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ABSTRACT  

Background: The concept of adipose tissue radiodensity is emerging and 
its relationship to disease prognosis has been infrequently explored. The 
aims of the present study were to evaluate published literature that 
explored adipose tissue radiodensity in relation to outcomes in health and 
disease and to summarize methodologies used to evaluate adipose tissue 
radiodensity by computed tomography (CT).  

Methods: A comprehensive literature review included all published 
studies that applied CT imaging of the abdominal region to define adipose 
tissue radiodensity. The review was performed without regard for study 
design or quality.  

Results: We identified 22 studies that evaluated the relationship between 
adipose tissue radiodensity and outcomes. The literature reviewed 
highlights significant methodological variation in terms of abdominal 
region selected, slice thickness, contrast media, dose, software, and 
radiodensity ranges used to define adipose tissues. This is primarily due to 
a lack of consensus about the effect such methodological variables have 
on body composition parameters.  

Conclusions: Authors should carefully report adipose tissue radiodensity, 
especially when it comes to prognosis inference. Consensus on 
methodology will enable meaningful advancement in understanding the 
importance of adipose tissue radiodensity in different disease conditions.  

KEYWORDS: adipose tissue; computed tomography; VAT; SAT; 
radiodensity 

INTRODUCTION  

Computed tomography (CT) based image analysis enables the precise 
quantification of body composition and different body compartments, 
particularly adipose tissue, and skeletal muscle (SM). CT is 
opportunistically applied in the patient populations that require CT 
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imaging as part of standard assessment for diagnosis or treatment and is 
considered the gold standard for body composition assessment in clinical 
research [1,2]. CT imaging uses Hounsfield units (HU), a radiological unit 
of measure, to differentiate tissues. To date, CT imaging has revealed that 
SM loss (atrophy) and muscle with low radiodensity (an indicator of fatty 
infiltration of muscle known as myosteatosis) are prevalent in people with 
different chronic diseases [3], and each of these features have been 
independently associated with reduced overall survival (OS) in cancer 
patients [4]. Several studies have reported associations between low 
muscle radiodensity, all-cause mortality, and systemic inflammation in 
cancer patients [4–12], as well as in other chronic diseases [3]. However, 
little is known about adipose tissue radiodensity, also defined as adipose 
tissue attenuation or fat attenuation. In experimental models, lower 
adipose tissue radiodensity (HU) is associated with higher adipose tissue 
lipid content [13], this is also supported by a radiologic finding from a 
small pediatric population [14]. In contrast, adipose tissue with higher 
radiodensity is indicative of relatively lower lipid content and higher 
vascularity [13,15], and possible deposition of extracellular matrix [16]. 
Therefore, adipose tissue radiodensity may provide an indirect measure 
of tissue lipid depletion and composition since adipose tissue is composed 
of adipocytes whose main function is to store energy in the form of 
triglyceride (TG).  

Adipose tissue is a metabolically dynamic organ that synthesizes 
biologically active compounds and regulates metabolic homeostasis [17]. 
Fat loss is associated with poor prognosis in patients with advanced cancer, 
independent of body weight [18]. Two major depots of adipose tissue, 
visceral (VAT) and subcutaneous (SAT) adipose tissue, differ by location as 
well as metabolic functions [19]. VAT and SAT behave differently in the 
last year of life in cancer patients [20]. Higher subcutaneous adiposity, 
measured by CT, was associated with lower mortality risk in cancer 
patients [20,21]; likewise, in cirrhosis, lower adiposity in the subcutaneous 
region was associated with higher mortality in female patients but not in 
male patients, suggesting possible sexual dimorphism associated with CT-
based fat measures [22]. On the other hand, inconsistent associations 
between visceral adiposity and cancer survival have been reported 
[6,23,24]. The measure of adipose tissue radiodensity, revealed by CT 
imaging, adds a new level of complexity to understanding the importance 
of fat depots in relation to survival.  

Limited studies exist to associate CT-derived adipose tissue 
radiodensity with distinct health outcomes in different disease conditions, 
including cancers [25–33], metabolic complications [34–44], as well as 
other health conditions [45,46]. When applied to evaluation of muscle 
radiodensity, CT-derived studies show variable approaches regarding the 
evaluation of different body regions, muscle groups, different 
radiodensity boundaries and in use of contrast agents [47,48]. Whether 
similar variability is prevalent for measures of adipose tissue radiodensity 
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in the literature is not known. The objectives of this review are to 
summarize the CT-based approaches performed in different health 
conditions to evaluate adipose tissue radiodensity (VAT and SAT) in 
humans and evaluate variability in methodologies to bring consensus to 
evaluation of adipose tissue radiodensity as an emerging prognostic factor. 

METHODS  

Search Strategies  

Guidelines from the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) [49,50] were used to conduct the literature 
search. PRISMA search strategies are shown in Figure 1. An electronic 
literature search of peer-reviewed journal articles was conducted using 
Scopus and U.S. National Library of Medicine (PubMed). Manuscripts 
indexed from January 1, 1990 to March 31, 2021 were queried. Databases 
were searched using following terms (VAT Radiodensity) OR (SAT 
Radiodensity) OR (fat radiodensity) OR (adipose tissue radiodensity) OR 
(lipid radiodensity) OR (VAT Hounsfield unit) OR (SAT Hounsfield unit) OR 
(fat Hounsfield unit) OR (adipose tissue Hounsfield unit) OR (lipid 
Hounsfield unit).  

