K)-Akt-mTORC1 
signaling increases expression of the glucose transporter GLUT1 and thus 
increases glycolytic flux. However, increased GLUT1 expression has been 
shown to accompany decreased suppressive capacity of TREGs by 
downregulating Foxp3 expression [55]. Suppressive TREGs expressing high 
levels of Foxp3 rely more on oxidative and catabolic metabolism because 
Foxp3 decreases PI3K-Akt-mTORC1 signaling and therefore lowers 
glycolytic flux[55]. Consequently, inhibiting glycolysis in the rheumatoid 
synovium may be a possible therapy for RA, as glycolysis is essential for 
most effector cells but not for TREG suppressive functions [56].  

CD8+ T cells. Although CD8+ T cells are not as widely studied as CD4+ T 
cells in the context of RA, CD8+ T cells have been shown to play an 
important role in RA progression [57]. CD8+ T cells differentiate into 
heterogeneous cell subtypes that differ based on their expression of 
surface and intracellular markers and their production of cytokines. In RA, 
differentiation is skewed towards inflammatory CD8+ phenotypes, and 
levels of CD8+ T cells have been shown to correlate with disease severity, 
making these cells possible biomarkers for RA progression [57,58]. CD8+ T 
cells are known to switch from a reliance on OXPHOS to aerobic glycolysis, 
PPP, and glutaminolysis upon activation, and inhibiting glycolysis using 2-
DG has been shown to limit effector CD8+ functions [59,60]. Consequently, 
blocking glycolysis in CD8+ T cells may help alleviate synovial 
inflammation in RA patients. Additionally, IL-17-producing CD8+ T 
(cytotoxic T cells—TC17) cells have been shown to play a possible role in 
RA pathogenesis. TC17 cells were found at elevated levels in the peripheral 
blood of RA patients, specifically in those with high disease activity [61,62]. 
However, little is known about the metabolism of TC17 cells in RA, 
indicating a need for further research.  

B-cells. In addition to T cells, B cells play a significant role in the 
pathogenesis of RA. Autoreactive B cells produce autoantibodies, namely 
ACPAs and RFs. ACPAs, which identify citrulline-modified peptides and 
proteins, and RFs, which are specific for the Fc portion of Immunoglobin 
G (IgG), both serve as diagnostic markers in RA [12]. Although increasing 
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RF levels alone in healthy individuals does not induce synovial 
inflammation, RFs aggravate inflammatory processes in immune 
complexes[63]. Moreover, citrullination, the post-translational 
replacement of arginine with citrulline, may be caused by abnormal 
protein metabolism at the sites of irregular apoptosis, and citrullination 
has been suggested to predispose individuals to RA [64]. ACPAs increase 
bone erosion in the joints of RA patients and stimulate immune effector 
functions, including the activation of Fcγ receptors [65]. In addition to the 
production of autoantibodies, B cells also advance RA pathogenesis by 
secreting pro-inflammatory cytokines, including tumor necrosis factor-
alpha (TNF-α) and IL-17 [11,12]. An in vivo study found higher glycolytic 
flux and lactate production in B cells upon activation by 
lipopolysaccharide (LPS), indicating the utilization of aerobic glycolysis. 
Increased levels of glycolysis were shown to be essential for B cell 
function, and the impairment of glycolysis through dichloroacetate (DCA), 
an inhibitor of pyruvate dehydrogenase kinase (PDHK), decreased B cell 
proliferation and antibody production [66]. Consequently, it is likely that 
activated RA B cells rely on glycolysis for energy and autoantibody 
production, and therefore, targeting glycolysis in B cells provides a novel 
method to halt the production of autoantibodies and the progression of RA 
[67]. However, recent literature provides contradictory results in 
demonstrating that B cells within the GC have diminished glycolytic 
activity and have increased OXPHOS and oxidize fatty acids for the 
expansion of B cells within the GC and for the high production of class 
switching antibodies [68,69]. Therefore, targeting OXPHOS within the GC 
may alter the function of GC B cells.  

Nonetheless autoreactive B cells migrate into the synovium and 
promote inflammation. On the other hand, IL-10-producing regulatory B 
(Breg) cells, which suppress inflammation, are present at a lower 
frequency in RA patients. In fact, because of their immunosuppressive 
properties, increasing the number or frequency of Breg cells in inflamed 
tissues could reduce disease activity. A recent study showed that 
supplementing butyrate, a microbiota-derived short-chain fatty acid, in RA 
patients can lower disease severity by supporting Breg function and 
inhibiting germinal center (GC) B cell and plasmablast differentiation [70]. 

Macrophages. Macrophages play an important role in innate immunity 
and are essential for the pathogenesis of RA. Macrophages secrete pro-
inflammatory mediators, and also assist in the recruitment of lymphocytes 
by acting as antigen-presenting cells (APCs) [12]. While RA T cells in the 
synovium milieu are energy-deprived due to their low production of ATP, 
macrophages within the synovium are characterized by a hyper-metabolic 
state, where they have increased glycolytic flux, in turn leading to 
decreased glucose and increased lactate in the extracellular space [15]. 
Interestingly, macrophages in RA tissue upregulate the glucose 
transporters GLUT1 and GLUT3 along with the glycolytic enzymes enzyme 
pyruvate kinase 2 (PKM2), PFKFB3 and HK2 [15]. In fact, even resting 
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macrophages in RA pathology have been found to be in a hyper-metabolic 
state. RA macrophages have shown to consume excess glucose for ATP 
production when in a resting state. This increase in glucose uptake causes 
an exponential increase in mitochondrial oxidation, resulting in the 
production of ROS by the ETC. Consequently, RA macrophages have high 
levels of ROS (unlike RA T cells), activating the redox-sensitive glycolytic 
protein, PKM2 [15]. PKM2, which acts as a protein kinase, phosphorylates 
the transcription factor signal transducer and activator of transcription 3 
(STAT3), stimulating the production of pro-inflammatory IL-1β and IL-6 
cytokines [15]. Macrophages are known to be major contributors to the 
cytokine-rich synovial milieu, and their production of pro-inflammatory 
cytokines is closely related to their high glycolytic flux [15]. Additionally, 
succinate plays a significant role in the immune response of macrophages, 
and a metabolic profiling study has found elevated levels of succinate in 
RA SF [71]. In in vitro conditions, macrophages stimulated with LPS 
accumulate and release succinate, possibly due to a “broken” Krebs cycle 
[also known as TCA cycle [72], and these high levels of extracellular 
succinate have been shown to stabilize HIF‐1α and increase IL-1β 
production [73,74]. Similarly, an in vivo study has demonstrated the 
secretion of succinate by macrophages in RA upon activation by TLR 
ligands. Moreover, RA macrophages sense extracellular succinate via G-
protein coupled receptor 91 (GPR91)/succinate receptor 1 (SUCNR1), which 
stimulates IL-1β production and drives synovial inflammation. As a result, 
GPR91 antagonists may be a possible treatment for RA and have already 
been shown to inhibit IL-1β release [73]. In addition to macrophages, other 
antigen presenting cells (APCs) also play an important role in the 
pathogenesis of RA.  

DCs. DCs are APCs linking adaptive and innate immunity, and 
therefore, are crucial for the activation of T and B cells in RA pathogenesis. 
While healthy resting DCs with anti-inflammatory phenotypes utilize 
mitochondrial oxidation, DCs switch to a pro-inflammatory phenotype and 
rely on aerobic glycolysis upon activation [16]. This increased aerobic 
glycolysis via glycolytic enzyme HK2, which is activated by the kinases 
TANK-binding kinase 1 (TBK1), IKKε, and protein kinase B (PKB), induces 
the synthesis of fatty acids and other anabolic demands immediately upon 
DC activation. Consequently, inhibition of HK2, using 2-DG, has been 
shown to limit DC activation by impairing glycolysis [13,75]. The HK2 
inhibitor, 2-DG, is a non-metabolizable glucose counterpart that is capable 
of blocking glucose phosphorylation and impeding protein glycosylation 
[76]. Increased reliance on glycolysis in RA DCs has been further 
confirmed by a recent finding that 3-bromopyruvate (BrPA), another HK2 
inhibitor, decreased the activation of DCs in vitro and significantly 
lowered arthritis scores in SKG mice [19]. In later stages after activation, 
the induction of inducible nitric oxide synthase (iNOS) by mammalian 
target of rapamycin (mTOR) and the stabilization of HIF‐1α solidify the 
reliance upon glycolysis, as iNOS‐derived nitric oxide (NO) suppresses the 
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ETC [13]. It is important to note that there are several known glycolytic 
targets, such as GLUT1, PFKFB3 and lactate dehydrogenase (LDH), which 
have all shown to successfully inhibit the glycolytic pathway [77]. 
Additionally, DCs in the synovium are able to sense and adapt to 
surrounding metabolites, including succinate, butyrate, and ATP [13]. In 
fact, the succinate receptor, GPR91, which is highly expressed by DCs [78], 
serves as a chemotactic, guiding DCs into lymph nodes and mediating the 
expansion of pro-inflammatory TH17 cells in lymph nodes. Therefore, a 
blockade of GPR91 is further shown to be a possible therapy for RA by 
reducing DC proliferation and decreasing the frequency of TH17 cells in 
lymph nodes [13,79]. Additionally, DCs are known to release glutathione, 
which is cleaved into cysteine, lowering extracellular redox potential and 
enhancing effector T cell proliferation [80,81]. This process may cause 
further T cell-mediated tissue damage in RA. 

