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ABSTRACT 

Replacing sugar with non-nutritive artificial sweeteners (NAS) is a popular 
dietary choice for the prevention and management of metabolic syndrome 
and its comorbidities. However, evidence in human trials is conflicted 
regarding the efficacy of this strategy and whether NAS may 
counterintuitively promote, rather than prevent, metabolic 
derangements. The heterogeneity in outcomes may stem in part from 
microbiome variation between human participants and across research 
animal vivaria, leading to differential interactions of NAS with gut 
bacteria. An increasing body of evidence indicates that NAS can alter the 
mammalian gut microbiome composition, function, and metabolome, 
which can, in turn, influence host metabolic health. While there is 
evidence for microbiome-mediated metabolic shifts in response to NAS, 
the mechanisms by which NAS affect the gut microbiome, and how the 
microbiome subsequently affects host metabolic processes, remain 
unclear. In this viewpoint, we discuss data from human and animal trials 
and provide an overview of the current evidence for NAS-mediated 
microbial and metabolomic changes. We also review potential 
mechanisms through which NAS may influence the microbiome and 
delineate the next steps required to inform public health policies. 

KEYWORDS: microbiome; non-nutritive artificial sweeteners (NAS); 
metabolic syndrome; obesity; diabetes; metagenomics; metabolomics 

NON-NUTRITIVE ARTIFICIAL SWEETENERS AND METABOLIC 
SYNDROME RISK 

Non-nutritive artificial sweeteners (NAS), including saccharin, 
sucralose, aspartame, neotame, cyclamate, and acesulfame potassium 
(AceK), are an increasingly popular dietary choice among children [1,2] 
and adults [1,3], as they maintain the sweet taste of foods and beverages 
but, unlike sugar, they do not contain calories nor do they elicit a post-
prandial increase in blood glucose levels. For this reason, health 
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authorities often recommend substituting caloric sweeteners with NAS for 
the management and prevent metabolic syndrome and associated 
morbidities, including diabetes, stroke, and cardiovascular disease [4]. 
Nonetheless, the prevalence of obesity and diabetes continues to increase 
globally [5], fueling concerns that NAS may, in fact, contribute to the 
metabolic syndrome pandemic [6]. Both retrospective cross-sectional 
studies and prospective cohort trials indicate an association between NAS 
intake and elevated risk of metabolic syndrome [6,7] and its associated 
morbidity [6,8–10]; however, these studies do not provide causal evidence 
and may be misinterpreted due to reverse causality. Interestingly, some 
NAS (saccharin, sucralose, and AceK) can be detected in amniotic fluid, 
cord blood, and breast milk [11,12], and several [13–16], but not all [17] 
studies associate maternal NAS intake during pregnancy or breastfeeding 
and elevated BMI and adiposity of the offspring, even when controlling for 
maternal BMI or diet quality. Evidence from this type of exposure may be 
more compelling as it is less prone to reverse causality [18], although 
additional factors, such as maternal genetic predisposition to obesity, may 
underlie these associations.  

While intervention and specifically randomized-controlled trials 
(RCTs) could provide more rigorous evidence for either a protective or 
detrimental effect of NAS on metabolic health, their results thus far have 
been inconclusive. Several intervention trials suggest a causal link 
between NAS consumption (predominantly sucralose and saccharin) and 
worsened glucose tolerance [19–23], whereas others report neither a 
detrimental nor beneficial effect [24,25]. The effect of NAS on body weight 
is also conflicted, with some reporting facilitated weight loss [26–30] and 
others sweetener-dependent (saccharin) weight gain [31]. Consequently, 
meta-analyses of RCTs are inconclusive and may not support the desired 
beneficial effects of NAS on metabolic health [6,32–34]. 

Notably, there is considerable heterogeneity between trials in the 
studied cohorts (adults vs children and adolescents, individuals with or 
without metabolic syndrome, obesity, or diabetes) and methodology (type 
and dose of NAS, duration of exposure, NAS administered with 
carbohydrates or in pure form, comparison to consumption of caloric 
sweetener or no supplement). Coupling the supplemented NAS with 
carbohydrates such as glucose or maltodextrin, which are present in 
commercial NAS sachets as fillers, may contribute to a negative effect 
associated with NAS in some studies [20–22] but not others, which used 
purified forms of NAS [24,25,35,36]. Nonetheless, longer exposure to NAS 
is associated with a negative effect on metabolic health even in the absence 
of carbohydrates [19,23,31].  

Some of the factors that contribute to heterogeneity in human nutrition 
trials [37], including habitual diet (and whether it already contains NAS, 
sometimes unknowingly [1]), effective blinding, compliance, and defining 
appropriate control groups, may be circumvented by NAS feeding trials in 
animal models. Multiple such studies, mostly in rodents, causally link 
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between NAS supplementation and impaired metabolic health [20,38–53], 
although some variation still exists, even in model systems [35,54–57].  