Eligibility Criteria  

Review articles, studies on experimental models, articles published in 
a language other than English, articles not available as full text, studies 
which did not use CT, and studies which used CT and measured abdominal 
fat but did not report radiodensity measures were removed from further 
consideration. Peer-reviewed original research articles were included 
regardless of study type (i.e., retrospective, prospective, or cross sectional) 
and there were no exclusion criteria regarding number of patients nor 
study quality. For the selection process (Figure 1), the first researcher 
systematically assessed the eligibility of each study resulting from 
database searches based on title and abstract reading. The complete 
selected articles were carefully reviewed by reading full text. Articles were 
discussed with the study team and eligibility was determined by consensus, 
if needed. A hand search of the reference lists from identified articles was 
carried out to find additional relevant publications. Data were extracted 
from the result sections, tables, and figures of each article. Full texts of 
eligible studies were reviewed by the investigators against the inclusion 
and exclusion criteria and any disagreements were resolved by consensus 
among authors.  
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Figure 1. PRISMA flow chart for the identification, screening, eligibility and inclusion of manuscripts.  

RESULTS  

A comprehensive literature review was conducted to firstly understand 
what is known about fat attenuation in the published literature. Twenty-
two studies met inclusion criteria (Table 1). All studies measured VAT and 
SAT radiodensity except for two studies those only reported SAT 
radiodensity [29,46]. Nine studies evaluated VAT and/or SAT radiodensity 
in oncology patients [25–33]. Other studies assessed CVD risk factors 
and/or CVD associated mortality (8 studies) [34,36,37,40,42,44,45]; weight 
change (2 studies) [38,39]; mortality risks in older adults (1 study) [35], risk 
of type II diabetes (1 study) [43], and risk of hypertriglyceridemia-induced 
pancreatitis severity (1 study) [46] (Table 1).  
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Table 1. Published studies reporting adipose tissue radiodensity. 1 

Ref Participant 
Age and Sex 
Distribution 

Instrument Used 
Region 
Used 

Thickness 
of Slice 

Contrast 
Used 

Dose 
(voltage/ 
current) 

Software 
Used 

Study Outcome 

[25] Extremity 
sarcoma  

Male, n = 86, age = 
50.7 ± 17.0 years  
Female, n = 49, age 
= 50.8 ± 17.8 years 

Siemens Biograph 
16 or 64, (Siemens, 
Erlangen, Germany 
or GE Healthcare 
discovery, 
Milwaukee, 
Wisconsin, USA) 

Remote 
from the 
site of 
sarcoma 

5 mm non-
contrast 

120 kVp/11 
mA 

Osirix 
version 
3.2.1(Pixmeo, 
Geneva, 
Switzerland) 

↑ mortality in ♀♂ 
associated with ↑ 
SAT radiodensity 
but not with VAT 

[26] Extremity 
soft tissue 
sarcoma 

n = 60, male, n = 
32, female, n = 28, 
age = 50 ± 18 years 

Whole-body 18-F-
FDG-PET/CT 
(Siemens Biograph 
16 or 64, Siemens, 
Erlangen, Germany 
or GE Discovery, GE 
Healthcare, 
Milwaukee, WI, 
USA) 

L4  5 mm non-
contrast 

120 kVp/11 
mA 

Osirix 
version 
3.2.1(Pixmeo, 
Geneva, 
Switzerland) 

↑ post-surgical 
wound infections in 
♀♂ associated with 
↑ SAT and VAT 
radiodensity, 
however, VAT 
radiodensity lost 
significance after 
adjustment for 
covariates 
↑ tumor recurrence 
in male and female 
associated with ↑ 
SAT radiodensity 
only 

  2 
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Table 1. Cont. 3 

Ref Participant 
Age and Sex 
Distribution 

Instrument Used 
Region 
Used 

Thickness 
of Slice 

Contrast 
Used 

Dose 
(voltage/ 
current) 

Software 
Used 

Study Outcome 

[27] Soft tissue 
sarcoma 

n = 137, mean age 
= 53 ± 17.7 years; 
male, n = 75, 
female, n = 62 

N/R L4 N/R N/R N/R ImageJ 
(v1.42q, NIH, 
USA) 

Both VAT and SAT 
radiodensity had no 
association with OS 

[28] Pancreatic 
adenocarci
noma 

n = 66, male 36, 
female 30, mean 
age = 66 years 

Biograph mCT 128 
scanner (Siemens 
Healthcare, 
Knoxville, TN, USA)  

L4  N/R non-
contrast 

120 
kVp/100 
mA 

Osirix MD 9.0 
(Pixmeo; 
Geneva, 
Switzerland) 

