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ABSTRACT 

Rolling element bearings are important parts of rotating machinery, and 
they are also one of the most fault-prone parts in rotating machinery. 
Therefore, many new algorithms have been proposed to solve the 
vibration-based diagnosis problem of rolling bearings. The measured 
vibration signal is typically composed of a periodic transient signal 
severely contaminated by loud background noise when the faults occur. 
In this paper, a transient signal extraction algorithm is proposed which 
depends on spectrum matrix decomposition. The sparse time–frequency 
representation of the periodic transient signals is exploited, and, further, 
a low-rank and sparse model is established to extract transient signals 
from strong noise. First, the low-dimensional representation matrix of the 
measured signal is generated by the synchrosqueezing transform based 
on short-time Fourier transform. It is found that the low-rank of the 
transient signal will be approximately preserved in the transformed 
domain. Then, semi-soft go decomposition is used to decompose the 
spectrum matrix into a low-rank matrix and a sparse matrix. Finally, the 
transient signal can be recovered through the inverse transformation of 
the decomposed low-rank matrix. The proposed method is a data-driven 
approach, and it does not require prior training. The performance of the 
algorithm is investigated on both synthetic and real vibration signals, and 
the results demonstrate that the algorithm is effective and robust. 

KEYWORDS: vibration-based diagnostics of rolling bearings; transient 
signals; low-dimensional representation; low-rank and sparse model 

INTRODUCTION 

Rolling element bearings are one of the most widely used components 
in mechanical systems, and their failure is one of the most frequent 
reasons for a machine breakdown [1]. Because of its low cost, high 
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efficiency and convenient maintenance, it is widely used in the 
mechanical industry. It will cause a drop in the quality of the product 
when faults occur, or the bearings fail, and, in severe cases, it will lead to 
damage to the entire mechanical device. Therefore, considering the 
importance of bearings in mechanical equipment, fault diagnosis of 
bearings has caused widespread concern in the scientific community [2]. 
The ultimate goal of fault diagnosis is to determine the existence of the 
fault by analyzing the external fault information and determining 
whether the machine needs maintenance. Despite extensive research in 
the field, the diagnosis of these faults remains a challenging issue. 

Vibration signal analysis has been extensively used in bearing fault 
diagnosis due to the simplicity of measurement and the relatively low cost 
of the sensor [3]. Generally, the presence of mechanical bearing faults can 
be detected by vibration signals analysis. From the literature research, 
diagnostic methods based on vibration signals analysis have proved their 
effectiveness in many situations, and researchers continually strive to 
develop improvements in the diagnostic algorithms based on vibration 
signals [4]. The defects of the rolling element bearings will produce a series 
of transient signals in the measured acceleration signal, as the fault 
repeatedly interacts with other rolling surfaces [5]. However, the 
measured vibration signals are always buried in background noise from 
other vibration sources on the machine, which results in the diversity and 
complexity of the vibration signal characteristics. Therefore, the detection 
and diagnosis of bearing faults can be considered as the problem of 
extracting periodic transient signals from the measured signals with 
strong noise. 

In the past few decades, several methods for bearing fault diagnosis 
have been introduced and developed. These methods deal with vibration 
signals in a variety of ways and generally can be divided into the following 
categories [6]. 

Model-based methods: Models are used for enhancing the contrast 
between the fault signal and the normal vibration data. The most typical 
model-based approach is Autoregressive (AR) model, which is a time-
sequence analysis method, and its parameters comprise essential 
information of the system condition [7]. AR model is widespread in 
machine fault detection and effective in extracting gear faults with little 
prior knowledge [8,9].  