INTERACTIONS BETWEEN NAS AND THE INTESTINAL MICROBIOME 
IN METABOLIC SYNDROME 

An emerging factor that likely underlies some of the heterogeneity 
between trials and could potentially be used to resolve conflicting reports 
is the intestinal microbiome. This dense community of microorganisms 
that naturally reside in the gastrointestinal tract plays key roles in 
mammalian metabolic health and disease [58] and in mediating the effects 
of nutrients [59] and dietary supplements on metabolic health [60]. 
Notably, the microbiome configuration displays considerable person-to-
person heterogeneity and differs between mice obtained from different 
suppliers or housed in different research vivaria. This variability is 
associated with personalized responses to diets [61–65] and therapeutics 
[66–70], as well as opposing phenotypes in animal studies [71–73]. 
Furthermore, presence of sucralose [46,52,74], saccharin [35,75], and AceK 
[46,52] has been demonstrated in stool samples from NAS-supplemented 
animals and human subjects. Thus, it is plausible that NAS interact with 
the intestinal microbiome, which can translate to an effect on the 
mammalian host. Consequently, variation in microbiome configurations 
between human cohorts and animal vivaria may result in differential 
NAS-microbiome interactions and downstream health outcomes. 

The majority of evidence for NAS effects on the intestinal microbiome 
stems from feeding trials in animal models. To provide an overview, we 
searched PubMed for original research (excluding reviews and meta-
analyses) in mammals (excluding humans discussed separately), focusing 
exclusively on NAS (saccharin, sucralose, aspartame, AceK, neotame, 
cyclamate) in combination with the keyword “microbiome” or 
“microbiota”. This resulted in 28 trials showing an effect of NAS on the 
mammalian microbiome across 49 different experimental conditions (sex, 
dose, NAS formulation, diet, age) [20,35,38–40,46,48,52,76–96], and only 
four trials (six arms) that report no such effect [35,52,82,96] (Table 1). 
Even when considering the difficulty in reliably validating null results 
(and publishing them), these studies provide strong evidence that different 
types of NAS can alter the mammalian microbiome in a range of doses, 
background diets, administration modes, and duration of exposure (Table 
1). Notably, modulation of the microbiome does not necessarily indicate 
an effect on host health; however, many of these studies associate an effect 
of NAS on the microbiome with a negative impact on the host’s metabolic 
health (Table 1). Two of these studies further provide a causal link 
between NAS-induced microbiome alterations and worsened metabolic 
health by demonstrating glucose intolerance manifesting in germ-free 
(GF) mice receiving microbiome from saccharin-exposed mice [20] or 
glucose intolerance coupled with weight gain and adiposity in GF mice 
receiving microbiome from rat offspring of aspartame-drinking dams [78].  
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Table 1. Studies examining NAS-microbiome interactions in mammalian model systems. Studies investigating the association of NAS and mammalian 
microbiomes were retrieved using the search terms (Microbiome OR Microbiota) AND (Saccharin OR Sucralose OR Aspartame OR Acesulfame Potassium OR 
Neotame) on https://pubmed.ncbi.nlm.nih.gov/. Only research articles were selected. Studies in which the effect of NAS could not be isolated from that of an 
unrelated additive were excluded from analysis. Studies were analyzed for sweetener used, model system, diet, length of diet and NAS administration, NAS 
dose, experimental controls, profiling method, effects on the host microbiome, and effects on the host metabolic phenotype. AceK, Acesulfame Potassium; NC, 
Normal Chow; HFD, High Fat Diet; MM, Maternal Milk; HFSD, High Fat/Sucrose Diet; DSS, Dextran Sulfate Sodium; AOM, Azoxymethane; NHDC, neohesperidin 
dihydrochalcone; FMT, Fecal Microbiota Transplant; MG, Metagenomics; GF, Germ-Free; F/M, Female/Male; ND, No Data/Not Determined. 

Study NAS Model Diet 
NAS 
Dose/Concentration Control 

Profiling 
Method Microbiome 

Metabolic 
Phenotype 

Bian 2017 [39] AceK M Mice 

4 weeks NC, NAS by 

gavage 37.5 mg/kg/day Water  16S, PICRUSt Yes Yes 

Bian 2017 [39] AceK F Mice 

4 weeks NC, NAS by 

gavage 37.5 mg/kg/day Water  16S, PICRUSt Yes Yes 

Hanawa 2021 

[93] AceK M Mice 8 weeks NC, NAS in water 150 mg/kg/day Water  16S (cecum) Yes ND 

Uebanso 2017 

[52] AceK M Mice 8 weeks NC, NAS in water 15 mg/kg/day Water  16S (cecum) No No 

Wang 2021 

[96] Aspartame F Rats 

10 weeks HFSD, 6 weeks 

NAS in water 40 mg/kg/day Water 16S (cecum) No No 

Wang 2021 

[96] Aspartame 

M/F Rat offspring 

to ASP-consuming 

obese dams 3 weeks MM, 15 weeks NC 

40 mg/kg/day (dams 

only) 

Offspring to 

water dams MG, 16S (cecum) Yes Yes 

Palmnas 2014 

[48] Aspartame M Rats 8 weeks NC, NAS in water 5–7 mg/kg/day Water 16S  Yes Yes 

Palmnas 2014 

[48] Aspartame M Rats 

8 weeks HFD, NAS in 

water 5–7 mg/kg/day Water 16S  Yes Yes 

Nettleton 2020 

[78] Aspartame F Rats 

16 weeks HFSD, 6 weeks 

NAS in water 7 mg/kg Water  qPCR (cecum) Yes Yes 
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Table 1. Cont. 