↓ OS in ♀♂ 
associated with ↑ 
SAT and VAT 
radiodensity 

[29] Prostate 
Cancer  

Male, n = 171, age 
= 66.0 ± 8.1 years 

Varian Eclipse 
(Varian Medical 
Systems, Palo Alto, 
CA) 

L4-L5 
vertebral 
interface 

N/R N/R N/R Eclipse CT 
ranger tool 

↓ SAT radiodensity 
was associated with 
a ↓ rate of 
biochemical failure 
following 
radiotherapy 

[30] Head and 
neck cancer  

n = 152, male 128, 
female 24, mean 
age = 62 years 

Biograph mCT 128 
scanner (Siemens 
Healthcare, 
Knoxville, TN, USA)  

L4 N/R non-
contrast 

120 
kVp/100 
mA 

OsiriX MD 9.0 
(Pixmeo, 
Geneva, 
Switzerland) 

↓ progression-free 
survival and distant 
failure-free survival 
in ♀♂ associated 
with ↑ VAT 
radiodensity but not 
with SAT 

  4 
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Table 1. Cont. 5 

Ref Participant 
Age and Sex 
Distribution 

Instrument Used 
Region 
Used 

Thickness 
of Slice 

Contrast 
Used 

Dose 
(voltage/ 
current) 

Software 
Used 

Study Outcome 

[31] Esophageal
cancer 

n = 145, male 109, 
female 36, median 
age = 60.3 years 

N/R L3 N/R non-
contrast 

N/R PLANET 
Onco 
software 
(DOSIsoft, 
Cachan, 
France) 

↓ VAT and SAT 
radiodensity 
associated with 
better OS 

[32] Hepatocellu
lar 
carcinoma  

n = 101, male 89, 
female 12, mean 
age = 62.0 ± 12 
years 

N/R L3 N/R non-
contrast 

N/R SliceOmatic 
(V4.2; 
Tomovision, 
Montreal, QC, 
Canada) 

↑ VAT radiodensity 
associated with ↑ 
mortality and 
severe adverse 
events 

[33] Multiple 
myeloma 

n = 91, male 52, 
female 39, mean 
age = 64.0 ± 11 
years 

Siemens Biograph 
TruePoint mCT 40 
(Siemens 
Healthcare, USA) 

L3 2.1 mm non-
contrast 

120–140 
kVp/120 
mA 

SliceOmatic 
(V5.0; 
Tomovision, 
Montreal, QC, 
Canada) 

↑ SAT radiodensity 
associated with ↓ OS 
and event-free 
survival 

[34] Apparently 
healthy 

Male, n = 1680, age 
49.6 ± 10.6 years 
Female, n = 1518, 
age = 51.9 ± 9.8 
years 

N/R N/R 5 mm  N/R N/R N/R ↑ adverse 
cardiometabolic 
risk in ♀♂ 
associated with ↓ 
VAT and SAT 
radiodensity 

  6 
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Table 1. Cont. 7 

Ref Participant 
Age and Sex 
Distribution 

Instrument Used 
Region 
Used 

Thickness 
of Slice 

Contrast 
Used 

Dose 
(voltage/ 
current) 

Software 
Used 

Study Outcome 

[35] Apparently 
healthy 
elder 

Study 1: Male, n = 
1345, age 73.5 ± 
2.9 years Female, 
n = 1390, age 73.5 
± 2.9 years 
 
Study 2: male, n = 
2207, age = 76.6 ± 
5.3 years female, n 
= 2924, age = 76.4 
± 5.5 years 

Study 1: Somatom 
Plus 4 scanners 
(Siemens, Erlangen, 
Germany); PQ 200S 
(Marconi Medical 
Systems, Cleveland, 
OH); 9800 
Advantage (General 
Electric, 
Milwaukee, WI) 
Study 2: Sensation; 
Siemens Medical 
Systems) 

L4/L5 
vertebrae 
interface 

10 mm N/R N/R Interactive 
Data 
Language 
software (ITT 
Visualization 
Solutions, 
Boulder, CO, 
USA)  

↑ death risk in ♀♂ 
associated with ↑ 
VAT and SAT 
radiodensity 

[36] Apparently 
healthy 

n = 3079, male, n = 
1516, age = 51.6 ± 
9.5 years; female, 
n = 1563, age = 
48.7 ± 10.1 years 

LightSpeed Ultra; 
General Electric, 
Milwaukee, WI 

N/R 5 mm N/R N/R Aquarius 3D 
Workstation 
(TeraRecon 
Inc., San 
Mateo, CA) 

↓ risk of subclinical 
atherosclerosis in 
♀♂ associated with 
↓ SAT and VAT 
radiodensity 

[37] Apparently 
healthy 

n = 1730; male, n = 
958, age = 44.1 ± 
6.3 years female, n 
= 772, age = 46.0 ± 
5.7 years 

Discovery VCT 64-
slice PET/CT 
scanner (GE 
Healthcare) 

2 cm 
above the 
S1 
vertebra 

5 mm N/R 120 
kVp/100–
300 mA 

Aquarius 3D 
Workstation 
(TeraRecon 
Inc., San 
Mateo, CA) 