Spectral analysis methods: Spectral analysis methods aim to generate a 
spare time–frequency representation of the signal. The spectrum 
illustrates the characteristics of a signal in the time–frequency 
representation and presents more information than in the time domain. 
There are many ways to obtain the sparse time–frequency representation 
of the signal, such as short-time Fourier transform (STFT) and wavelet 
transforms [10–12]. Generally, fault signals and noise will show different 
properties in the time–frequency domain. It means that a sparse 
transform yields a more distinguishable representation. However, time–
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frequency transforms such as STFT and continuous wavelet transform 
spread the energy of the signal around the instantaneous frequencies of 
the original signal [13]. Hence, a post-processing method is proposed to 
sharpen the blurry signal information and to overcome the limitations of 
traditional time–frequency transforms. Synchrosqueezing transform (SST) 
utilizes frequency reassignment to shrink the spectrogram along the 
frequency axis, thus leading to a better resolution [14,15]. Therefore, SST 
can promote the sparsity of the representation matrix of the signal. 
Moreover, it is worth mentioning that SST is reversible. 

Filtering methods: Filtering methods aim to reduce non-fault signals 
and enhance the visibility of the fault vibration. The fault information can 
be better revealed with the prior knowledge of the statistical 
characteristics of the fault signal. The most typical methods are presented, 
including Spectral kurtosis-based filtering and deconvolution. Spectral 
kurtosis (SK) is a method that selects a bandpass filter to maximize the 
kurtosis of the filtered resulting signal. SK has demonstrated its power in 
bearing fault diagnosis and has been receiving a lot of research attention 
within the last few years [16]. Minimum entropy deconvolution (MED) 
treats fault signal extraction as a deconvolution problem, in which a Finite 
Impulse Response (FIR) filter is selected to minimize the entropy of the 
filtered signal [17]. A limitation of MED is that the algorithm generally 
prefers to deconvolve only a single impulse, as opposed to the desired 
periodic impulses produced by bearing faults. Inspired by the MED 
deconvolution technique, an improved novel deconvolution norm was 
proposed, Correlated kurtosis (CK), which takes advantage of the 
periodicity of the faults [18]. The effectiveness of maximum correlated 
kurtosis deconvolution (MCKD) is proved by testing on the simulation and 
experimental data from a controlled gear tooth chip experiment. 

Different from the previous work of building a matrix directly on the 
time domain and performing low-rank matrix decomposition [19], the 
present work depends on sparse time–frequency spectral analysis. The 
proposed method only requires that the signal has no information loss 
after the transformation, and the transformation is invertible. As 
mentioned above, the transform can capture the time–frequency structure 
of a periodic transient signal well. In this paper, the spectrum matrix of 
the measured signal is calculated using STFT-based SST due to its high 
resolution and high sparsity properties. It can be seen that the low-rank of 
transient signals will be approximately preserved during the 
transformation [20]. Then, the strategy is to decompose the matrix into 
low-rank and sparse components to obtain the transient signal 
corresponding matrix. Matrix factorization methods currently enjoy 
immense popularity in machine learning and signal processing [21]. There 
are many ways to obtain low-rank information from the noisy observation 
matrix with less error, such as robust principal component analysis  
(RPCA)[22,23] and go-decomposition (GoDec)[24]. 
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The remainder of this paper is organized as follows. The signal model 
in bearing fault diagnosis and the STFT-based SST of signals are introduced 
in the Section “LOW DIMENSIONAL REPRESENTATION OF THE 
SIGNAL”. The selection of low-rank and sparse decomposition method is 
provided in Section “LOW-RANK DECOMPOSITION”. Then, Section 
“VALIDATION ON SYNTHETIC SIGNALS” presents the validation of the 
proposed methodology on synthetic signals. Finally, several actual 
vibration signals are used to verify the performance of the proposed 
approach in Section “VALIDATION ON VIBRATION SIGNALS”. 

LOW DIMENSIONAL REPRESENTATION OF THE SIGNAL 

Typically, the measured signal y(t) can be described as the additive 
model, 

y(t) = x(t) + n(t) (1) 

where “informative signal” x(t) and the stationary background noise n(t) 
are assumed mutually independent. In the case of bearing fault diagnosis, 
the bearing components repeatedly strike the defect, resulting in periodic 
transient signals x(t). 