Study NAS Model Diet 
NAS 
Dose/Concentration Control 

Profiling 
Method Microbiome 

Metabolic 
Phenotype 

Nettleton 2020 

[78] Aspartame 

M Rat offspring to 

ASP-consuming 

dams 3 weeks MM, 15 weeks NC 7 mg/kg (dams only) 

Offspring to 

water dams qPCR (cecum) Yes Yes 

Nettleton 2020 

[78] Aspartame 

F Rat offspring to 

ASP-consuming 

dams 3 weeks MM, 15 weeks NC 7 mg/kg (dams only) 

Offspring to 

water dams qPCR (cecum) Yes Yes 

Nettleton 2020 

[78] Aspartame 

M GF recipient 

Mice (FMT from 

M Rat offspring to 

ASP-consuming 

dams) NC 15 days post-FMT 

7 mg/kg (donors' 

dams) 

FMT from 

offspring to 

water dams qPCR (cecum) Yes Yes 

Chi 2018 [77] Neotame Mice 

4 weeks NC, NAS by 

gavage 0.75 mg/kg/day Water  16S Yes ND 

Bian 2017 [76] Saccharin M Mice 

6 months NC, NAS in 

water 0.3 mg/mL Water  16S Yes ND 

Suez 2014 [20] 

Saccharin + 

glucose M Mice 11 weeks NC, NAS in water 

5 mg/mL with 95 

mg/mL glucose 

Glucose/Sucr

ose/Water 16S, MG Yes Yes 

Suez 2014 [20] Saccharin M Mice 

5 weeks HFD, NAS in 

water 0.1 mg/mL Water  16S, MG Yes Yes 

Suez 2014 [20] 

Saccharin + 

glucose 

M GF recipient 

Mice (FMT from 

saccharin-

consuming mice)  NC 6 days post-FMT 

5 mg/mL with 95 

mg/mL glucose 

(donor) 

FMT from 

glucose-

drinking 

mice 16S Yes Yes 
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Table 1. Cont. 

Study NAS Model Diet 
NAS 
Dose/Concentration Control 

Profiling 
Method Microbiome 

Metabolic 
Phenotype 

Suez 2014 [20] Saccharin 

M GF recipient 

Mice (FMT from 

HFD saccharin-

consuming mice)  NC 6 days post-FMT 0.1 mg/mL (donor) 

FMT from 

HFD water-

drinking 

mice 16S Yes Yes 

Suez 2014 [20] Saccharin 

M GF recipient 

Mice (FMT from 

microbiome 

cultured w/ SAC) NC 6 days post-FMT 

5 mg/mL (donor 

culture SAC 

concentration) 

FMT from 

microbiome 

cultured 

with PBS 16S, MG Yes Yes 

Sünderhauf 

2020 [79] Saccharin Mice 5 weeks NC, NAS in water 0.1 mg/mL Water   qPCR, 16S Yes ND 

Serrano 2021 

[35] Saccharin Mice 10 weeks NC, NAS in water 250 mg/kg/day Water  16S No No 

Serrano 2021 

[35] Saccharin T1R2-KO Mice 10 weeks NC, NAS in water 250 mg/kg/day Water  16S No No 

Cheng 2021 

[80] Saccharin F Rats 8 weeks NC, NAS in water 0.83 mg/mL 

Water/0.83 

mg/mL 

sucrose 

16S (oral), 

PICRUSt Yes ND 

Anderson 1980 

[81] Saccharin M Rats 10 days NC, NAS in diet 7.5% w/w 

7.5% w/w 

cellulose Culture Yes ND 

Falcon 2020 

[82] Saccharin Rats 17 weeks, NAS in yogurt 0.3% w/w 

20% sucrose 

yogurt 16S No ND 

Lyte 2016 [83] Saccharin 

Selectively bred 

high saccharin 

intake Rats 

3 days NC, 1 day NAS in 

water 0.1% w/v 

Selectively 

bred low 

saccharin 

intake Rats 16S Yes Yes 
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Table 1. Cont. 

Study NAS Model Diet 
NAS 
Dose/Concentration Control 

Profiling 
Method Microbiome 

Metabolic 
Phenotype 

Li 2021 [89] Saccharin F Guinea Pigs 4 weeks NC, NAS in water 1.5 mM Water 16S, Tax4Fun Yes Yes 

Daly 2016 [84] 

Saccharin + 

NHDC Piglets 2 weeks, NAS in diet 0.015% w/w SUCRAM NC 16S Yes ND 

Bian 2017 [40] Sucralose M Mice 

6 months NC, NAS in 

water 0.1 mg/ml Water  16S, Tax4Fun Yes Yes 

Guo 2021 [85] Sucralose M Mice 6 weeks NC, NAS in water 1.5 mg/mL Water  qPCR Yes ND 

Guo 2021 [85] Sucralose 

M Mice w/DSS-

induced colitis 6 weeks NC, NAS in water 1.5 mg/mL 

Water 

w/DSS-

induced 

colitis qPCR Yes ND 

Uebanso 2017 

[52] Sucralose M Mice 8 weeks NC, NAS in water 1.5 mg/kg/day Water  

qPCR (cecum & 

feces) No No 

Uebanso 2017 

[52] Sucralose M Mice 8 weeks NC, NAS in water 15 mg/kg/day Water  

qPCR (cecum & 

feces) Yes Yes 

Rodriguez-

Palacios 2018 

[86] Sucralose F/M SAMP Mice 6 weeks NC, NAS in water 3.5 mg/mL Water  16S Yes Yes 

Rodriguez-

Palacios 2018 

[86] Sucralose F/M AKR Mice 6 weeks NC, NAS in water 3.5 mg/mL Water  16S Yes No 

Li 2020 [94] Sucralose Mice 11 weeks NC, NAS in water 1.5 mg/mL Water 16S Yes ND 

Li 2020 [94] Sucralose Mice w/AOM/DSS- 11 weeks NC, NAS in water 1.5 mg/mL 

Water 

w/AOM/DSS 16S  Yes ND 
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Table 1. Cont. 