Neutrophils. As members of the phagocytic innate immune system, 
neutrophils are essential in the initial stages of RA pathogenesis. 
Neutrophils in RA secrete ROS and reactive nitrogen species (RNS), which 
are produced by NOX2 and iNOS-derived NO respectively, causing damage 
to articular cartilage and bone [82]. However, the impact of ROS and RNS 
on inflammation-mediated progression of RA is not clear. A study using 
the K/BxN serum transfer model of RA found that the synovial 
inflammation in iNOS2 knockout mice and gp91phox (NOX2)-deficient mice 
was just as severe as controls, suggesting that ROS and RNS do not play a 
role in innate immunity-mediated inflammation [83]. In addition to ROS 
and RNS, neutrophils in the synovium also produce granules of 
degradative enzymes, pro-inflammatory cytokines, and neutrophil 
extracellular traps (NETs—web-like structures of chromatin and granule-
derived peptides and enzymes) [84]. NETs can contain citrullinated 
autoantigens, which stimulate the production of ACPA by B cells and 
contribute to the development of autoimmunity [84]. Additionally, the 
production of NETs and other neutrophil effector functions 
predominantly rely on glycolysis and the PPP for energy, as neutrophils 
generally contain few mitochondria [85,86]. Further, an in vitro metabolic 
profiling study on phorbol 12-myristate 13-acetate (PMA)-activated 
neutrophils found that upon activation, levels of NADPH and lactate 
increased, while levels of glucose initially increased but later decreased. 
The increase in NADPH suggests that activated neutrophils rely on the PPP 
for energy; therefore, blocking this pathway in neutrophils during early 
stages of inflammation may slow RA pathogenesis [87].  

FLS. FLSs are the most common cell type in the rheumatoid pannus (a 
type of abnormal growth that consists of fibrovascular and granulation 
tissue), and they greatly contribute to joint destruction and synovial 
hyperplasia in RA. While healthy FLSs help protect and lubricate the 
synovial lining, FLSs in RA acquire an aggressive phenotype that 
accelerates joint damage. FLSs in RA are characterized by the production 
of inflammatory cytokines and matrix metalloproteinases (MMPs), 
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migration and invasion into bone and cartilage, and resistance to 
apoptosis [81,88]. Consequently, this aggressive phenotype puts FLSs into 
a hyper-metabolic state with increased glycolysis, amino acid metabolism, 
and protein biosynthesis [13,89]. Additionally, synovial cells and tissues 
(e.g., synovial membrane/endothelium, synovial fibroblasts, naïve and 
effector T cells, monocytes, DCs and various subsets of macrophages) 
within the nutrient depleted and hypoxic synovium adapt and alter key 
molecular switches (e.g., PFKFB3, mTOR, PKM2, G6PD, AKT and iNOS) 
within bioenergetic pathways for survival and expansion [23]. 
Furthermore, the hypoxic conditions and high expression of HIF‐1α in the 
synovium promote an invasive behavior in FLSs, such as an upregulation 
in glycolytic proteins regulated by HIF‐1α, including the GLUT1, HK2, and 
LDH [88]. Consequently, previous studies have shown that impairing 
glycolysis through HK2 and PFKFB3 inhibitors, as well as the glycolytic 
inhibitors 2-DG and 3-bromopyruvate (BrPa), can lower the activity of FLSs 
and mitigate joint damage [13,90]. Furthermore, the uptake of glutamine 
can lead to the activation of mTOR, independent of glutaminolyisis, to 
promote the invasive behavior of FLSs [91]. Interestingly, it has also been 
observed that RA FLSs rely on glutamine metabolism for energy, and 
inhibiting glutamine was found to reduce FLS proliferation [92].  

γδ T cells, basophils, eosinophils and mast cells. Gamma-delta (γδ) T 
cells, which are divided into Vδ1 and Vδ2 T cells, contribute to the 
inflammatory synovial milieu in RA through the production of pro-
inflammatory cytokines. Vδ2 T cells specifically, which secrete IFN-γ, TNF-
α, and IL-17, have been found to migrate to joints and accumulate in RA 
SF, possibly due to the expression of chemokines CCR5 and CXCR3 [93]. 
However, another study has found that synovial γδ T cells only produce 
IL-17 in collagen-induced arthritis (CIA) but not in human RA, so further 
investigation is warranted [94]. In addition to γδ T cells, basophils and 
mast cells, which are granulocytes that release degrading compounds such 
as histamine, also further RA pathogenesis upon activation by ACPA, TLR 
ligands, and other stimuli [95,96]. Mast cells’ effector functions have been 
shown to rely on both glycolysis and OXPHOS, and glycolytic inhibitors, 
such as 2-DG and DCA, as well as rotenone, which impairs mitochondrial 
metabolism, reduced the ability of mast cells to produce cytokines and 
degranulate [86,97]. Consequently, targeting both glycolysis and OXPHOS 
in synovial mast cells may be possible therapies for RA. Another cell type 
that influences RA pathogenesis is eosinophils, which can indicate a poor 
prognosis when abundant in RA SF. High levels of eosinophils, also known 
as eosinophilia, are correlated with poor responses to RA treatments, 
namely DMARD therapy, and indicate higher disease severity [98]. 
Interestingly, increased eosinophil and TH2 responses, which can occur 
from a N. brasiliensis infection, have been shown to reduce inflammation 
and bone erosion in both the serum-induced arthritis (SIA) model and 
human TNF transgenic (hTNFtg) mice. Further, eosinophil-deficient 
ΔdblGATA mice were found to have higher severity of arthritis, and the 
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reintroduction of eosinophils alleviated inflammation and initiated the 
resolution of symptoms [99]. A metabolic profiling study of eosinophils has 
shown a high oxygen consumption rate (OCR) in eosinophils compared to 
neutrophils and similar extracellular acidification rates (ECAR) between 
eosinophils and neutrophils, indicating that eosinophils may also rely on 
both glycolysis and mitochondrial oxidation for energy [100]. It will be 
interesting to learn whether the anti-inflammation effect of eosinophil 
relies on glycolysis or OXPHOS. 

ILCs. As the innate counterparts of T cells, innate lymphoid cells (ILCs) 
play important roles in both the progression and resolution of RA 
[101,102]. Recent studies have classified ILCs into five subsets based on 
development and function: natural killer (NK) cells, ILC1s, ILC2s, ILC3s, 
and lymphoid tissue-inducer (LTi) cells [102,103]. ILC2s are known to 
promote anti-inflammatory responses, whereas ILC1s and ILC3s are 
associated with the induction of inflammatory responses. IL-9 stimulates 
the expansion of ILC2 and this subsequently leads to the activation of TREGs, 
TH2 cells and M2 macrophages for an ultimate suppression of TH17 cells 
within the synovium. As opposed to ILC2s, ILC1s and ILC3s stimulate pro-
inflammatory responses within the synovium by activating TH1 and TH17 
cells, for the induction of M1 macrophages [104]. A study investigating the 
frequencies of ILC subsets in lymph node (LN) biopsy specimens from 
patients with early RA and “at-risk” patients (positive for RF and/or ACPA 
but lacking clinical signs of RA) found a shift towards inflammatory 
phenotypes [104]. RA patients were found to have elevated levels of ILC1s 
and ILC3s, which produce pro-inflammatory cytokines, and lower levels 
of LTi cells, which may indicate impaired LN remodeling and an 
autoimmune‐prone LN microenvironment [104]. Further, CD3–CD56bright 
NK cells were found to be at elevated levels in RA SF compared to 
peripheral blood [105]. A study using the K/BxN SIA model of arthritis 
found that the production of IL-9 by ILC2s plays an important role in the 
resolution of RA, and treatment with IL-9 induced ILC2-dependent TREG 
activation and accelerated resolution of arthritis [106]. Moreover, ILC2s 
were found to be reduced in the peripheral blood of RA patients compared 
to patients in remission, and the level of ILC2s negatively correlated with 
disease activity [106].  