↑ adverse metabolic 
profiles at follow-up 
in ♀♂ associated 
with ↓ VAT and SAT 
radiodensity 

  8 
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Table 1. Cont. 9 

Ref Participant 
Age and Sex 
Distribution 

Instrument Used 
Region 
Used 

Thickness 
of Slice 

Contrast 
Used 

Dose 
(voltage/ 
current) 

Software 
Used 

Study Outcome 

[38] Apparently 
healthy  

Male, n = 500, age 
= 44.3 ± 5.9 years; 
female, n = 366, 
age = 47.7 ± 5.8 
years 

Aquarius 3D 
Workstation 
software 
(TeraRecon Inc., 
San Mateo, CA, 
USA) 

12.5 cm 
above the 
S1 
vertebra  

5 mm N/R N/R N/R ↑ weight gain in ♀♂ 
associated with ↓ 
VAT and SAT 
radiodensity 
 

[39] Obese Female, n = 38; 
obese, n = 23, age 
= 42.8 ± 9.6; non-
obese, n = 15, age 
= 44.8 ± 12.4 years 

Discovery VCT 
(VCT) PET/CT 
system (General 
Electric Medical 
Systems, 
Milwaukee, WI, US 

T12-S1 
vertebra 

0.625 mm N/R 120 kVp/50 
mA 

Carimas 
(version 2.9, 
Turku PET 
Centre) 

↑ VAT and SAT 
radiodensity 
correlated 
negatively with the 
decreased levels of 
ApoB/ApoA-I ratio, 
leucine and GlycA 
 

[40] Apparently 
healthy 

n = 1106, baseline 
age = 45.1 ± 6.2 
years; male, n = 
618; female, n = 
488 

LightSpeed Ultra 
(General Electric, 
Milwaukee, 
Wisconsin) 

N/R 5 mm  N/R N/R Aquarius 3D 
Workstation 
(TeraRecon 
Inc., San 
Mateo, CA) 

↑ CVD risk factors in 
♀♂ associated with 
↓ VAT and SAT 
radiodensity 

  10 
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Table 1. Cont. 11 

Ref Participant 
Age and Sex 
Distribution 

Instrument Used 
Region 
Used 

Thickness 
of Slice 

Contrast 
Used 

Dose 
(voltage/ 
current) 

Software 
Used 

Study Outcome 

[41] Apparently 
healthy 

Male, n = 1008, age 
44.1 ± 6.3; female, 
n = 821, age = 46.1 
± 5.7 years   

LightSpeed Ultra 
(General Electric, 
Milwaukee, WI) 

N/R 5 mm N/R 120 
kVp/N/R 

Aquarius 3D 
Workstation 
(TeraRecon 
Inc, San 
Mateo, CA, 
USA) 

↑ cardiometabolic 
risk biomarkers in 
♀♂ associated with 
↓ VAT and SAT 
radiodensity 

[42] Apparently 
healthy 

n = 1511, Male and 
female specific 
age not defined 

Electron-beam CT 
(Imatron C-150), 
Multi-detector CT 
scanners (Sensation 
64, GE Lightspeed; 
Siemens S4 Volume 
Zoom; and Siemens 
Sensation 16) 

N/R 6 mm N/R N/R MIPAV 4.1.2 
software 
(NIH, USA) 

↓ incident metabolic 
syndrome, 
circulating 
inflammatory 
biomarkers and 
insulin resistance in 
♀♂ associated with 
↑ VAT radiodensity 

[43] Apparently 
healthy 

Male, n = 505, 
median age = 61 
years 

NX/I CT scanner 
(GE Medical 
Systems, 
Waukesha, 
Wisconsin) 

L4-L5 
vertebral  
interface 

3 mm non-
contrast 

120 
kVp/250–
300 mA 

OsiriX 
(Pixmeo, 
Geneva, 
Switzerland) 

↑ insulin and insulin 
resistance 
associated with ↓ 
VAT and SAT 
radiodensity 

  12 
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Table 1. Cont. 13 

Ref Participant 
Age and Sex 
Distribution 

Instrument Used 
Region 
Used 

Thickness 
of Slice 

Contrast 
Used 

Dose 
(voltage/ 
current) 

Software 
Used 

Study Outcome 

[44] Undergoes 
abdominal 
hysterecto
mies or 
myomecto
my 
 

Female, n = 241, 
age 47 ± 5.2 years 

GE Light Speed 1.1 
CT scanner or the 
Brightspeed CT 
scan (General 
Electric Medical 
Systems, 
Milwaukee, WI)   

L4-L5 
vertebrae  
interface 

5 mm N/R N/R Image J 1.33u 
(NIH, USA) 

↑ fat cell weight and 
cardiometabolic 
risk profile 
associated with ↓ 
VAT and SAT 
radiodensity 

[45] Apparently 
healthy 

Male, n = 1721, age 
49.7 ± 10.7 years 
Female, n = 1603, 
age = 52.2 ± 9.9 
years  

N/R N/R 5 mm  N/R N/R N/R ↑ All cause 
mortality, cancer 
mortality in ♀♂ 
associated with ↓ 
VAT and SAT 
radiodensity 