Study NAS Model Diet 
NAS 
Dose/Concentration Control 

Profiling 
Method Microbiome 

Metabolic 
Phenotype 

Martinez-

Carillo 2019 

[87] 

Sucralose + 

glucose Mice 6 weeks NC, NAS in water 

4.1 mg/mL Splenda® 

for 5 h/day  

41.66 mg/mL 

sucrose, 

water  

16S (small 

intestine) Yes Yes 

Martinez-

Carillo 2019 

[87] 

Sucralose + 

glucose Mice 12 weeks NC, NAS in water 

4.1 mg/mL Splenda® 

for 5 h/day 

41.66 mg/mL 

sucrose, 

water  

16S (small 

intestine) Yes Yes 

Wang 2018 

[88] Sucralose Mice 

8 weeks HFD, NAS in 

water 2.5% w/v Water  16S Yes No 

Wang 2018 

[88] Sucralose Mice 8 weeks NC, NAS in water 2.5% w/v Water  16S Yes No 

Dai 2020 [90] Sucralose 

Mice offspring to 

SCR-consuming 

dams 3 weeks MM 

0.1 mg/mL (dams 

only) 

Offspring to 

water dams 16S Yes Yes 

Dai 2020 [90] Sucralose 

Mice offspring to 

SCR-consuming 

dams 

3 weeks MM, 5 weeks NC, 

4 weeks HFD 

0.1 mg/mL (dams 

only) 

Offspring to 

water dams 16S Yes Yes 

Dai 2021 [95] Sucralose 

Mice offspring to 

SCR-consuming 

dams 3 weeks MM 

0.1 mg/mL (dams 

only) 

Offspring to 

water dams 16S Yes Yes 

Dai 2021 [95] Sucralose 

Mice offspring to 

SCR-consuming 

dams 3 weeks MM, 5 weeks NC 

0.1 mg/mL (dams 

only) 

Offspring to 

water dams 16S Yes ND 

Sanchez-Tapia 

2020 [91] Sucralose M Rats 

4 months HFD, NAS in 

water 1.5% in water Water  16S, MG Yes Yes 
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Table 1. Cont. 

Study NAS Model Diet 
NAS 
Dose/Concentration Control 

Profiling 
Method Microbiome 

Metabolic 
Phenotype 

Sanchez-Tapia 

2020 [91] Sucralose M Rats 

4 months NC, NAS in 

water 1.5% in water Water  16S, MG Yes Yes 

Abou-Donia 

2008 [38] 

Sucralose + 

glucose M Rats 

12 weeks NC, NAS by 

gavage 

100 mg/kg/day 

Splenda® Water  

Culture + plate 

counts Yes Yes 

Abou-Donia 

2008 [38] 

Sucralose + 

glucose M Rats 

12 weeks NC, NAS by 

gavage 

300 mg/kg/day 

Splenda® Water  

Culture + plate 

counts Yes No 

Abou-Donia 

2008 [38] 

Sucralose + 

glucose M Rats 

12 weeks NC, NAS by 

gavage 

500 mg/kg/day 

Splenda® Water  

Culture + plate 

counts Yes Yes 

Abou-Donia 

2008 [38] 

Sucralose + 

glucose M Rats 

12 weeks NC, NAS by 

gavage 

1000 mg/kg/day 

Splenda® Water  

Culture + plate 

counts Yes No 

Zhang 2021 

[92] Sucralose M Rats 

12 weeks HFD, 4 weeks 

NAS by gavage 0.54 mM in water 

Water, 324 

mM sucrose 16S, PICRUSt Yes ND 

Zhang 2021 

[92] Sucralose M Rats 

12 weeks HFD, 4 weeks 

NAS by gavage 0.78 mM in water 

Water, 324 

mM sucrose 16S, PICRUSt Yes ND 

Olivier-Van 

Stichelen 2019 

[46] 

Sucralose & 

AceK 

Mice offspring to 

SCR + AceK-

consuming dams 19 days MM 

0.1 mg SCR + 0.25 mg 

AceK (dams only) 

Offspring to 

water dams 16S Yes Yes 

Olivier-Van 

Stichelen 2019 

[46] 

Sucralose & 

AceK 

Mice offspring to 

SCR + AceK-

consuming dams 19 days MM 

0.2 mg SCR + 0.5 mg 

AceK (dams only) 

Offspring to 

water dams 16S Yes Yes 
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The aforementioned works demonstrate that NAS can profoundly 
impact the mammalian microbiome, with numerous bacterial taxa 
reportedly increasing while others decrease following exposure to NAS. 
This observation refutes the notion that NAS are inert and raises several 
important questions: first, what are the mechanisms through which NAS 
reshape the microbiome? How does the interaction between NAS and the 
microbiome disrupt the host’s metabolic health? And are similar effects 
observed in humans? 