The transient signal can be well captured in the time–frequency 
representation, on the contrary to the noise n(t), which is spread all over 
the time–frequency representation matrix [25]. It is found that different 
time–frequency transforms do not affect the extraction performance of 
transient signals through experiments. In this paper, based on the STFT of 
the signal, a sparser representation matrix is generated using SST.  

The STFT expression of a function 𝑠𝑠 ∈ 𝐿𝐿2(𝑅𝑅) is defined as: 

𝑉𝑉𝑓𝑓(𝜂𝜂, 𝑡𝑡) = �𝑠𝑠(𝜏𝜏)𝑔𝑔(𝜏𝜏 − 𝑡𝑡)𝑒𝑒−2𝑖𝑖𝑖𝑖𝑖𝑖(𝜏𝜏−𝑡𝑡)𝑑𝑑 𝜏𝜏 (2) 

where 𝑔𝑔(𝑡𝑡) is the window function with a unit norm ||𝑔𝑔|| = 1. 
Although the energy of the time–frequency representation 𝑉𝑉𝑓𝑓(𝜂𝜂, 𝑡𝑡) 

diverges in the ridge direction, the phase of 𝑉𝑉𝑓𝑓(𝜂𝜂, 𝑡𝑡) is not affected by the 
length of the time window, so the instantaneous frequency 𝜔𝜔�𝑓𝑓  can be 
estimated by the phase of 𝑉𝑉𝑓𝑓(𝜂𝜂, 𝑡𝑡)[26,27]. 

𝜔𝜔�𝑓𝑓(𝜂𝜂, 𝑡𝑡) = −𝑖𝑖 �𝑉𝑉𝑓𝑓(𝜂𝜂, 𝑡𝑡)�
−1 𝜕𝜕
𝜕𝜕𝑡𝑡
𝑉𝑉𝑓𝑓(𝜂𝜂, 𝑡𝑡) (3) 

In the actual calculation, η, t  and 𝜔𝜔𝑓𝑓  are discretized, i.e.,  𝑉𝑉𝑓𝑓(𝜂𝜂, 𝑡𝑡)  is 
computed only at a discrete 𝑎𝑎𝑘𝑘 , with 𝑎𝑎𝑘𝑘 − 𝑎𝑎𝑘𝑘−1 = (𝛥𝛥𝑎𝑎)𝑘𝑘 , and its 
synchrosqueezed transform 𝑇𝑇𝑓𝑓(𝜔𝜔, 𝑡𝑡)  is determined only at the center 
frequency 𝜔𝜔𝑙𝑙 of successive bins [𝜔𝜔𝑙𝑙 −

1
2
𝛥𝛥𝜔𝜔,𝜔𝜔𝑙𝑙 + 1

2
𝛥𝛥𝜔𝜔], with 𝛥𝛥𝜔𝜔 = 𝜔𝜔𝑙𝑙 − 𝜔𝜔𝑙𝑙−1, 

by summing different contributions: 

𝑇𝑇𝑓𝑓(𝜔𝜔𝑙𝑙 , 𝑡𝑡) = � 𝑉𝑉𝑓𝑓(𝑎𝑎𝑘𝑘 , 𝑏𝑏)𝑎𝑎𝑘𝑘
−32(𝛥𝛥𝑎𝑎)𝑘𝑘

𝑎𝑎𝑘𝑘:�𝜔𝜔�𝑓𝑓(𝑎𝑎𝑘𝑘,𝑏𝑏)−𝜔𝜔𝑙𝑙�≤
𝛥𝛥𝜔𝜔
2

 (4) 

https://doi.org/10.20900/joa20190003


 
Journal of Acoustics 5 of 20 

J Acoust. 2019;1:e190003. https://doi.org/10.20900/joa20190003 

Finally, the signal x(t) can be reconstruction by the inverse 
transformation of 𝑇𝑇𝑓𝑓(𝜔𝜔𝑙𝑙 , 𝑡𝑡): 