[46] Acute 
pancreatitis 

n = 242, mean age 
= 40 years; male, n 
= 193; female, n = 
49  

64-slice spiral CT 
scanner 
(Lightspeed VCT, 
GE healthcare, USA) 
or Aquilion ONE 
320 Slice CT 
scanner (Toshiba, 
Japan) 

L3 0.625 mm 
and 0.5 
mm 

contrast-
enhanced 

120 
kVp/300–
500 mA 

Image J (NIH, 
USA) 

SAT radiodensity 
was not associated 
with 
hypertriglyceridemia
-induced pancreatitis 
severity 

Abbreviations: N/R, not reported; SAT, subcutaneous adipose tissue; VAT, visceral adipose tissue; OS overall survival; ♀, female; ♂, male; ↑, significant 14 
increase; ↓, significant decrease; GlycA, glycine and glycoprotein acetyls; kVp, kilovoltage peak; mA, milliampere; T12, 12th thoracic vertebrae; S1, 1st sacral 15 
vertebrae.16 
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Use of Abdominal Region for CT Analysis  

Different abdominal regions were used to determine adipose tissue 
radiodensity. Four studies (18.2%) measured radiodensity from L3 [31–
33,46]; four studies from L4 [26–28,30]; and four studies from L4/L5 region 
[29,35,43,44], respectively. One study measured from 2 cm above the S1 
vertebra [37]; one 12.5 cm above the S1 vertebra region [38]; one T12-S1 
vertebra region [39]; and one study did not specify area but mentioned 
remote area from the site of sarcoma [25]. In contrast, six (27.3%) studies 
did not report the region used for CT measurement (Table 1). The rationale 
for using one region over another was not provided in any of the studies. 

Use of Slice Thickness for CT Analysis  

Studies have applied different slice thickness to their analysis. Ten 
studies (45.5%) used 5mm slice thickness [25,26,34,36–38,40,41,44,45]; one 
study (4.5%) used 10 mm [35], one study 0.625 mm [39]; one study used 6 
mm [42]; one study 3 mm [43]; one study both 0.625 and 0.5 mm [46]; and 
another study used 2.1 mm slice thickness [33]. Six studies (27.3%) did not 
report slice thickness [27–32] (Table 1).  

Use of Contrast Agents for CT Analysis  

Most studies (13 out of 22; 59.1%) did not report whether they used 
contrast or non-contrast CT images [27,29,34–42,44,45]. Eight studies (36.4%) 
used non-contrast CT images [25,26,28,30–33,43]. Whereas only one study 
(4.5%) reported use of contrast-enhanced CT images [46] (Table 1).  

Use of CT Dose 

Ten studies (45.5%) reported tube voltage 
[25,26,28,30,33,37,39,41,43,46], of them all studies used 120 kVp except one 
study which used 120–140 kVp [33]. Nine studies (40.1%) reported tube 
current [25,26,28,30,33,37,39,43,46], of which 2 studies used 11 mA [25,26], 
two studies 100 mA [28,30], and one study of each used 50 [39], 120 [33], 
100–300 [37], 250–300 [43], and 300–500 [46] tube current, respectively. 

Use of Software for CT Analysis  

Five studies (22.7%) used OsiriX (Pixmeo, Geneva, Switzerland) 
software [25,26,28,30,43], four studies (18.2%) used Aquarius 3D 
Workstation (TeraRecon Inc., San Mateo, CA) software [25,26,28,30,43]; 
three studies (13.6%) Image J (NIH, USA) software [27,44,46]; two studies 
(9.1%) used SliceOmatic (Tomovision, Montreal, QC, Canada) software 
[32,33]; one study (4.5%) Interactive Data Language (ITT Visualization 
Solutions, Boulder, CO, USA) software [35]; one study Carimas (version 2.9, 
Turku PET Centre, Turku, Finland) software [39]; one study MIPAV 4.1.2 
(NIH, USA) software [42]; one study used Eclipse CT ranger tool [29]; and 
another study used PLANET Onco (DOSIsoft, Cachan, France) software [31], 
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respectively. In contrast, three study did not report type of software they 
were used for CT image analysis [34,38,45] (Table 1). 

Use of Radiodensity Ranges for CT Analysis  

The range of HU values used to quantify adipose tissue radiodensity 
also varied between studies. Eight studies (36.4%) used HU range −45 to 
−195 [29,34,36–38,40,41,45]; six studies (27.3%) −30 to -190 [27,31–33,43,44], 
and two studies (9.1%) used range from -50 to -200 [28,30]. One study (4.5%) 
used range from −50 to −250 [46]; one study −250 to −50 [25], and another 
study −300 to −10 [39], respectively. In contrast, three studies (13.6%) did 
not report radiodensity range [26,35,42] (Table 2).  

Table 2. Range and mean HU values for fat radiodensity in studies. 