One approach for addressing these mechanistic questions is to identify 
reproducible NAS-associated microbial signatures. To that aim, we 
analyzed compositional and functional changes in studies that reported an 
effect of NAS on the microbiome (Table 1) and plotted the direction of the 
effect for features (taxa, functional pathways, metabolites) that were 
significantly altered in at least three independent studies (Figure 1). 
Despite considerable methodological heterogeneity, several patterns 
emerge. The abundance of the Enterobacteriaceae family (or specifically, 
E. coli) was increased in all studies that reported a significant effect (four 
studies, six experimental arms). However, while no study reported a 
significant decrease in Enterobacteriaceae, seven studies found no 
significant change in the abundance of this family. Potentially related to 
an increase in Enterobacteriaceae, the abundance of genes involved in 
lipopolysaccharide (LPS) biosynthesis was increased in all studies that 
reported an effect (six studies, nine experimental arms), with only one 
experimental arm showing no significant effect and no studies reporting 
a decrease. Despite some variation, a general trend for 
underrepresentation of Clostridiales associated with butyrate production 
(Lachnospiraceae, Ruminococcaceae, Clostridium cluster XIVa, Dorea, 
Oscillospira) was observed across studies with different NAS, possibly 
related to the reduction in butyrate observed in three studies. In contrast, 
abundance of the short-chain fatty acids (SCFA) acetate and propionate 
was significantly increased in four and five studies, respectively, and no 
study reported a significant decrease of these two SCFA. Finally, the total 
number of bacteria (quantified by culture or qPCR) was significantly 
reduced by diverse NAS in five studies, significantly increased in one, and 
three studies reported no significant change. These interesting patterns 
notwithstanding, the key finding of this analysis is the high level of 
heterogeneity among NAS effects on the microbiome, as even per a given 
NAS, it was not possible to identify a microbiome feature that was 
significantly altered in the same direction in all trials. While much of this 
variation can be attributed to methodological differences, it is reasonable 
to assume that the interactions of NAS with the microbiome are complex, 
and an effect on the host may be exerted through more than one 
mechanism, especially when considering chemically-distinct NAS. Thus, at 
this stage, an unbiased approach for profiling the microbiome and 
metabolome of NAS-treated animals would likely be more insightful than 
focusing on a limited list of microbial features of interest. 
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Figure 1. Effects of NAS on the microbiome composition and function. Studies investigating the 
association of NAS and mammalian microbiomes were retrieved using the search terms (Microbiome OR 
Microbiota) AND (Saccharin OR Sucralose OR Aspartame OR Acesulfame Potassium OR Neotame) on 
https://pubmed.ncbi.nlm.nih.gov/. Only research articles were selected. Studies in which the effect of NAS 
could not be isolated from that of an unrelated additive were excluded from analysis. Microbial features 
(taxa, functions, metabolites) included in this figure were significantly altered in at least three independent 
works, regardless of direction of the effect. An indicated feature was labeled as not significantly changed if 
it was clearly labeled as such in a study, or it was not included in a list reported by the authors as 
encompassing all significantly altered features. In experiments with dams consuming NAS, pups were 
exposed prenatally and through lactation, but were not directly supplemented with NAS. AceK, Acesulfame 
Potassium; ASP, Aspartame; NEO, Neotame; SAC, Saccharin; SCL, Sucralose; NC, Normal Chow; HFD, High 
Fat Diet; HFSD, High Fat/Sucrose Diet; DSS, Dextran Sulfate Sodium; AOM, Azoxymethane; FMT, Fecal 
Microbiota Transplant; MG, Metagenomics; GF, Germ-Free; F/M, Female/Male; ND, No Data/Not Determined. 
1, FMT from offspring of dams consuming ASP; 2, FMT from mice consuming SAC + glucose; 3, FMT from 
mice consuming pure SAC and HFD; 4, FMT with fecal microbiome cultured with SAC. 
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Compared to the magnitude of evidence in mammalian models (Table 1, 
Figure 1), there is a paucity of studies examining interactions between NAS 
and the microbiome in humans. Two cross-sectional studies found an 
association between NAS intake and a microbiome signature in individuals 
consuming aspartame and/or AceK (N = 31) [97] or high-consumers of any 
NAS (N = 381) [20], the latter also associated with impaired metabolic health. 
Maternal consumption of NAS was associated with changes in the infant’s 
microbiome and a higher BMI (N = 100 infants) [98]. In contrast, three 
interventional studies (with sucralose, N = 34; sucralose and aspartame, N = 
17; or saccharin, N = 24) did not find an effect of the above NAS on the 
microbiome [24,25,35]. Interestingly, results from a small-scale (N = 7) 
saccharin supplementation trial suggest that the effects of this NAS on the 
microbiome are personalized, as microbiome alterations were more 
pronounced in a subset of individuals who developed glucose intolerance 
following saccharin supplementation [20]. As the other intervention trials 
did not address personalized effects on the microbiome post-NAS 
supplementation, it is currently unknown whether this preliminary 
observation is generalizable to other cohorts and other NAS. Clearly, more 
large-scale RCTs assessing the effect of NAS on both metabolic health and 
the microbiome are needed. As all of the aforementioned studies profiled 
the microbiome using 16S rRNA sequencing, the effect of NAS on the human 
microbiome beyond the genus level, as well as on the microbiome function, 
remain currently completely unknown. 

