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ABSTRACT 

Hematopoietic homeostasis depends on the close regulation of 
hematopoietic stem cell (HSC) activity in the bone marrow. Quiescence 
and activation in response to stress, among other changes in state, are 
mediated by shifts in HSC metabolic activity. Although HSC steady-state 
metabolism is well established, the mechanisms driving HSC activation, 
proliferation, and differentiation in response to stress remain poorly 
understood. Here we discuss a study by Mistry et al. that describes a novel 
metabolic mechanism that fuels HSC activation and expansion. The 
authors show that to meet their metabolic needs in response to infection, 
hematopoietic stem and progenitor cells uptake free fatty acids from their 
microenvironment via CD36 to fuel fatty acid oxidation. These exciting 
findings suggest that in the context of infection, HSCs undergo a metabolic 
shift toward fatty acid metabolism that drives emergency hematopoiesis 
and raise questions about the role of the microenvironment in this process. 
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The life-long production of blood depends on the ability of 
hematopoietic stem cells (HSCs) to self-renew, differentiate, and form all 
hematopoietic lineages. HSCs rely upon precisely controlled interactions 
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with their local microenvironment in the bone marrow (or “niche”) to 
preserve quiescence and maintain normal blood output [1]. These 
interactions are based upon membrane-bound, locally secreted, and/or 
long-range signals produced by a complex network of blood vessels, 
sympathetic nerve fibers, and hematopoietic and supporting stromal cells 
that control intrinsic properties of functional HSCs [1]. Inflammation is 
defined as a protective immune response, underlain by a variety of 
pathophysiological processes that are in part caused by infection and tissue 
injury/damage. In response to infection, quiescent HSCs are activated to 
proliferate and engage in blood formation, which replenishes immune 
effector cells [2]. Furthermore, pro-inflammatory cytokines in the inflamed 
microenvironment drive myeloid-biased differentiation and potentially 
contribute to the development of human clonal hematopoiesis [3]. 

Cellular metabolism has emerged as a critical regulator of HSC 
homeostasis, dysregulation of which can trigger changes in HSC cell cycle 
dynamics, leading to functional decline [4]. Quiescent HSCs maintain low 
metabolic activity and rely upon anaerobic glycolysis as their primary 
energy source in the hypoxic niche [5]; however, they maintain a relatively 
high mitochondria content and exhibit heightened mitochondrial activity 
[6–9]. In response to stress, HSCs leave the quiescent state and shift to 
aerobic metabolism, depending on mitochondrial oxidative 
phosphorylation (OXPHOS) to produce the ATP needed to meet the 
metabolic requirements associated with proliferation and differentiation 
(reviewed in [5]). 

Fatty acid metabolism has emerged as a critical regulator of HSC self-
renewal. Deletion of the fatty acid transport and oxidation regulator 
Peroxisome-proliferator activated receptor delta (Ppard) results in 
disrupted HSC asymmetric division, which leads to symmetric 
commitment of daughter cells, exhaustion, and poor repopulation 
capacity [10,11]. The identification of adipose tissue (AT) as a potential 
reservoir for functional HSCs [12] strengthens the notion that HSCs utilize 
fatty acid oxidation (FAO) to maintain homeostasis. In the context of 
hematopoietic malignancy, FAO is critical to supporting malignancy and 
maintenance of acute myeloid leukemia (AML) blasts [13]. Furthermore, 
FAO has been reported to play a crucial role in maintaining leukemic stem 
cells (LSCs) and supporting their metabolic needs to evade chemotherapy 
[14]. These studies suggest that, similar to LSCs, HSCs potentially rely on 
FAO for energy production in pathologic conditions [15]. As the bone 
marrow microenvironment tightly regulates stem cell activity, one could 
postulate that the interaction of HSCs with adipolineage cells affects their 
metabolic state. Numerous studies have reported that bone marrow 
adipocytes modulate HSC activity by secretion of factors such as 
adiponectin, dipeptidyl peptidase 4 (DPP4), and stem cell factor (SCF) 
[1,16–18]. However, it is unknown how these interactions affect HSC 
metabolism and whether they specifically affect lipid metabolism in HSCs. 
Thus, the intricate relationship between the extrinsic control of HSC 
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activity by niche adipocytes and the intrinsic role played by lipid 
metabolism in HSC maintenance is complex (Figure 1). A better 
understanding of these mechanisms is urgently needed to improve stem-
cell-based therapies targeting the bone marrow microenvironment. 