Range Male Female Ref 

VAT radiodensity SAT radiodensity VAT radiodensity SAT radiodensity 

−195 to −45 −95.2 ± 4.5 −99.6 ± 4.5 −92.4±4.4 −102.3±5.1 [34] 

−195 to −45 −95.2 ± 4.5 −99.6 ± 4.4 −92.2 ± 4.4 −102.3 ± 5.1 [36] 

−195 to −45 −95.5 ± 4.5 −99.8 ± 4.6 −91.9 ± 4.3 −101.9 ± 5.3 [37] 

−195 to −45 −95.5 ± 4.5 −99.8 ± 4.8 −92.3 ± 4.4 −102.0 ± 5.9 [38]* 

−195 to −45 −93.9 ± 7.0 −106.3 ± 4.3 −93.9 ± 4.7 −100.8 ± 5.2 [40]* 

−195 to −45 −95.5 ± 4.5 −99.9 ± 4.5 −92.0 ± 4.3 −101.9 ± 5.5 [41] 

−195 to −45 - −99.2 ± 6.1 - - [29]˄ 

−195 to −45 −95.2 ± 4.5 −99.6 ± 4.4 −92.5 ± 4.4 −102.3 ± 5.1 [45] 

−190 to −30 −85.9 ± 10.6 −101.8 ± 29.0 −85.9 ± 10.6 −101.8 ± 29.0 [27]#  

−190 to −30 −89.6 (−94.7 to 

−82.1) 

−99.7 

(−103 to −94.0) 

- - [43]¥ 

−190 to −30 - - −87.8 ± 7.5 −103.2 ± 5.2 [44]± 

−190 to −30 −96.0 −96.0 −89.5 −99.0 [31] 

−190 to −30 −85.0 ± 9.0 −93.0 ± 12.0 −85.0 ± 9.0 −93.0 ± 12.0 [32]# 

−190 to −30 −91.5 

(−94.9 to −82.0) 

−87.8 

(−94.1 to −72.0) 

-94.1 

(−98.8 to -87.6) 

−96.0 (−101.0 to 

−83.4) 

[33] 

−200 to −50 −92.0 

(−110 to −63.8) 

−96.7 

(−114 to −95.1) 

- - [28]$ 

−200 to −50 −97.5 

(−114 to −66.7) 

−101 

(−116 to −66.6) 

- - [30]$ 

−190 to 50  −95.8 ± 7.7  −95.8 ± 7.7 [46]£ 

−250 to −50 −89.2 ± 9.8 −98.7 ± 8.2 −89.2 ± 9.8 −98.7 ± 8.2 [25]# 

−300 to −10 - - −111.9 ± 6.8 (−94.9 

± 12.2) 

−112.3 ± 7.1 (−97.7 

± 17.1) 

[39]¶ 

Values are expressed as mean ± SD; *, Baseline measure; ^, Male and SAT radiodensity only; ¥, Male only and reported median with 

range; ±, Reported female only; #, Did not report male/female separately; $, Reported median with range and did not report male female 

separately; £, Reported only SAT radiodensity; ¶, Female obese and non-obese (in parenthesis) only. 
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DISCUSSION  

The analysis of body composition has become more precise and 
consistent with the development of CT based imaging analysis tools [51]. 
Analysis of body composition to quantify and characterize skeletal muscle 
and adipose tissue by CT has become more common in clinical research 
settings, where routine CT images taken as part of diagnostic work up and 
treatment planning exist in patient record. However, considerable 
differences between studies existed with respect to the abdominal regions 
analyzed, use of slice thickness, contrast medium, dose, software and 
radiodensity ranges to assess adipose tissue radiodensity in humans. In 
most cases, background or rationale was not provided for one method 
used over another. These differences may explain the reason for the 
variation in mean VAT and SAT radiodensity reported in published 
literature (Table 2). A standardized approach to assessment of adipose 
tissue radiodensity is required to ensure consistency in reporting in the 
published literature similar to what has been done for muscle 
characteristics [48,52].  

The concept of adipose tissue radiodensity being prognostic is new and 
implicated previously in studies primarily focusing metabolic 
abnormalities [34–44]. Half of the studies (11 out of 22) included in this 
review focused on metabolic complications and seven of those were 
carried out by the same research group using offspring and third 
generation cohort participants of the Framingham Heart Study [34,36–
38,40,41,45]. Nine studies (41%) reported within the oncology setting [25–
33] where routine CT analysis performed for diagnosis, staging and clinical 
follow-up in cancer populations and recent studies are showing prognostic 
significance of adipose tissue radiodensity in cancer survival [20,22]. 