Metabolic pathways have been shown to play an important role in ILC 
function; however, there is limited research on ILC metabolism 
specifically in RA. Interestingly, the enzyme arginase-1 (Arg1), which 
metabolizes the amino acid l-arginine to create urea and ornithine, is 
essential for ILC2 proliferation and cytokine production in type 2 
inflammation. Contrary to the role of ILC2’s in RA, the reduction of ILC2s, 
by inhibiting Arg1, was found to decrease ILC2-mediated airway 
inflammation in lung disease by disrupting amino acid metabolism, and 
reducing ILC2 glycolytic capacity [107]. This suggests that the role of ILC2s 
may vary in different inflammatory diseases. However, it is important to 
note that ILC2s have been shown to rely on different metabolic pathways 
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depending on the inflammatory stimulus and tissue environment. While 
lung ILC2s that promote airway inflammation mainly utilize glycolysis 
and OXPHOS, intestinal ILC2s rely more on FAO for anti-helminth 
immunity [108]. Interestingly, the intestinal immune system, such as gut-
residing TH17 cells, DCs of Peyer's patches, has shown to be implicated in 
RA pathogenesis [42,108–110]. Therefore, the finding of intestinal ILC2 
metabolism in helminth immunity may provide some insight into ILC2 
metabolism in RA and its impact on additional intestinal immune cells. 
However, there has been little research investigating the metabolism of 
ILC2s in RA specifically. Moreover, little is known about the metabolism of 
ILC1s and ILC3s, indicating that further studies are required.  

NK cells: NK cells have similar metabolic activity to healthy T cells, 
which is consistent with the common lymphoid lineage and shared 
effector functions between NK and T cells [111]. Mature naïve NK cells are 
metabolically quiescent and rely on OXPHOS and FAO, while activated NK 
cells have increased metabolic activity, with elevated levels of both 
glycolysis and OXPHOS [111–113]. However, activated NK cells upregulate 
glycolysis at higher rates than OXPHOS, indicating a shift towards 
glycolysis upon activation [111,114]. Mammalian target of rapamycin 
complex 1 (mTORC1), which regulates both immune responses and 
metabolism, has been shown to mediate metabolic reprogramming of NK 
cells upon activation, which is essential for NK effector functions. An in 
vivo study found that mTORC1 activity is essential for IFN-γ and granzyme 
B production by NK cells, and mTORC1 signaling was found to increase 
metabolic activity and glucose uptake upon activation [114]. Consequently, 
inhibiting mTORC1 via rapamycin in NK cells impairs glycolysis by 
limiting the glucose transporter GLUT1 and glycolytic enzymes HK2 and 
LDHA, and the inhibition of mTORC1 has also been shown to disrupt NK 
cell cytotoxicity [114,115].  

The inflammatory nature of each of these immune cells may influences 
the hypoxic environment within the synovium, in turn contributing to RA 
pathogenesis by influencing the metabolism of synovial cells. Hypoxia 
stimulates increased expression of HIF‐1α, an important transcription 
factor that induces mitochondrial dysfunction and increased glycolysis in 
synovial cells [116]. HIF‐1α interacts with nuclear factor kappa light‐chain‐
enhancer of activated B cells (NF‐κB), Notch‐1 intracellular domain 
(Notch‐1), Janus kinase/signal transducers and activators of transcription 
(JAK-STAT), and the PI3K-PKB/Akt pathway to produce inflammatory 
conditions [13]. Additionally, HIF‐1α stimulates glycolysis via the PI3K-
PKB/Akt pathway, which inhibits glycogen synthesis by limiting glycogen 
synthase kinase 3β (GSK-3β) [117]. Importantly, levels of hypoxia are 
strongly correlated with synovial inflammation and production of pro-
inflammatory cytokines, including TNF-α, IL-1β, and IFN-γ. Additionally, 
hypoxic conditions in the synovium have been shown to prompt 
angiogenesis, migration of inflammatory cells into the synovium, 
increased cell survival pathways, and increased MMP-mediated tissue 
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degradation [118]. Notably, the Krebs cycle metabolite, succinate, is 
abundantly present in RA SF. Succinate has been shown to promote 
abnormal angiogenesis through HIF-1α induction [88], which in turn 
further promotes inflammation by facilitating immune cell recruitment 
(Figure 2) [13]. Therefore, RA therapeutics, that focus on 
immunometabolism, can prove to be an effective treatment option.  

 

Figure 2. Normal versus hypoxic conditions within the synovium. The hypoxic environment within the 
RA synovium leads to an increase in the migration of inflammatory immune cells within the synovium, 
where synovial cells adapt to the nutrient deprived and hypoxic environment by increasing angiogenesis 
and upregulating glycolysis to meet the metabolic demand required for the inflammatory cells to survive 
and expand within the synovium.  

CLINICALLY APPROVED TREATMENTS AND THEIR POTENTIAL TO 
MODIFY IMMUNOMETABOLISM FOR MANAGEMENT OF RA 
SYMPTOMS 

Currently, treatments for RA prioritize the achievement of remission or 
low disease activity through the treat-to-target (T2T) strategy, which 
emphasizes the constant monitoring of disease activity and subsequent 
adjustment of medication to maintain a certain target [119]. The T2T 
approach has shown to be particularly effective for those with early RA. 
Early treatment with DMARDs has shown to be effective in short-term 
disease management, and may improve long-term outcomes for RA patients 
who initiate DMARD therapy promptly after RA onset [119,120]. However, 
some have argued that the T2T strategy worsens long-term outcomes for 
certain patients due to the prioritization of a target over the drug being 
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administered, resulting in a lack of personalized treatment. For example, 
common treatments for RA, such as biological DMARDs (bDMARDs), are not 
effective for all patients and can have long-term side effects, including 
tuberculosis infection, and liver and medullary toxicity [121]. 

Immediately upon diagnosis with RA, the conventional synthetic 
DMARD (csDMARD) methotrexate (MTX) is usually administered, either 
alone as a monotherapy or in combination with other csDMARDs and 
either with or without glucocorticoids (GCs) [122,123]. Glucocorticoids 
prevent the chemotaxis and access of leukocytes to sites of inflammation 
and also impede immune cell function while suppressing humoral 
responses with inflammatory properties [124]. Furthermore, 
glucocorticoids trigger gluconeogenesis in the liver, restrain glucose 
uptake in muscle and adipose tissue, and incite the breakdown of fat in 
adipose tissue, therefore playing a role in fat and glucose metabolism 
[125,126]. Whereas, MTX is a folic acid antagonist and has become the 
standard treatment for RA and one of the most popular drugs worldwide 
for this disease [127,128]. As a folate analogue, MTX inhibits dihydrofolate 
reductase (DHFR), in turn preventing folate reduction, which leads to an 
increase in the anti-inflammatory agent adenosine and a decrease in 
purine and pyrimidine biosynthesis, in turn blocking the production of 
DNA and RNA and therefore limiting cell proliferation (Figure 3) [129,130]. 
Nayak et al. illustrate how MTX can modulate the gut microbiota by 
targeting the conserved purine and pyrimidine metabolic pathways [131]. 
Interestingly, Bacteroides were the most impacted phyla when introduced 
to MTX in culture. Additionally, the colonization of germ free mice 
colonized with the post-MTX stool samples from RA patients demonstrated 
a decrease in activated T cells, TH17 cells and myeloid cells in the spleen 
and a decrease in activated T cells, TH17 cells and myeloid cells in the 
intestinal mucosa in the presence of inflammation. Therfore, further 
investigations are warranted to understand how DMARDs may influence 
the bacterial and cellular populations within the gut. In addition to 
targeting purine and pyrimidine biosynthesis [132], current research 
suggests that there are several other mechanisms of action through which 
MTX reduces the symptoms of RA, including ROS generation, polyamine 
inhibition, a reduction in chemotaxis and adhesion of inflammatory cells, 
and alteration of cytokine production [133,134]. Nonetheless, adenosine 
signaling is the most accepted explanation as the mechanism of action in 
RA [133], suggesting, that in RA, MTX may function more as an anti-
inflammatory rather than antiproliferative drug [129,133]. Furthermore, 
increased adenosine release due to MTX has shown to limit the adhesion 
of neutrophils to connective tissue cells, thus limiting the infiltration of 
connective tissue cells by neutrophils [135]. Overall, there are various 
ways that MTX can exert anti-inflammatory effects directly or indirectly 
on cells involved in RA pathogenesis. For example, MTX can modulate 
inflammation by reducing monocyte populations via apoptosis, altering 
enzyme, cytokine, and gene expression, and promoting neutrophil 
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chemotaxis. Furthermore, MTX increases levels of cyclo-oxygenase-2 
(COX-2) production IL-1 receptor antagonist (IL1ra), soluble TNFα receptor 
(sTNFR), and transforming growth factor beta 1 (TGF1-β) [129].  