PUTATIVE MECHANISMS FOR MICROBIOME MODULATION BY NAS 

Alterations in microbiome configuration following exposure to NAS 
can result from either direct interactions or indirect downstream effects 
of NAS interactions with the host, such as immune system activation 
[40,85,86,91]. However, in vitro studies of microbial monocultures or 
complex microbial communities demonstrate profound effects of NAS on 
bacterial (and fungal [99]) growth, physiology, metabolism, gene 
expression, and communication, as well as community-wide effects 
(Figure 2). Data pertaining to the metabolic fate (pharmacokinetics) of 
NAS can help shed light on potential direct/indirect mechanisms through 
which each compound potentially affects the microbiome and the host’s 
health. Oral administration studies in humans [74], dogs [100], mice [101], 
and rats [102] indicate that the majority of ingested sucralose reaches the 
large intestine, and a minority is absorbed. Subsequently, the majority (but 
not all) of sucralose is excreted in feces unchanged, although inter-subject 
variability was reported [74,100,102,103]. The metabolic fate of the 
remaining fraction is currently unknown, although sucralose-associated 
metabolites of unknown function have been identified in urine 
[74,101,102,104], feces [104], and adipose tissue [104]. These observations 
suggest that the intestinal microbiome can directly interact with sucralose, 
and potential metabolism of sucralose by the host and/or microbiome. 
Unlike sucralose, the majority of orally-administered saccharin is slowly 
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absorbed from the gut lumen to the plasma (and consequently excreted in 
urine) [75,105–108]. Saccharin’s slow absorption, combined with the 5–
15% percent that is not absorbed and excreted in feces (and up to 40% in 
a report in rats [109]), indicate that a non-negligible amount of saccharin 
may interact with intestinal bacteria. As approximately 99% of ingested 
saccharin is excreted unchanged, its effects on the microbiome may be 
mediated through changes in environmental pH or perturbations to 
carbohydrate metabolism, further discussed below. Somewhat similar to 
saccharin, the majority of AceK administered to rats, dogs, swine, and 
humans (70–99%) is absorbed and excreted in urine, although inter-
subject variability was reported [74,99-102]. Notably, in all dissected 
animals, the large intestine was a major source of AceK (compared to 
extra-intestinal sites) post-supplementation [110], rendering interactions 
with the microbiome plausible. Orally administered cyclamate is excreted 
in both urine and feces [111], and metabolism of cyclamate to 
cyclohexylamine and downstream metabolites occurs in a subject-
dependent manner and has been associated with the activity of gut 
bacteria [112,113]. In contrast to the aforementioned NAS, aspartame is 
broken down to its constituents (methanol, phenylalanine, and aspartate) 
in the stomach and small intestine. The levels of these metabolites are 
comparable to those derived from natural ingredients in the human diet 
[114]. Thus, it is less likely that the effects on the microbiome observed in 
aspartame-supplemented animals are due to direct interactions of colonic 
bacteria with aspartame or its derivatives, and the underlying mechanism 
for microbiome modulation requires further study. One currently 
untested possibility is that pre-degraded aspartame interacts with bacteria 
in the most proximal regions of the gastrointestinal tract, namely, the oral 
cavity, stomach and duodenum, resulting in downstream effects on the 
colonic microbiome. Alternatively, the effects of aspartame on the 
microbiome may be host-mediated, for example through interactions with 
sweet-taste receptors in the gut [115,116]. Oral supplementation with 
analogs of aspartame, neotame and advantame [117], results in the 
majority of the ingested dose excreted in feces as metabolites. Whether 
these metabolites directly interact with the microbiome is currently 
unknown.  

Several members of the microbiome bloom in the presence of NAS 
(Figure 1), suggesting a capacity for utilization of NAS as growth 
substrates, which would confer a competitive advantage in the dense 
ecological niche of the gut (Figure 2). Enrichment consortia of aerobic 
environmental bacteria have shown a potential for bacterial saccharin 
and cyclamate degradation [118]. Aerobic utilization of saccharin as a sole 
carbon source was observed in a sewage isolate of Sphingomonas 
xenophaga [119]. Lactobacillus delbrueckii isolated from commercial 
yogurt could utilize aspartame as a carbon source [120], and several oral 
auxotrophic bacteria demonstrated an ability to utilize aspartame as a 
source for phenylalanine in vitro, suggesting catabolic capacity [121]. 
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Uptake of NAS may depend upon external factors; for example, 
Streptococcus mutans saccharin uptake in culture is contingent upon the 
co-occurrence of glycolysis and an acidic extracellular pH [122]. These 
studies indicate that some bacteria possess the enzymatic machinery 
required to degrade man-made NAS. However, the abundance of these 
metabolic pathways in the gut and whether such uptake and utilization 
occur in vivo remain to be determined. 

 

Figure 2. Putative mechanisms for microbiome modulation by NAS. Gut bacteria can directly interact 
with NAS through several mechanisms, which may lead to growth promotion, inhibition, or community-
wide effects.  