In a recent study by Mistry et al. published in Nature Communications 
[19], the authors examine the role of FAO in HSC physiology and describe 
previously underappreciated, intrinsic roles for fatty acid metabolism in 
fueling hematopoietic response to infection. To model acute bacterial 
infection in vivo, the authors challenged mice with either Salmonella 
Typhimurium (S. typhimurium) or its outer membrane lipopolysaccharide 
(LPS), which led to rapid HSC and leukocyte expansion and elevation of free 
fatty acids (FFA) in the serum. Using a novel model to quantify fatty-acid 
uptake by hematopoietic cells, the authors revealed that challenging mice 
with either S. typhimurium or LPS triggered rapid uptake of FFA by 
hematopoietic stem and progenitor cells (HSPCs), and subsequent 
experiments confirmed that bacterial infection enhanced FAO in these 
activated HSPCs. Moreover, pharmacological inhibition of β-oxidation using 
etomoxir suppressed the expansion and proliferation of HSPCs in vivo. 
These findings establish that enhanced FAO induces metabolic remodeling 
that enables HSPCs to transition from steady-state to emergency 
hematopoiesis to combat infection. Fatty acid metabolism is thus a key 
mechanism supporting stem cell activation in response to infection-
mediated physiological stress; however, it has yet to be determined whether 
this holds true for malignancies or stem cells in other tissues. 

 

Figure 1. Overview of Fatty Acid Metabolism in HSCs. 
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Schematic overview of the role of fatty acid metabolism and adipocytes 
in the maintenance of HSCs. Quiescent HSCs are kept in a low metabolic 
state and utilize glycolysis for energy production. HSC self-renewal and 
asymmetric division depend on FAO, mediated by PPARδ and PPARγ. To 
maintain homeostasis, bone marrow adipocytes negatively regulate HSC 
activity (orange box and arrows). Adipocyte-derived SCF has been shown 
to facilitate hematopoietic recovery following genotoxic stress, however, 
the role of FAO in hematopoietic regeneration is unknown (green box and 
arrows). Based on findings by Mistry et al. [19], bacterial infection leads to 
the accumulation of FFA that are taken up by HSCs and progenitor cells 
mediated by CD36 and IL6, leading to enhanced FAO and OXPHOS to 
accommodate hematopoietic expansion (red box and arrows). During 
aging, there is an increase in bone marrow adipogenesis that has been 
shown to have a negative impact on HSC function. Aging is associated with 
HSC expansion and old HSCs exhibit elevated OXPHOS. However, the role 
of FAO in HSC aging has yet to be determined (purple box). Figure created 
by Biorender.com. 

To further understand the mechanisms that facilitate FAO in HSCs, the 
authors quantified the transcript and protein levels of known lipid 
transporter proteins and identified that the fatty-acid translocase CD36 
was consistently upregulated in response to infection. As CD36 facilitates 
fatty-acid uptake and oxidation [20–22], these data imply that elevated 
CD36 levels contribute to the enhanced FAO detected in HSCs. Previous 
studies of blast crisis chronic myeloid leukemia (CML) have reported that 
elevated expression of CD36 in LSCs is associated with increased FAO and 
protection from chemotherapy [14,23]. In the context of bacterial infection, 
Mistry et al. demonstrate that either inhibition of CD36 with 
sulfosuccinimidyl oleate (SSO) or deletion of CD36 in mice (CD36−/− mice) 
results in reduced FFA uptake, lipid content, basal and maximal 
respiration, and HSPC proliferation. Moreover, specific deletion of CD36 in 
hematopoietic cells revealed an intrinsic role for FAO in inducing the 
metabolic switch needed to sustain activation and subsequent 
proliferation of HSCs. 

In summary, Mistry et al. report a new mechanism of emergency 
hematopoiesis and highlight FAO as a central metabolic pathway fueling 
HSPC expansion in response to infection. These findings shed light on the 
role of lipid metabolism in stem cell maintenance and raise new questions 
about the role of the microenvironment in this process. What is the source 
of FFA? The present study does not address how infection reshapes the 
bone marrow microenvironment to accommodate the availability of FFA, 
nor does it explore the bone marrow AT as a source for circulating FFA. 
Furthermore, exploring how induction of FAO in HSCs relates to other 
stress conditions and pathologies associated with enhanced adipogenesis 
would be of great interest. For example, in both aging and obesity, there is 
an increase in bone marrow adipogenesis, which is accompanied by poor 
HSC maintenance [16,24]. Aged HSCs exhibit enhanced OXPHOS levels [25], 
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and future studies will be needed to determine the dependence of old HSCs 
on FAO. Furthermore, pro-inflammatory cytokine IL-6 was reported to 
trigger chronic myelomonocytic leukemia-like disease in Tet2 knockout 
models with age [26], and the current study by Mistry et al. showed that 
IL-6 contributes to FFA uptake in HSCs [19]. Still, it is tempting to postulate 
that aged HSCs hijack FAO to fuel their expansion and support age-related 
myeloid-biased differentiation. In contrast, a high-fat diet results in loss of 
functional HSCs and enhanced myelopoiesis [27,28]. This suggests that the 
high-fat content from such a diet elicits distinct effects in HSCs that lead to 
lineage skewing, which in turn potentiates inflammatory responses. Thus, 
the role of adipocytes and the effects of increased marrow fat content are 
specific to pathology as well as the type of endocrine signal (Figure 1). 
Further studies are needed to clarify how cues derived from adipolineage 
cells in the niche affect the metabolic activity of HSCs at both steady-state 
and in response to stress. 
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