 

Figure 3. Mechanisms of MTX action. Inhibition of DHFR and an increase in adenosine signaling are two 
well established mechanisms of action of MTX. The inhibition of DHFR prevents cell proliferation and the 
increase in adenosine signaling leads to the inhibition of various pro-inflammatory pathways.  

MTX has proven to be effective in reducing inflammatory RA symptoms 
and has shown to outperform other csDMARDs such as leflunomide in 
efficacy [123,136]. The csDMARD, Leflunomide, is metabolized into its 
pharmacologically active metabolite, A77 1726, which prevents the 
metabolic needs for clonal expansion and differentiation of effector T cells 
[137]. Administering low-dose glucocorticoids to csDMARD monotherapy 
or combination therapies has shown to increase efficacy [100]. However, 
it is unclear whether immediate combination therapy with different 
DMARDs is more effective than “step-up” therapy (initial MTX 
monotherapy with the addition of other csDMARDs if conditions do not 
improve), although the combination of MTX and etanercept has shown 
greater efficacy over oral triple therapy with MTX, sulfasalazine, and 
hydroxychloroquine [123,138]. Hydroxychloroquine diffuses to the 
lysosome, which is known as the center of immunometabolism due to 
selective amino acids being stored in the lysosome and it being a crucial 
signaling hub for mTORC1 responses [139]. Hydroxychloroquine’s 
presence within the lysosome can lead to an alteration of innate immune 
cell function [140]. Whereas sulfasalazine affects adaptive immune 
responses by preventing folate metabolism, resulting in a decrease in TH1 
differentiation and TH1 driven cytokine production [18,141]. Although 
biologics are not yet well understood, etanercept is known to function by 
binding to TNFα and TNFβ (lymphotoxin) to inhibit pro-inflammatory 
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TNF-mediated responses [18,142]. Interestingly, recent studies suggests 
that etanercept reduces bone metabolism in patients with an arthritic 
disease known as ankylosing spondylitis [143]. However, if the target 
disease activity in RA is not achieved through csDMARDs, bDMARDs, such 
as TNF-α inhibitors, then targeted synthetic DMARDs (tsDMARDs), such as 
janus kinase (JAK)-inhibitors, are generally administered in combination 
with MTX [122]. JAK inhibitors, such as tofacitinib, reduce inflammation 
by decreasing proinflammatory cytokine signaling and production[144]. 
Additionally, tofacitinib has shown to be implicated in lipid metabolism 
but has not shown any effects on glucose metabolism [144,145]. The 
combination of bDMARDs with MTX was found to improve clinical 
response and outcomes more than either MTX or bDMARDs alone [146]. 
However, bDMARDs have several harmful side effects, including an 
increased risk of non-melanoma skin cancers, gastrointestinal 
perforation, and pulmonary infections [147]. Similarly, tsDMARDs, namely 
tofacitinib, have demonstrated high efficacy both as a monotherapy and 
in combination with MTX [123,148], but side effects include serious 
infections, reactivation of latent tuberculosis, increases in serum 
creatinine, and decreased lymphocyte and neutrophil counts [148].  

Besides DMARDs, other treatments for RA include nonsteroidal anti-
inflammatory drugs (NSAIDs) and corticosteroids. NSAIDs, which include 
aspirin and ibuprofen, are anti-inflammatory and analgesic agents that 
block production of prostaglandins (PGs) by inhibiting the enzyme 
prostaglandin G/H (PGG/H) synthase, also known as COX. This inhibition 
of PGs is linked to the suppression of immune cell expansion [149]. While 
NSAIDs are effective in reducing pain and stiffness, they usually do not 
reduce acute-phase reactants or change the radiographic progression of 
disease [150]. However, the use of NSAIDs has been associated with altered 
blood pressure and an increased risk of hypertension [151], and NSAIDs 
except for naproxen have been shown to increase the risk of myocardial 
infarction [152]. Additionally, a recent study discovered that NSAIDs, 
namely ibuprofen, can alter 34 metabolic pathways that are implicated in 
metabolism of amino acids, hormones, and vitamins as well as production 
of ROS and hydrogen peroxide intracellularly in male mice [153]. 
Furthermore, ibuprofen may have a greater impact on the liver than 
previously believed, however, the impact of ibuprofen in male mice 
differed from female mice, warranting that further research in 
understanding drug metabolism as a whole in males versus females 
should be preformed [153]. Further, corticosteroids which affect all 
immune cells given their cell surface expression of the glucocorticoid 
receptor [154], have been proposed as a treatment for RA, but their use has 
been overshadowed by long-term steroid toxicity and several adverse side 
effects, including serious infections, gastrointestinal bleeding, and 
accelerated atherosclerotic vascular diseases [155]. Additionally, 
treatment with low-dose prednisolone (PRED) alone has been associated 
with significant bone mineral density (BMD) loss, while the BMD in 
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patients receiving a combined treatment of PRED and MTX was higher but 
still significantly lower than non-RA controls [156]. A temporary duration 
of a moderate dose of the corticosteroid prednisone has shown to affect 
glucose metabolism in healthy subjects with no effects on muscle protein 
metabolism or function [157]. However, Short et al. argues that a 
temporary duration of prednisone in healthy patients induces muscle 
insulin resistance in glucose and amino acid metabolism, with a weakened 
protein anabolism [158]. Furthermore, a study investigating corticosteroid 
use in RA patients treated with infliximab found an association between 
corticosteroid use and increased risk of infection, and consequently, the 
authors suggested that corticosteroids should be administered for the 
shortest period possible to achieve remission [159]. Notably, GCs and 
NSAIDs may interact with metabolic homeostasis, which can lead to CV 
risk. Nonetheless, GCs, MTX, sulfasalazine and leflunomide effect T-cell 
functions and modulate pro-inflammatory TH1-driven cytokines while 
altering TH1/TH2 immune-mediated responses [160]. Although each of 
these FDA approved RA therapeutics affect immune cells and metabolism 
(Table 1), it is not fully understood how some may affect 
immunometabolism, therefore indicting that further research is required. 
Nonetheless, there is a clear unmet clinical need for RA therapeutics, 
however, future developments may benefit from designing therapeutics 
to target the immunometabolism of specific immune cells. 

Table 1. Current therapies for RA and their relationship to immunometabolism. Current therapies for 
RA can be categorized into bDMARDs, csDMARDs, tsDMARDs, NSAIDs, and corticosteroids. Many of these 
therapies alter the metabolism and function of immune cells, indicating that altering immunometabolism 
through immune engineering may produce more effective treatments.  

Classification Treatment Name Mechanism of 
Action 

Relation to immunometabolism References 

bDMARDs Etanercept TNF-α inhibitor Reduces bone metabolism in 

ankylosing spondylitis patients  

[135,140] 

 Infliximab [140,156] 

csDMARDs Methotrexate (MTX) Folic acid 

antagonist 

Decreases purine and pyrimidine 

biosynthesis, promotes ROS 

generation, and inhibits polyamine 

synthesis 

[126–131] 

Leflunomide Inhibits uridine 

monophosphate 

synthesis 

Inhibits pyrimidine de novo synthesis, 

thus withholding metabolic 

requirements for lymphocyte 

expansion and effector cell 

differentiation 

[134] 
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Table 1. Cont.  