In contrast to a growth-promoting effect, and in line with the 
observation that NAS are associated with a reduction in bacterial load in 
vivo (Figure 1) [38,78,79,93,94], multiple in vitro studies demonstrate that 
NAS can directly inhibit bacterial growth (Figure 2) [79,88,123–129]. Some 
of these effects may stem from NAS impacts on bacterial carbohydrate 
metabolism (Figure 2). Saccharin may interfere with microbial glucose 
transport, metabolism, and fermentation [126,129–131] and was shown to 
modify expression of glucose transport and metabolism genes in 
Lactobacillus [84]. A bacteriostatic effect of sucralose was associated with 
its ability to decrease sucrose uptake and competitively inhibit enzymatic 
sucrose degradation [125]. Notably, multiple studies have demonstrated 
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an impact of NAS on abundance of genes related to carbohydrate 
metabolism (Figure 1) [20,39,77,80,92] and transport [20,84,125,131] in 
vivo. The degree of growth inhibition may vary between bacterial species 
[79,128,130], and species-specific impacts of inhibition could therefore 
alter microbiome composition and contribute to dysbiosis in vivo [79]. 
Thus, the bloom of gut bacteria may be a result of expansion into a niche 
previously occupied by NAS-inhibited bacteria (Figure 2) rather than a 
direct growth-promoting effect. 

NAS may impact other microbial functions beyond metabolism. 
Aspartame, sucralose, and saccharin can inhibit gut bacterial quorum 
sensing, possibly through interfering with ligand binding of the LasR 
receptor [132]. Reduced levels of quorum sensing autoinducers have also 
been observed in fecal metabolomes of mice consuming sucralose [40]. 
NAS have also been found to increase cell envelope permeability and 
stimulate expression of DNA translocation machinery, with the potential 
to promote increased rates of horizontal gene transfer [133,134]. In 
Enterococcus faecalis and E. coli, the aforementioned three NAS could 
increase bacterial biofilm formation and capacity to adhere to and kill 
human gut epithelium in vitro [135]. Intriguingly, this effect was blocked 
in vitro by the pan-sweet taste inhibitor zinc sulphate. Aspartame has also 
been shown to increase prophage induction in E. faecalis [136], while 
sucralose increases the mutation rate of E. coli in vitro [137]: both likely 
indicate activation of microbial stress response to NAS. Consistent with 
evidence for bacterial stress response, reactive oxygen species (ROS) and 
SOS-related stress genes are upregulated in response to AceK [134], and 
NAS-mediated induction of cellular stress was demonstrated in E. coli 
[129]. Thus, NAS appear to have several indirect effects on bacterial social 
behavior that may further alter gut microbiome dynamics through 
impacts on microbe-microbe interactions (Figure 2). Collectively, NAS 
may affect multiple bacterial targets, resulting in direct community 
modulation (Figure 2). While host-mediated indirect effects of NAS on the 
microbiome cannot be ruled out, direct alteration of a complex fecal 
microbiome community by saccharin in vitro was demonstrated to be 
sufficient for promoting glucose intolerance in recipient GF mice [20]. 
Identifying bacteria directly impacted by NAS could potentially serve as a 
useful marker for predicting metabolic responsiveness of humans to NAS 
and can facilitate understanding of microbial functions that negatively 
impact metabolic health of the host. 

Putative Mechanisms for Modulation of Host Metabolic Health by 
NAS-Associated Microbiome 

To date, a causal link between NAS-associated microbiomes and a 
negative impact on metabolic health has been established in GF mouse 
recipients of the following fecal microbiomes: saccharin-treated mice 
(pure or in combination with glucose) [20]; human responders to 
saccharin [20]; treated in vitro with saccharin [20]; and pups of aspartame-
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drinking dams [78]. The underlying mechanisms, however, are currently 
poorly understood. Of the various effects of NAS on the microbiome 
function or its associated metabolome, two patterns appear more 
consistent than others (Figure 1) and are worth discussing: an increase in 
the abundance of LPS biosynthesis genes [20,40,77,91] and an increase in 
the abundance of the SCFA acetate and propionate [20,48,91,94]. Notably, 
while no study has reported a significant opposite trend, some studies 
found no significant effect of NAS on LPS or SCFA. Thus, even if they do 
mediate an effect of the NAS-associated microbiome on metabolic health, 
they are likely only part of a more complex interaction. 

Overrepresentation of LPS biosynthesis genes could potentially 
contribute to impaired metabolic health through a process termed 
“metabolic endotoxemia”, which has been linked with obesity and insulin 
resistance in mice and humans [138–140]. In this process, disrupted 
intestinal barrier function (resulting from modulation of the microbiome 
by diet, or LPS itself) leads to chronically elevated plasma levels of 
microbial-associated molecular patterns, predominantly LPS. The result is 
a TLR4- and CD14-dependent systemic and tissue-specific low-grade 
inflammation, including the adipose, liver, and skeletal muscle tissues. In 
addition to increased abundance of LPS biosynthetic genes, several studies 
in animal models have associated saccharin or sucralose supplementation 
with an increase in inflammatory markers [40,76,85–87,90,91,94] and 
modulation of intestinal barrier permeability [85,90,91,94], and one study 
specifically assessed the effect of sucralose on components of metabolic 
endotoxemia [91]. More conclusive evidence is needed to decipher the 
contribution of this mechanism to NAS-associated metabolic 
derangements, for example in TLR4-deficient animals. 