𝑥𝑥(𝑡𝑡) ≈ 𝑅𝑅𝑒𝑒[𝐶𝐶𝜓𝜓−1�𝑇𝑇𝑓𝑓(𝜔𝜔𝑙𝑙 , 𝑡𝑡)
𝑙𝑙

(𝛥𝛥𝜔𝜔)] (5) 

where 𝐶𝐶𝜓𝜓 = 1
2 ∫ 𝑔𝑔�(𝜉𝜉)������∞

0
𝑑𝑑𝑑𝑑
𝑑𝑑

, 𝑔𝑔�(𝜉𝜉)������  is the complex conjugate of the Fourier 

transform of 𝑔𝑔�(𝜉𝜉). 

LOW-RANK DECOMPOSITION 

Let matrix 𝑿𝑿 ∈ ℂ𝑀𝑀×𝑁𝑁  denote the STFT-based SST representation of 
transient signal x(t). The low-rank prior of the transient signal will be 
approximately preserved in the transformed domain, thus the 
spectrogram 𝑳𝑳 = |𝑿𝑿|2 is a low-rank matrix. Matrix 𝒀𝒀 ∈ ℂ𝑀𝑀×𝑁𝑁 is defined as 
the sparse time–frequency transform of the measured signal 𝑦𝑦(𝑡𝑡) and the 
spectrogram 𝑴𝑴 = |𝒀𝒀|2 can be represented as 𝑴𝑴 = 𝑳𝑳 + 𝑺𝑺. 𝑺𝑺 corresponds to 
a stationary noise signal that is sparse. Therefore, by using the low-rank 
and sparse decomposition method, the noisy observation matrix can be 
decomposed to obtain the low-rank matrix, which containing transient 
signal information. 

Without a constraint of specific rank, Robust Principal Component 
Analysis (RPCA) defines the low-rank component unclearly. Moreover, due 
to its convexity relaxation, the decomposed results sometimes are 
insufficiently promoted for low-rank or sparsity. As an improvement, in 
[24], the authors considered GoDec with a different signal model,  
M = L + S + R, with additive Gaussian noise R and penalizing constraints of 
rank and non-zero entries directly. Therefore, the problem of low-rank 
matrix and sparse decomposition can be formally expressed as, 

𝑴𝑴 = 𝑳𝑳 + 𝑺𝑺 + 𝑹𝑹, 𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟(𝑳𝑳) ≤ 𝑟𝑟, 𝑐𝑐𝑎𝑎𝑟𝑟𝑑𝑑(𝑺𝑺) ≤ 𝑟𝑟 (6) 

where rank (L) is the rank of L, and card (S) is the cardinality of S. The 
problem in Equation (6) is approximately equivalent to solving the 
minimization of the following decomposition error: 

min
𝐿𝐿,𝑆𝑆

      �|𝑴𝑴− 𝑳𝑳 − 𝑺𝑺|�
F
2
 

Subject to rank(𝑳𝑳) ≤ r 

card(𝐒𝐒) ≤ k 

(7) 

where the Frobenius norm ||𝑨𝑨||𝐹𝐹 = �∑ 𝑎𝑎2(𝑖𝑖, 𝑗𝑗)𝑖𝑖,𝑗𝑗 . The optimization problem 
in Equation (7) can be solved by alternatively assigning the low-rank 
approximation of M − S to L and assigning the sparse approximation of  
M − L to S. Moreover, the singular value decomposition (SVD) is replaced 
with a Bilateral Random Projection (BRP)-based low-rank approximation, 
to significantly reduce the time cost [28,29](see Appendix A for details). 