Classification Treatment Name Mechanism of 
Action 

Relation to immunometabolism References 

csDMARDs Sulfasalazine Inhibits intestinal 

folate metabolism 

and transport 

Suppresses folate-dependent 

pathways in de novo synthesis of DNA 

[138] 

Hydroxychloroquine Alters innate 

immune cells 

function 

Diffuses to the lysosome, a crucial 

signaling hub for mTORC1 responses 

where selective amino acids are 

stored  

[136,137] 

tsDMARDs Tofacitinib JAK inhibitor Produces small increases in lipid 

levels, suggesting implications in lipid 

metabolism 

[141,142] 

NSAIDs Aspirin Anti-

inflammatory 

and analgesic 

agents; inhibit 

prostanoid 

biosynthesis 

Inhibits the enzyme prostaglandin 

G/H (PGG/H) synthase 

[146,147] 

Ibuprofen Can alter 34 metabolic pathways 

affecting amino acids, hormones, 

vitamins, and ROS production 

intracellularly in male mice 

[146,147,150] 

Corticosteroids Glucocorticoids Prevent 

chemotaxis of 

lymphocytes to 

inflamed areas; 

impede immune 

cell function 

Alter fat and glucose metabolism by 

promoting gluconeogenesis in the 

liver, restraining glucose uptake in 

muscle and adipose tissue, and 

inciting the breakdown of fat in 

adipose tissue 

[121,122,123] 

Prednisolone (PRED) Suppresses 

inflammation 

Affects glucose metabolism; may 

induce muscle insulin resistance in 

glucose and amino acid metabolism 

and may restrict protein anabolism 

[153,154,155] 

INTEGRATING ANTIGEN VERSATILITY INTO ANTIGEN-SPECIFIC 
THERAPIES  

Among the established RA mouse models, the antigen-induced CIA 
mouse model remains the most commonly studied due to the model 
having several pathological similarities to RA in humans as well as the ease 
associated with CIA induction [161]. Interestingly, RA in humans and CIA 
in mice can both ultimately lead to chronic and destructive polyarthritis 
with signs of synovitis and bone and cartilage erosion. This progressive 
destruction of the articular joints are characterized by fibrin deposition, 
proliferative synovial cells, periosteal bone development, mononuclear 
infiltrates and pannus development [162,163]. Moreover, the susceptibility 
to developing RA in CIA mice is largely facilitated by I-Aq, an major 
histocompatibility complex (MHC) class II receptor that binds the 
equivalent immunodominant collagen peptide region as the human RA-
associated allele human leukocyte antigen (HLA)-DR4 (DRB1*0401) [164]. 
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Although collagen’s role in initiating RA is not well understood, its 
localization within the main sites of inflammation in RA demonstrates that 
its fundamental processes involved in initiating CIA in mice may share 
similar features with the effector phase of RA in humans [165]. In human 
RA, collagen is likely not the antigen that initiates the disease, rather it 
becomes the target antigen in RA as a result of epitope spreading as studies 
have shown that the lung may be the initial site of autoimmune response 
in RA patients[166]. Nevertheless, both RA in humans and CIA in mice are 
exacerbated by the induction of autoreactive B and T cell responses, where 
B cells exacerbate RA by producing autoantibodies and cytokines and by 
activating autoreactive T cell responses via co-stimulatory molecules CD80 
or CD86 while presenting autoantigens [161,167,168]. Notably, the 
autoantibody production in the CIA model, illustrated by elevated levels of 
IgG1 and IgG2a, has made the CIA model desirable as a preclinical RA 
model for diagnostics and for the development of antibody based 
therapeutics [167,169]. Therefore, downregulating the metabolism of 
inflammatory immune cells can reduce symptoms in both human RA and 
murine CIA.  

The ability to understand the specific amino acid sequences of collagen 
that is recognized by the MHC receptors on DCs in CIA mice has created 
therapeutic opportunities of two major approaches toward antigen-
specific immunotherapy. The first being the disruption of I-Aq-restricted 
antigen presentation by delivering synthetic collagen peptide analogues 
containing a dominate T cell epitope region [170]. The second being the 
delivery of collagen to tolerogenic DCs (tolDCs) for the induction of 
tolerogenic antigen-specific immune responses [171–174]. Although 
antigen-specific immunotherapies hold promise for the development of 
effective RA therapeutics, the autoantigen within RA mouse models and 
within RA patients may differ. Additionally, autoantigens that are 
exclusive to RA have yet to be discovered, therefore further research is 
required to identify autoantigens and the respective patient-specific TCRs 
in RA. Nonetheless, to maximize the potential of antigen-specific 
immunotherapies, these therapies should consider the versality of an 
antigen when generating antigen-specific formulations. Thus, further 
investigation within antigen-induced arthritis mouse models may 
contribute to the development of optimal and personalized antigen-
specific therapies for RA. Importantly, since a number of autoimmune 
diseases share similar pathological processes during disease development, 
the synthesis of a versatile antigen-specific formulation may lead to the 
generation of a platform that can be applicable to treating other 
autoimmune diseases [175].  

REINSTATING IMMUNE TOLERANCE IN RA WITH IMMUNE 
ENGINEERING PRINCIPLES  

Although current RA therapeutics, such as DMARDs and NSAIDs, 
suppress inflammatory responses for the treatment of RA symptoms, these 
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therapeutics do not discriminate between RA specific and non-specific 
immune cells, and therefore, compromise the patient’s immune system. 
Thus, there is a clear unmet clinical need for RA therapeutics that address 
specific pro-inflammatory immune responses at the root cause of RA. 
Nonetheless, extensive preclinical and clinical research has shown the 
efficacy of immunotherapies and their ability to overcome the challenge in 
autoimmunity by targeting immune cells that are attacking healthy cells 
and tissues without causing further damage to the healthy cells and tissues 
themselves. Therefore, utilizing immunoengineering to target metabolism 
of pro-inflammatory immune cells may restore immune tolerance in 
autoimmune diseases such as RA without causing damage to healthy cells 
and tissues.  

Cellular therapies targeting T cells or DCs has shown effective and 
promising results in preclinical RA studies. As previously discussed, 
human RA effector T cells are metabolically impaired, however, these 
effector T cells are still capable of rapidly expanding and secreting 
inflammatory cytokines, despite their inability to produce quick ATP via 
the glycolytic pathway [15,28]. Thus, T cells therapies have been explored 
as an approach to remedy the metabolic dysregulation of human RA T 
cells. For example, Wright et al. demonstrated that the adoptive transfer 
of antigen-specific TREGs, induced by the retroviral gene transfer of Foxp3 
and/or TCR, lead to the suppression of RA in mice [176], potentially by 
increasing the ratio of TREGs to metabolically impaired effector T cells. 
Similarly, the adoptive transfer of ex vivo expanded TREGs and antigen-
specific TREGs, extracted from CIA mice with RA, ameliorated RA in CIA 
mice [177,178]. However, methods to expand TREGs for patients have been 
restricted by low cell numbers, challenging manufacturing methods, and 
limited understanding of patient-specific TCRs for the recognition of 
disease-relevant MHC-peptide complexes [179–181]. Additionally, the 
stability of ex vivo expanded TREGs remains questionable [182], however, 
there may be some promise in utilizing clustered regularly interspaced 
short palindromic repeats (CRISPR) to overcome this hurdle. The BACH2 
gene has been found to potentially increase Foxp3 and TREG stability. 
Additionally, Stub1 is known to be involved in Foxp3 ubiquitination [182]. 
Therefore, CRISPR may play a critical role in enhancing TREG stability by 
targeting BACH2 or Stub1. However, studies have not yet explored this 
field for RA specifically, indicating that further studies are required to 
confirm the role of CRISPR in increasing the stability of ex vivo expanded 
TREGs cells for RA therapeutics. Additionally, vitamin A, B9 and C have also 
been explored as a viable option to increase TREG stability when expanded 
in an ex vivo setting [183]. Nonetheless, activated B cells with high 
glycolytic activity are also shown to be implicated in RA pathogenesis, 
therefore, therapies targeting B cells provides a method to prevent the 
production of autoantibodies and the progression of RA.  