SCFA are key modulators of host-microbiome interactions and serve as 
signaling molecules, either by inhibiting histone deacetylases (HDACs) or 
by acting as ligands for several G protein-coupled receptors (GPR41, 
GPR43, GPR109A) and peroxisome proliferator-activated receptor-γ 
(PPARγ) [141,142]. In the context of metabolic health, higher cecal levels of 
acetate and butyrate were reported in obese mice [143], and fecal 
propionate was elevated in humans [144] with obesity. Consumption of a 
diet rich in saturated fat was associated with increased fecal levels of 
acetate, propionate, and butyrate in individuals with metabolic syndrome 
[145], and weight loss was associated with reduced plasma propionate in 
humans [146]. Dietary supplementation of propionate to mice and humans 
was shown to disrupt glucose tolerance [146], and high-fat diet feeding to 
rats resulted in increased microbial production of acetate, which led to 
overproduction of insulin and the hunger-associated hormone ghrelin, 
resulting in hyperphagia and obesity [147]. Conflictingly, multiple other 
studies [142] have reported improvement of metabolic health associated 
with supplementation of acetate [148,149], propionate [53,150–152], or 
butyrate [53,152,153], suggesting the need for a more refined 
understanding of tissue specificity and the distinction between 
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endogenous production and supplementation. Whether acetate, 
propionate, and butyrate mediate a negative impact of NAS on metabolic 
health, or rather are an unrelated outcome of microbiome modulation, 
remains to be determined. 

PERSPECTIVE: THE IMPORTANCE OF PRECISION 

The major challenge pertaining to the study of NAS remains a public 
health one, i.e., determining the extent to which NAS might negatively 
affect metabolic health. While the literature remains inconclusive, several 
health authorities and organizations recommend a cautious approach; 
Canada [154] and Israel [155] recommend overall reduction of sweeteners, 
caloric or not; the European Union restricts NAS in infant food [156] and 
in baked goods marketed towards individuals with diabetes [157], and the 
American Heart Association has advised against NAS consumption 
amongst children due to the unknown long-term effects [4]. Identifying 
correlates of responsiveness to NAS could help distinguish between 
scenarios in which NAS pose a health risk versus those in which they may 
be consumed safely, an important consideration, particularly for 
individuals with diabetes.  

The major extrinsic factor to consider is the type of NAS and whether 
some pose a greater risk than others. This level of precision is not feasible 
in observational studies, in which participants who consume NAS-
containing products are exposed to multiple different types of NAS in their 
habitual diet, sometimes unknowingly. Distinguishing between effects of 
specific NAS could be achieved with NAS supplementation to NAS-
abstainers. Currently, there is insufficient evidence in humans that would 
allow meta-analyses of RCTs to stratify metabolic outcomes per a given 
NAS. Additional RCTs, especially those that perform head-to-head 
comparisons of different NAS, are critically required. 

In addition to the intervention itself, a precision approach to health and 
nutrition necessitates consideration of individual-specific factors, 
including age, sex, medical history, habitual diet, and the intestinal 
microbiome [70]. An important factor in precision nutrition [61,65,70], 
preliminary evidence indicates that the microbiome may predict and 
modulate human metabolic responses to NAS [20]. Three other 
interventional studies that examined the effects of NAS on the microbiome 
did not address personalized post-exposure differences, and therefore it is 
currently unknown whether this finding is generalizable and applies to all 
NAS. Nonetheless, the magnitude of evidence for an effect of NAS on the 
microbiome in animal models should encourage further pursuit of similar 
impacts in humans. 

Exploration of the mechanisms through which NAS interact with the 
microbiome in modulation of the host’s metabolic health is still in its early 
stages. Multiple potential mechanisms through which each NAS can affect 
microbial physiology have been described predominantly in vitro (Figure 
2) and remain to be validated in vivo and in humans. Moving beyond 
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associations, studies that causally link microbiome modulation by NAS 
with an effect on host metabolism [20,78] can serve as a powerful tool for 
deciphering the underlying mechanisms. While some mechanistic links 
are more common than others (namely, SCFA production and metabolic 
endotoxemia, Figure 1), the lack of a consistent signature even within a 
single NAS suggest that these may be an outcome, rather than the driver, 
of the metabolic phenotype, which could also explain how the same 
pathways manifest after supplementation with chemically-distinct NAS. 
Indeed, hyperglycemia may promote impaired barrier function [158], and 
elevated SCFA levels have been suggested to be a marker, rather than a 
driver, of metabolic syndrome [142]. Thus, in addition to establishing 
causality (e.g., using transplantation to GF animals), future research would 
benefit from a longitudinal approach that would enable investigators to 
decipher the sequence of events.  

Heterogeneity in the microbiome of NAS-exposed individuals could 
conduce to differential metabolic outcomes if the abundances of microbes 
amenable to modulation by NAS displays person-to-person variation. Such 
heterogeneity may also underlie inter-subject differences in excretion and 
absorption reported for some NAS [74,75,100–117,159] and thus conduce 
differential effects on the host by controlling the levels of NAS and, for 
some, their potential metabolites. Beyond providing critical evidence of 
causality, understanding the mechanisms involved could provide 
quantifiable bio-markers of responsiveness to NAS, which could be used 
in precision nutrition and clinical decision-making. 
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