Lower adipose tissue radiodensity is indicative of higher adipose tissue 
lipid content [13,14], and associated with weight gain, obesity and 
cardiometabolic risks [34,37–41,53]. In contrast, higher adipose tissue 
radiodensity (i.e., adipose tissue depleted of lipid content) is associated 
with shorted survival in cancer patients [28,30,32,33,54], as well as 
increase mortality in older adults [45]. Several potential mechanisms have 
been proposed to explain higher VAT and SAT radiodensity, such as 
increased vascularity [15,55], and/or deposition of extracellular matrix or 
fibrosis [35,45,56]. Tissues with higher vascularity appear to have higher 
radiodensity due to the increased blood content [55]. For example, brown 
adipose tissue shows higher radiodensity due to having higher vascularity 
[15]. Higher radiodensity of adipose tissue is associated with smaller 
adipocytes and increased extracellular matrix deposition (fibrosis) in 
primates [35]. A recent study also indicated that higher subcutaneous 
adipose tissue radiodensity is associated with reduced subcutaneous and 
visceral adipose tissue as well as reduced leptin levels [33]. Fibrosis is 
attributed to excessive deposition of extracellular matrix (ECM) protein 
components and subsequent interstitial deposition of fibrotic material [16]. 
Higher radiodensity has been observed in fibrotic plaques compared to 
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lipid-rich plaques in a study of coronary artery plaques [56]. There was a 
positive association between higher adipose tissue radiodensity and 
elevated urinary connective tissue growth factor, a marker of systemic 
fibrosis [45]. The literature therefore would suggest that having adipose 
tissue with high radiodensity is pathological [45], or at the very least 
reflects a change from the normal metabolism of adipose tissue [15,35,45]. 
The high attenuation of adipose tissue is thus thought to reflect the 
changes of adipocytes and adipose microenvironment [25,35].  

There is substantial variation of abdominal region selected for analysis 
on adipose tissue radiodensity measurements. Although L4–L5 is a 
commonly used landmark for measuring VAT and SAT volume [57,58], 
several studies have shown that a single image in the upper abdomen (i.e., 
at L1–L2 or L2–L3) is a more suitable surrogate for total VAT [59–61], and 
SAT volume [59] than an image at L4–L5. However, L3 is the most 
frequently reported region of interest, since it has been shown that the 
body cross sectional areas at L3 is linearly correlated to total adipose tissue 
[54], VAT and SAT [62], as well as whole body muscle mass [54]. Reviewed 
studies used L3 (4 studies) [31–33,46], L4 (4 studies) [26–28,30], and L4/L5 
regions (4 studies) [29,35,43,44]. Therefore, it would seem important to 
determine a representative region for adipose tissue radiodensity 
measurement and form a consensus among researchers to apply the 
defined region in future studies. L3 has been validated against whole body 
for muscle and adipose tissue content, and this vertebral level enables 
definition of a landmark to make the comparisons between studies or to 
evaluate changes over time [54,63].  

The slice thickness is another variable parameter in CT image analysis 
and ranged from 0.625 mm [39] to 10 mm [35]. Thinner slices provide 
better detail and spatial resolution; conversely, the noise in the CT image 
decreases with thicker slice [64]. A recent study showed that, compared to 
2mm slice, both total adipose tissue index and mean attenuation increased 
on slices with a thickness of 10 mm [65]. The effect of increased slice 
thickness on mean adipose tissue attenuation was recently confirmed in a 
study that compared 2- and 5 mm thick slices [66]. Mean attenuation was 
lower in thinner slices for each of the adipose tissue depots ranging from 
a mean difference of −1.0% for SAT and −2.4% for VAT [66]. Slice thickness 
is also important to minimize partial volume artifacts. A thicker slice has 
a greater chance of containing a mixture of tissues than a thinner slice. 
The use of thick slices increases the probability of mixing fat tissues with 
nearby extra-fat soft tissues [67], and thereby misestimating the actual 
attenuation. For example, increasing slice thickness size by 50% can yield 
a decrease in the standardized uptake values by 7% [67]. By using thin slice 
sections partial volume artifacts can be avoided. Similarly, to limit image 
noise, adding several thin sections or by using multi-slice CT (MSCT) a 
thicker section can be generated (section reconstructions). The MSCT has 
several advantages over single slice CT [68–70]. MSCT provides better 
diagnostic ability by not only reducing time, but also reducing radiation. 
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The quality of image also improved. It has been shown that during weight 
loss, changes in VAT and SAT are poorly evaluated on single slice imaging 
[71], while good results for intra-abdominal fat obtained by multi-slice 
imaging [72]. Therefore, use of single or MSCT will have effect on adipose 
tissue radiodensity measurement, although only few (6 out of 22) of our 
selected studies used or reported MSCT. 

There was substantial variability in the range of HU values applied to 
adipose tissue (Figure 2). The HU range used to quantify adipose tissue in 
from the studies reviewed ranged within +50 to −300 HU. 36.4% of studies 
reviewed used ranges from −190 to −45, while one study [46] used range 
from +50 to −190 to define adipose tissue radiodensity. HU ranges −150 to 
−50 for VAT and −190 to −30 for SAT are recommended for optimal 
measurement [73,74].  