Chimeric antigen receptor T cell (CAR-T cell) therapies, which consists 
of engineering T cells in an ex vivo setting to express an antigenic receptor 

Immunometabolism. 2021;3(4):e210032. https://doi.org/10.20900/immunometab20210032 

https://doi.org/10.20900/immunometab20210030


 
Immunometabolism 23 of 48 

of interest, have made a remarkable impact in personalized therapies and 
cancer treatment in clinic, and also demonstrates potential success in 
preclinical autoimmune studies. An in vitro RA study demonstrated a 
reduction in autoreactive B cell subsets by engineering CAR-T cells to 
express an anti-fluorescein isothiocyanate (FITC) receptor with FITC-
labelled citrullinated autoantigen peptide epitopes that were recognized 
by ligands on autoreactive B cells [184]. Given that B and T cells secrete 
cytokines, and that cytokines impact metabolic and immune pathways, a 
modulation of B and T cell populations can lead an altered metabolic 
environment [185,186]. Another group engineered CAR-expressing TREGs to 
target a filament protein, citrullinated vimentin (CV), and transduced this 
construct into human TREGs. Although the functional activity of this 
construct still needs to be tested in vivo in mice, the CAR-expressing TREGs 
did show a reaction to CV in RA patients synovial fluid and CV-expressing 
cells [187]. Therefore, this construct may have success in in vivo mice 
studies. However, there is little research in CAR-T cell therapies for the 
treatment of RA, indicating that further studies are required.  

Significant progress has also been made in DC immunotherapy, 
specifically the induction of tolDCs or DCs in an anti-inflammatory state, 
and their ability to reinstate immune tolerance in RA. Activated, or 
inflammatory, DCs have increased glucose metabolism [6], thus shifting or 
inhibiting inflammatory pathways or glycolytic energy requirements 
within DCs can alter inflammatory phenotypes. A few methodologies for 
successfully inducing DCs with anti-inflammatory properties include 
inhibiting factors that promote inflammatory responses, such as NF-κB or 
costimulatory molecule CD80/CD86 [188–191]. DCs with pro-inflammatory 
properties have increased CD80/CD86 expression [192] and NF-κB is 
known to govern metabolic adaptations and is key in linking metabolism 
to inflammation [191,193]. Also, anti-inflammatory DCs can be induced by 
engineering DCs to genetically, and continuously, express apoptosis-
inducing factors (AIF), such as Indoleamine 2,3-dioxygenase (IDO) or Fas 
ligand (FasL) [191,194,195], which AIFs are believed to play an anatomical 
role in cellular redox metabolism [196]. Nonetheless, several 
pharmacological agents are available to induce DCs with anti-
inflammatory properties for the subsequent induction of anti-
inflammatory T cell responses. For example, the modulation of DC 
metabolism can lead to anti-inflammatory effects induced by increasing 
FasL, transforming growth factor beta (TGF-β), IL-10, vitamin D3, and 
administering pharmacological agents’ rapamycin (inhibits mTOR), BAY 
11-7082 (inhibits NF-кB), and metformin (promotes AMPK, which in turn 
promotes peroxisome proliferator-activated receptor gamma coactivator 
1 (PGC1)). Intracellularly, this can lead to an increase in OXPHOS, FAO, IDO 
and a decrease in glycolysis. The downregulation of co-stimulatory 
molecules on these DCs and the subsequent release of IL-10 and ROS result 
in the inhibition of effector T cells and the proliferation of TREGs for the 
induction of tolerance (Figure 4) [191]. There is limited research on 
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development of tolDCs in RA clinical trials, however there is one clinical 
study in RA patients that demonstrated that the intra-articular delivery of 
autologous tolDCs is safe and capable of reducing inflammatory 
symptoms, though no immunomodulatory effects were found [197]. 
However, the main goal of this phase 1 trial was to test the safety of 
autologous tolDCs. Therefore, further clinical studies would need to be 
done to test the efficacy of autologous tolDCs for the treatment of RA. 
Nonetheless, therapies targeting DCs, specifically antigen-specific 
therapies, are exciting and can lead to a personalized modulation of 
immune responses in RA.  

 

Figure 4. Stimulating anti-inflammatory DCs using cytokines and pharmacological agents. The 
administration of cytokines, vitamin D3 or pharmacological agents can stimulate an intracellular increase 
in IDO, OXPHOS, and FAO for a downregulation of co-stimulatory molecules and a subsequent release of IL-
10 and ROS. As a result, this can lead to an inhibition of effector T cells and the proliferation of TREGs for the 
induction of tolerance.  

Semi-mature DCs (induced by repeatedly pulsing DCs with TNF-α) that 
were pulsed with the CIA self-antigen, collagen type II, resulted in antigen-
specific responses with an impeded onset of RA and low arthritis scores 
[173]. TNF-α is traditionally know to induce pro-inflammatory DC 
responses, however, continuous administration of TNF-α (or a maturation 
stimuli) can lead to a reduced DC production of pro-inflammatory 
cytokines, and an increased production of IL-10, therefore inducing a 
tolDC phenotype with the ability to lead to cytokine-mediated changes 
within the metabolic environment [172,174]. This induction of tolDCs led 
a reduction in antigen-specific antibody production and a decreased 
ability to trigger T cell proliferation [173]. Similarly Popov et al., 
demonstrated that tolDCs, which were induced by inhibiting NF-κB, were 
able to modulate antigen-specific B and T cell responses when tolDCs 
pulsed with a RA self-antigen were injected into CIA mice [171]. However, 
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the translation of antigen-specific therapies to clinic is limited by the 
ability to identify autoantigens and the respective patient-specific TCRs for 
effective and personalized results. Therefore, there is an urgent need to 
generate methodologies to accurately identify autoantigens in RA patients.  

Interestingly, the discovery of peptide tetramers has become a useful 
tool in identifying, characterizing, and eliminating self-reactive B and T cells 
and their respective autoantigen. In 2003, Altman et al. reported 
methodologies in generating synthetic TCR ligands containing a peptide 
sequence with a fluorescent tag for identifying antigen-specific T cells [198]. 
Similar methodologies utilized this concept for the development of 
autoantigen-carrying tetramers which were capable of detecting 
autoreactive B cells [199]. This technology of peptide tetramers has achieved 
an expansion of peptide-specific CD4+ and CD8+ regulatory T cells for 
induction of anti-inflammatory antigen-specific responses in CIA mice for 
the treatment of RA [200,201]. The identification, characterization, and 
elimination of self-reactive B and T cells and their respective autoantigen, 
in the presence of immunometabolism techniques, may provide a novel 
therapeutic approach to treating RA. However, peptide tetramer studies 
have predominately occurred in preclinical models. Therefore, further 
studies would need to be performed in clinical trials in order to understand 
if peptide tetramers can be a form of personalized treatment for RA.  

Nonetheless, gene delivery strategies using both viral vectors or non-
viral methodologies (e.g., nanoparticles (NPs)) have been useful in 
engineering the immune system as a personalized approach to treating RA 
[202]. For example, a single intra-articular delivery of an adenosine-
associated virus (AAV) vector encoding the human interferon-β (hIFN-β) 
gene was shown to produce hIFN-β in RA FLSs for the regulation of 
inflammation. Importantly, this transgene expression was regulated by a 
NF-κB promoter, which is only activated during inflammatory flare ups, 
therefore this allowed for a controlled expression of the transgene 
[202,203]. As previously discussed, RA FLSs acquire an aggressive 
phenotype, in turn transitioning RA FLFs into a hyper-metabolic state with 
increased glycolysis, amino acid metabolism, and protein biosynthesis 
[13,89]. Therefore, metabolically reprogramming RA FLSs, by modulating 
NF-κB mediated responses, can lead to a reduction of inflammatory 
characteristics within the synovium. Gene delivery has also shown to be 
effective in increasing the levels of the anti-inflammatory cytokine, IL-10, 
while avoiding the global immunosuppression that is associated with the 
systemic administration of recombinant IL-10 [204,205]. IL-10 has 
previously shown to inhibit the expression of glycolytic genes in bone 
marrow-derived macrophages (BMDMs) and also has shown to inhibit the 
glycolysis pathway by decreasing the cellular ability to translocate GLUT1 
from intracellular vesicles to the cells surface [206]. Interestingly, a single 
intranasal delivery of an IL-10 plasmid in a RA CIA mouse model was 
shown to lead to a reduction in bone destruction and joint inflammation. 
This modulation in disease was suggested to be influenced by the 
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increased local levels of IL-10 causing a reduction of costimulatory 
molecules on APCs, in turn reducing T cell activation, T cell mediated IFN-
γ production, and macrophage activation [205,207–209]. Although 
expressing a gene of interest can induce immunosuppressive results, it is 
vital to ensure genes are delivered in a targeted manner to avoid the 
immunoactiviting properties associated with immune cells identifying 
extracellular DNA as damage‐associated molecular patterns (DAMPs) or 
pathogen‐associated molecular patterns (PAMPs) [210]. Recent studies 
have shown that continuous exposure to extracellular DNA or increased 
concentrations of extracellular DNA may contribute to autoimmunity and 
immune dysregulation [210–212].  