Contrast agents can also affect radiodensity results. Administering 
contrast media (i.e., iodine) leads to higher radiation absorption and 
therefore higher radiodensity, especially in soft adipose tissues. In the case 
of skeletal muscle and bone, intravenous contrast administration results 
in significantly increased mean radiodensity measures when compared 
with unenhanced images [75]. Thus, contrast enhanced images reduce 
attenuation values compared to non-contrast tissues. This was confirmed 
in a recent study in which adipose tissue index decreased by ≥6.5% after 
contrast media was administered [65]. The overall VAT attenuation also 
changed from −90 to −87 HU after contrast enhancement [65]. Moreover, 
there is evidence to suggest that muscle radiodensity in men and women 
is affected differently by intravenous contrast administration [76]. The 
type and timing of contrast agent may affect CT fat radiodensity measures, 
although this remains unclear. Therefore, contrast enhanced CT image 
analysis for adipose tissue should be avoided in prospective clinical 
studies. The majority of studies reviewed (59.1%) did not report whether 
contrast was used in the analysis [27,29,34–42,44,45,53], while only one 
study reported using contrast enhanced CT analysis [46]. Authors must 
report the use of contrast enhanced CT image analysis particularly in 
evaluating longitudinal changes in clinical cohorts, and to be aware of 
their effect when comparing results between different cohorts.  

In clinical practice different CT doses are used by different institutions 
and there is no standard protocol for efficient use of CT dose to patients in 
clinical settings. In our review, we found that most studies (55%) did not 
report what type of dose they used. Moreover, studies those reported doses 
differ largely in terms of use of tube current (11 mA to 500 mA). Radiation 
exposure during medical imaging (mostly from CT imaging) has significant 
impact on cancer risk and it is reported that exposure to ionizing radiation 
might be responsible for 0.6–3.2% of malignant tumors in developed 
countries [77]. Since tube voltage and or tube current is easier to modify 
and the result is more predictable, lowering tube current or tube voltage 
can be the most direct way of achieving radiation dose reduction. However, 
reduced-dose CT images have a higher noise level than standard-dose CT 
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images and image noise is inversely proportional to the square root of the 
radiation dose [78]. Therefore, a standard method and technique for 
radiation dose reduction should be developed to ensure that radiation 
exposure is kept as low as possible without affecting quality of CT scan. 

 

Figure 2. Hounsfield scale values for tissues (left panel), standard HU range for VAT and SAT (middle panel), 
and variation of use of adipose tissue radiodensity range across studies (right panel). Abbreviations: HU, 
Hounsfield unit; SM, skeletal muscle; SAT, subcutaneous adipose tissue; VAT, visceral adipose tissue. 

Use of different software packages to analyze the CT images impacts the 
analysis. A variety of software packages for CT images analysis were used 
in the reviewed literature. In a recent study Rollins et al. [79] compared 
two commonly used software packages OsiriX (v7.5.1, Pixmeo, Bernex, 
Switzerland) and SliceOmatic (v5.0, TomoVision, Montreal, Canada), for 
different body composition parameters including adipose tissue and 
skeletal muscle. They showed that skeletal muscle measure was 
significantly higher, whereas adipose tissue was significantly lower when 
the analyses were performed with OsiriX compared with SliceOmatic. The 
clinical relevance of these statistically significant differences between 
different software packages is not known and need to be tested in future 
studies.  
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From the reviewed literature, it seems clear that VAT and SAT 
radiodensity values are distinct between male and female (Figure 3). The 
mean range of VAT radiodensity reported in the literature was −85.0 HU 
to −97.5 HU for males and −85.0 HU to −111.9 HU for females; while 
reported mean range SAT radiodensity was −87.8 HU to −106.3 HU for 
males and −93.0 HU to −112.3 HU for females, respectively (Table 2). This 
difference might be due to use of different methodologies across studies. 
However, there are substantial sex differences in adipose tissue in humans. 
Generally, females have a higher percentage of body fat compared to 
males [80]. Fat distribution also differs between sexes; females have 
greater fat accumulation in the gluteal–femoral region and higher SAT 
volume compared to men, whereas men store more fat in the abdominal 
region (VAT) [23]. Sex differences in adipose tissue distribution and 
correlations to metabolic health are well established [81,82]; while in 
cancer patients, subcutaneous and visceral adiposity also differs between 
sexes [20].  

 

Figure 3. Variation of VAT and SAT radiodensity (mean range) in male and female across studies. 
Abbreviations: F, female; HU, Hounsfield unit; M, male; SAT, subcutaneous adipose tissue; VAT, visceral 
adipose tissue. 

Another possible cause of inaccurate adipose tissue radiodensity 
measurement is the presence of edema which can be observed in 
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bedridden hospitalized patients. A recent study reported that people with 
ascites show lower intraclass correlation coefficient for quantification of 
visceral fat among the various measurement methods [83]. They suggest 
that edematous changes in intraabdominal organs and ascites make it 
harder to discriminate fat from other soft tissue and might increase fat 
attenuation [83]. However, to our best knowledge, no study reported the 
effect of edema on the quantification of adipose tissue radiodensity. 

CONCLUSIONS  

This review indicates substantial methodological variability in 
available literature evaluating VAT and SAT radiodensities. Many studies 
do not report the details of CT analysis methodology, such as abdominal 
region used, thickness of slice, whether contrast media used or not, use of 
software, or radiodensity range used to define VAT and SAT. This might be 
due to lack of knowledge of the effect of different CT acquisition 
parameters on body composition segmentation. Application of a variety of 
protocols to determine adipose tissue radiodensity limits the potential to 
apply this measure of body composition in prediction of clinical outcomes 
at this time. Consistent use and reporting of these methodologies will help 
comparing results between different studies.  
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