 

Figure 5. Biomaterials for the modulation of immune responses. (a,b) Relation between TRI MPs and 
bone erosion, (a) representative micro-CT images for a comparison of a murine paw without bone erosion 
(top) and an arthritic murine paw with severe bone erosion (bottom), (b) average joint bone surface area to 
volume ratio to compare, PBS vs blank MPs vs TRI MPs. Reprinted with permission from [213] an open access 
article distributed under Creative Commons Attribution License. (c,d) Schematic and PET images of 
regulatory vaccine, (c) schematic of dual-sized REGvac MPs for the treatment of CIA mice, (d) Representative 
PET images of mice paws 56 days after initial MP treatment. Reprinted with permission from [214]. copyright 
© 2019 American Chemical Society. (e,f) Schematic and extracellular flux assays of metabolite-based 
polymeric MPs, (e) schematic of metabolite-based MPs modulating DC responses and subsequent T cell 
responses, (f) metabolite-based MP-mediated modulation of glycolysis (ECAR = extracellular acidification 
rate) within DCs. Reprinted with permission from [215]. Copyright © 2020 Royal Society of Chemistry. 

Although there is a need to enhance the safety and efficacy of 
immunotherapies, recent efforts have shown that tissue-specific and/or 
cell-specific immunomodulation can be achieved in a more safe and 
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effective manner when immunoengineering concepts are applied 
[216,217]. Preclinical RA studies have predominately utilized biomaterials 
for targeted specificity and for controlling the release rate of 
immunomodulators to increase their therapeutic window. Poly(D,L-lactic-
co-glycolic-acid) (PLGA) is a widely used polymer for encapsulation and 
drug delivery [218]. Recent efforts have shown that PLGA microparticles 
(MPs) encapsulating immunomodulatory agents, can lead to the alteration 
of DC and T cell phenotypes in RA mice. Bassin et al. encapsulated TGF-β, 
rapamycin, and IL-2 within PLGA MPs (termed as TRI MPs) and recognized 
a modulation in CD4+ T cell populations with an increase in TREG infiltration 
within inflamed paws for a reduction of RA severity in CIA mice. On 
average, mice treated with TRI MPs demonstrated the least amount of 
bone erosion, as observed by micro-CT imaging (Figure 5a,b) [213]. The 
proposed mechanism of this technology entailed of decreasing T cell 
proliferation (due to the release of TGF-β and rapamycin), and the 
expansion of a regulatory cell population (due to the release of rapamycin, 
TGF-β and IL-2) [213]. Although TGF-β’s impact on metabolism is not well 
understood, rapamycin is a widely used mTOR inhibitor and is a master 
regulator of cell growth and metabolism [219], and IL-2 is a key regulator 
of T cell metabolism [220]. Furthermore, PLGA MPs can also be utilized in 
antigen-specific therapies. Allen et al. encapsulated a DC chemoattractant 
(GM-CSF), vitamin D3, TGF-β1, and the respective RA-relevant autoantigen 
within PLGA MPs (termed “regulatory vaccine” (REGvac)) for an alteration 
in inflammatory DC phenotypes, and subsequent inflammatory cytokine 
production and subsequent inflammatory T cell responses for an antigen-
specific treatment of RA in CIA mice (Figure 5c) [214]. The delivery of GM-
CSF, vitamin D3 and TGF-β1 can alter the PI3K pathway to allow for the 
generation of a tolerogenic environment that encourages the 
differentiation and maintenance of a tolerance-inducing DC phenotype 
[214,221]. The representative PET images exhibited a significantly lower 
standard uptake value of glucose in CIA mice treated with REGvac (Figure 
5d) [214]. Additionally, Mangal et al. demonstrated that polymeric MPs can 
be synthesized from an anti-inflammatory Krebs cycle metabolite, alpha-
ketoglutarate (aKG, termed poly alpha-ketoglutarate (paKG) MPs), to 
modulate DC function by altering their energy metabolism for a reduction 
in glycolytic activity with applications in immune-mediated diseases 
(Figure 5e,f) [215]. Notably, other biomaterials such as black phosphorus 
nanosheets (BPNs) within a platelet-rich plasma (PRP)-chitosan 
thermosensitive hydrogel has shown to treat RA in mice by increasing the 
levels of ROS within cells of inflamed joints for the elimination of 
abnormal synovial cells and tissue [222]. A reduction in joint swelling, 
cartilage damage and inflammatory cytokine production has also been 
achieved in CIA rats with an intra-articular injection of a thermosensitive 
hydrogel containing polyethyleneimine NPs that encapsulated and 
released Indomethacin (IND) and MTX. The delivery of IND with MTX has 
previously been shown to increase the absorption of MTX [223,224]. 
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Importantly, the use of biomaterials for drug delivery can increase the 
favorability of immunotherapies by increasing the ease of drug 
administration and reducing the side effects of off-site targeting. However, 
biomaterials for the treatment of RA have not yet been implemented in 
clinic, and these technologies need to be further explored in clinical trials 
prior to its use as a treatment in RA patients.    

FUTURE DIRECTION: APPLYING IMMUNOENGINEERING 
ADVANCEMENTS TO AUTOIMMUNE RA AND METABOLICALLY 
ENGINEERING IMMUNE CELLS FOR LONG-LIVED AND TARGETED 
REGULATION OF RA  

Evidence suggests that the dysfunctional humoral and cellular 
responses in RA are also shared with a number of other autoimmune 
diseases such as SLE, type 1 diabetes mellitus (T1DM) and MS [175]. 
Therefore, it is worth exploring immunotherapies that have shown benefit 
in other autoimmune diseases, and apply them as a potential therapeutic 
for RA. For example, CD19-CAR T cell therapy, for the elimination of B cells 
in SLE, has shown to eradicate autoantibody production, resolve disease 
in target organs, and increase murine lifespan [225]. Considering that in 
RA B-cell mediated auto-antibody production leads to progression of RA, 
the depletion of B cells using CD19-CAR T cell therapy may reverse 
autoantibody production and reduce RA symptoms. Furthermore, given 
that B and T cells produce cytokines, which are known to impact metabolic 
and immune pathways, an alteration of B and T cell frequencies can lead 
modulated metabolic environment [185,186]. Interestingly, in T1DM, 
CRISPR was utilized to counteract immune rejection when transplanting 
genetically engineered human embryonic stem cells (hESCs) differentiated 
insulin-producing cells that were deficient in the β2-microglobulin (B2M) 
gene, an essential constituent of MHC-I, but expressing a program death-
ligand 1 (PD-L1) transgene to prevent the attack by autoreactive T-cells 
[226]. This concept of genetically editing differentiated hESCs holds 
translational potential for the treatment of RA as an immune evasive tactic 
against autoreactive immune cells. On another note, in MS, the first case 
report for adoptive transfer of autologous Epstein–Barr virus (EBV)-
specific T cells had demonstrated an improvement in MS symptoms as 
observed by MRI for a decrease in disease activity as well as a reduction 
in IgG production [227]. Since EBV infects 95% of the global population and 
RA patients have flawed EBV-specific CD8+ T cells, the removal of 
accumulated EBV-infected B cells, by the adoptive transfer of autologous 
EBV-specific CD8+ T cells, may lead to the alleviation of RA symptoms in 
patients who have previously been infected with EBV [228–230]. 
Furthermore, a preclinical myelin-specific immunotherapy against four 
myelin basic proteins (MBP) for MS had shown to induce TREGs in the spleen 
as well as persistent tolerance to the MBPs [231]. The administration of this 
formulation, which consisted of these four MBP peptides, to MS patients 
led to a reduction in MS lesions with effects lasting post-treatment [232]. 
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Although a human clinical trial of citrullinated peptide DC 
immunotherapy for RA has been attempted [233], anti-CCP are 
autoantigens that are not restricted to RA [234], and therefore, antigen-
specific immunotherapies for RA in clinic are limited to an uncertainty in 
relevant-autoantigens that are specific to RA. However, identification of 
RA relevant-autoantigens may lead to the similar results as observed in 
the clinical MS study.  

In addition to the therapies that have proven effective in other 
autoimmune diseases, metabolically engineering immune cells of RA 
patients offers the potential for permanent and targeted 
immunoregulation. Six major metabolic pathways associated with 
immune cell function are glycolysis, the Krebs cycle, the PPP, FAO, FAS and 
amino acid metabolism [235]. Therefore, rate-limiting enzymes or 
metabolites within these metabolic pathways represent an ideal target to 
induce long-term tolerance or potentially remission. As previously noted, 
T cells transition toward anabolic metabolism once activated and shift 
from utilizing nutrients for survival and homeostasis toward clonal 
expansion and effector functions in its activated state [236]. However, 
memory T cells rely on catabolic metabolism to generate ATP by breaking 
down glucose, fatty acids, and amino acids to fuel the Krebs cycle and 
OXPHOS [237]. Thus, the differences in bioenergetic pathways for 
activated T cells and memory T cell depicts a window for target-based 
therapies that can reduce off-target effect. For example, mTOR plays a 
principal role in regulating memory CD8+ T cell differentiation and 
inhibition of mTOR has been found to prevent glycolysis [238]. The 
administration of rapamycin, an mTOR inhibitor, in mice with an acute 
lymphocytic choriomeningitis virus infection had shown to promote 
memory CD8+ T cell expansion and function. Pan et al. demonstrated that 
the inhibition of mitochondrial free fatty acid β-oxidation reduces the 
frequency of memory CD8+ T cells therefore supporting the evidence of 
memory T cells relying on catabolic metabolism [239]. Though increasing 
the frequency of memory T cells enables an approach to induce long term 
tolerance, it is also important to explore increasing the persistence and 
lifespan of memory T cells for the treatment of RA.  

Interestingly, the increased expression of CD39 in memory T cells has 
been identified as a characteristic of immunosenescence and therefore is 
implicated in facilitating apoptotic pathways for a decreased ability in 
mounting effective memory responses [240]. Memory T cells with a high 
CD39 expression are shown to be metabolically stressed with increased 
AMPK phosphorylation, decreased cytoplasmic ATP levels, and reduced 
glucose influx. Taking these characteristics into consideration, in addition 
to the compromised mitochondrial function of CD39+ memory T cells, this 
suggests that these cells undergo apoptosis due to the possibility of 
inadequately producing ATP via OXPHOS. Individuals with low CD39 
expression demonstrated an increase in vaccine-specific memory T cells 
for a more efficacious vaccine response. Pharmaceuticals targeting 
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pAMPK can prevent CD39+ T cells from initiating the apoptotic pathway 
for an increased durability in memory T cell responses [241]. Therefore, 
the inhibitory effects of mTOR and AMPK can metabolically reprogram 
memory T cells for an increased frequency and lifespan to potentially 
induce long-term tolerance or remission in RA. Nonetheless, 
pharmaceuticals with metabolic and immunomodulatory effects would 
need to be delivered in a controlled manner to prevent non-specific 
immune modulation as described below.    

Biomaterials are an effective approach to delivering 
immunomodulatory agents to cells of interest. The ability to deliver mTOR 
or AMPK inhibitors in a targeted manner to anti-inflammatory RA-specific 
T cells may induce extended periods of immune tolerance in RA. 
Additionally, the delivery of other pharmaceuticals, such as glycolytic 
inhibitors, to specific immune cells may induce desired effects in targeted 
cells and prevent non-specific immunomodulation. For example, the 
delivery of glycolytic inhibitors, such as 2-DG and PFK15, to activated and 
inflammatory immune cells can lead to a shift toward anti-inflammatory 
bioenergetic requirements [242]. However, the systemic administration of 
these small molecules can lead to non-specific glycolytic inhibition and can 
affect the host’s ability to mount an immune response against other 
pathogens [243–245]. Therefore, utilizing micro- or nano- particles such as 
PLGA, for the delivery of these glycolytic inhibitors can lead to a targeted 
and controlled release [246,247]. Both the size and composition of particles 
directly affects the release rate of the encapsulated content as well as the 
overall degradation rate of the particle, thus generating a customizable 
system [248,249]. Generally, particles with a diameter less than 10 µm can 
be phagocytosed by APCs for a modulation of their cellular characteristics 
[250]. PLGA is a highly favored polymer due to its easily adjustable 
hydrophobicity, biocompatibility and inert characteristics [249]. However, 
delivering immunomodulatory agents within an anti-inflammatory 
particle for the treatment of RA may synergize the targeted immune cells’ 
ability to shift toward an anti-inflammatory state. As mentioned 
previously, Mangal et al. demonstrated that an anti-inflammatory 
metabolite-based MP can be synthesized from the Krebs cycle metabolite 
aKG for an induction of non-activated DC phenotype and an upregulation 
in metabolic pathways associated with immune suppression [215]. 
Therefore, utilizing this technology as a delivery vehicle for inflammatory 
diseases, such as RA, may be impactful in generating a targeted anti-
inflammatory response as compared to utilizing an inert particle as a 
delivery vehicle. Remarkably, the delivery of paKG MPs encapsulating a 
glycolytic inhibitor, PFK15, and the collagen-induced arthritis self-antigen, 
collagen type II, led to suppression in DC activation and a subsequent 
generation of immunosuppressive antigen-specific responses for an 
ultimate normalization in paw inflammation in CIA mice [251]. 
Biomaterials may also be utilized to modify the function of a number of 
immune cells implicated in RA, and therefore, should be studied in cell 
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types such as APCs, T cells, neutrophils, ILCs and FLSs. Furthermore, 
Colombo et al. demonstrated that particles coated with a synovium 
homing peptide can lead to a targeted delivery of particles within synovial 
tissue [252]. Therefore, synovium homing peptides are an additional 
methodology that can be employed to prevent non-specific 
immunomodulation. Although there are several metabolic aberrations 
within adaptive immune cells, innate immune cells, and within the 
synovial environment, several immunoengineering approaches have 
been discovered for the modulation of metabolic abnormalities for the 
treatment of RA symptoms (Figure 6). Nevertheless, further preclinical 
and clinical research is required to continue advancing and generating 
safe, effective and personalized therapeutics for RA.  

 

Figure 6. Metabolic abnormalities within RA and immunoengineering approaches for the modulation 
of metabolism. Metabolic abnormalities (right side) within adaptive immune cells, the synovium and 
innate immune cells have shown to lead to the progression of RA and synovial inflammation. Several 
immunoengineering approaches (right side) have been discovered for the modulation of metabolic 
abnormalities for the treatment of RA symptoms.  

CONCLUSIONS 

RA is a complex and metabolically heterogeneous disease, in turn 
making it difficult to treat with standard therapeutics. The finding of 
metabolic irregularities contributing to immune dysregulation in 
autoimmunity has led to the identification of novel therapeutic strategies. 
As such, the pairing of immunometabolism approaches with concepts of 
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immunoengineering may lead to the development of more effective 
therapeutics by being able to target specific metabolic pathways. As shown 
in this review, biomaterials, such as micro- and nano- particles, can be 
synthesized from an anti-inflammatory metabolite to generate an 
immunosuppressive delivery vehicle capable of targeting and modulating 
phagocytes such as DCs. Importantly, micro- and nano- particles can 
encapsulate various immunomodulatory agents to induce desired effects 
in targeted immune cells to induce long-term tolerance or remission. 
However, the joint field of immunometabolism and immunoengineering 
face a challenge of formulating precise delivery systems that are capable 
of enhancing therapeutic function of encapsulated molecules that are 
negatively charged or hydrophilic, while circumventing nonspecific 
toxicities, off-target effects and undesired pharmacokinetics and low 
bioavailability [216]. Furthermore, the field is challenged by scale-up 
manufacturing for the translation of biomaterial-based immunotherapy 
to clinic for the treatment of RA [216]. Therefore, further research is 
required prior to the clinical translation of biomaterials with 
immunometabolism reprogramming capabilities for the treatment of RA.  
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