Generally, the cardinality of 𝑺𝑺 is hard to estimate. Thus, Semi-Soft Go 
Dec (SSGD) adopts soft thresholding to the entries of 𝑺𝑺, where parameter k 
can be automatically determined by soft threshold 𝜆𝜆 . Different from 
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GoDec which imposes hard threshold to the entries of the sparse part S, 
card(S) can be relaxed by replacing it with the L1 norm ||𝑺𝑺||𝐿𝐿1 = ∑ |𝑆𝑆(𝑖𝑖, 𝑗𝑗)|𝑖𝑖,𝑗𝑗 . 
The value of regularization λ is the trade-off between the error term and 
the sparsity of 𝑺𝑺. Moreover, the computation cost of SSGD is substantially 
smaller than the original GoDec while the error rate is kept the same or 
even smaller. SSGD is formulated as the optimization problem in Equation 
(8), can be solved by the alternative optimization method, and the 
corresponding algorithm is presented in Appendix A. 

min
𝐿𝐿,𝑆𝑆

       �|𝑴𝑴− 𝑳𝑳 − 𝑺𝑺|�
F
2 + λ�|𝑺𝑺|�

L1 

Subject to rank(𝑳𝑳) ≤ 𝑟𝑟 
(8) 

Here, the convergence of SSGD needs to be discussed. Following the 
original GoDec [24], we can prove that SSGD can also converge to local 
optimum. The optimization problem in Equation (8) is equivalent to the 
following form. 

min
𝐿𝐿,𝑆𝑆

       �|𝑴𝑴− 𝑳𝑳 − 𝑺𝑺|�
F
2
 

Subject to rank(𝑳𝑳) ≤ 𝑟𝑟 

||𝑺𝑺||𝐿𝐿1 ≤ k 

(9) 

Then, the optimization problem in Equation (9) can be solved by 
alternatively solving the following two subproblems until convergence: 

�
𝐿𝐿𝑡𝑡 = 𝑎𝑎𝑟𝑟𝑔𝑔 min

𝑟𝑟𝑎𝑎𝑟𝑟𝑘𝑘(𝐿𝐿)≤𝑟𝑟
�|𝑴𝑴− 𝑳𝑳 − 𝑺𝑺𝒕𝒕−𝟏𝟏|�

F
2

𝑺𝑺𝑡𝑡 = 𝑎𝑎𝑟𝑟𝑔𝑔 min
||𝑆𝑆||𝐿𝐿1≤k

�|𝑴𝑴− 𝑳𝑳𝒕𝒕 − 𝑺𝑺|�
F
2  (10) 

Let the objective value �|𝑴𝑴− 𝑳𝑳 − 𝑺𝑺|�
F
2

 after solving the two 

subproblems in Equation (10) be 𝐸𝐸𝑡𝑡,1 and 𝐸𝐸𝑡𝑡,2 in the 𝑡𝑡𝑡𝑡ℎ iteration. Then, 
we have  

𝐸𝐸𝑡𝑡,1 = �|𝑴𝑴− 𝑳𝑳𝒕𝒕 − 𝑺𝑺𝒕𝒕−𝟏𝟏|�
F
2, 𝐸𝐸𝑡𝑡,2 = �|𝑴𝑴− 𝑳𝑳𝒕𝒕 − 𝑺𝑺𝒕𝒕|�F

2
 (11) 

𝐸𝐸𝑡𝑡,2 = �|𝑴𝑴− 𝑳𝑳𝒕𝒕 − 𝑺𝑺𝒕𝒕|�F
2, 𝐸𝐸𝑡𝑡+1,1 = �|𝑴𝑴− 𝑳𝑳𝒕𝒕+𝟏𝟏 − 𝑺𝑺𝒕𝒕|�F

2
 (12) 

The global optimality of 𝑺𝑺𝑡𝑡 yields 𝐸𝐸𝑡𝑡,1 ≥ 𝐸𝐸𝑡𝑡,2 and the global optimality of 
𝑳𝑳𝒕𝒕+𝟏𝟏  yields 𝐸𝐸𝑡𝑡,2 ≥ 𝐸𝐸𝑡𝑡+1,1 . Therefore, the objective values �|𝑴𝑴− 𝑳𝑳 − 𝑺𝑺|�

F
2  

keep decreasing throughout Equation (10): 

𝐸𝐸1,1 ≥ 𝐸𝐸1,2 ≥ 𝐸𝐸2,1 ≥ ⋯ ≥ 𝐸𝐸𝑡𝑡,1 ≥ 𝐸𝐸𝑡𝑡,2 ≥ 𝐸𝐸𝑡𝑡+1,1 ≥ ⋯ (13) 

Since the objective of Equation (9) is monotonically decreasing, and the 
constraints are satisfied all the time, Equation (10) produces a sequence of 
objective values that converge to a local minimum. 

Nevertheless, matrix 𝑳𝑳  cannot be directly used to reconstruct the 
transient signal because the phase information is lost. The low-rank 
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complex spectrum matrix can be recovered by taking over the phase 
information of matrix Y denoted by [𝑿𝑿] = �[𝑳𝑳]𝑒𝑒∠[𝒀𝒀]  and the sparse 
complex spectrum matrix is [𝑵𝑵] = �[𝑺𝑺]𝑒𝑒∠[𝒀𝒀]. It is noteworthy to point out 
that the spectrum matrix 𝑿𝑿 is often contaminated by noise. Therefore, a 
binary time‐frequ en cy m ask  m ethod can  be fu r ther  u sed  to r efin e the 

final results, which is written as follows: 

𝑭𝑭(𝑖𝑖, 𝑗𝑗) = �1 𝑖𝑖𝑖𝑖 |𝑿𝑿(𝑖𝑖, 𝑗𝑗)| > 𝐺𝐺|𝑵𝑵(𝑖𝑖, 𝑗𝑗)|
0 𝑖𝑖𝑖𝑖 |𝑿𝑿(𝑖𝑖, 𝑗𝑗)| ≤ 𝐺𝐺|𝑵𝑵(𝑖𝑖, 𝑗𝑗)|  (14) 

where G is a parameter to control the amplitude gain ratio between 
|𝑿𝑿(𝑖𝑖, 𝑗𝑗)| and |𝑵𝑵(𝑖𝑖, 𝑗𝑗)|.  

Finally, the estimated time–frequency spectrum of the signal can be 
transformed back to the time domain using the inverse transform. It is 
worth mentioning that the proposed method is very robust to STFT 
parameters and hyperparameter of SSGD according to the experimental 
verification. The transient signal extraction algorithm is shown in 
Algorithm 1. In addition, we give a guidance for parameter tuning in 
Appendix B. 

Algorithm 1. The transient signal extraction algorithm. 
1. Input measured signal y(𝑟𝑟) with N sampling length.  
2. Calculate the spectrogram matrix 𝑴𝑴 using Equations (2), (3) and (4) with the Hanning window. 
3. Decompose spectrogram matrix 𝑴𝑴  into the low-rank matrix 𝑳𝑳  and the sparse matrix  𝑺𝑺  using 

Equation (8).  

4. Recover low-rank complex matrix [𝑿𝑿] = �[𝐿𝐿]𝑒𝑒∠[𝒀𝒀]. 
5. Filter out the noise in 𝑿𝑿 using Equation (9) and Q= 𝑭𝑭⊙𝑿𝑿, where ⊙ denotes Hadamard product. 
6. Extract the transient signal using inverse transform by Equation (5). 

VALIDATION ON SYNTHETIC SIGNALS 

In this section, we validate the proposed method with synthetic signals. 
We built the signal as a sequence of transients. It is monotonic and 
generated by x = s × h. Here, we use “×” to denote convolution, and s is an 
impulse train, as: 

𝑠𝑠[𝑟𝑟] = � 𝛿𝛿(𝑟𝑟 − 𝑚𝑚𝐷𝐷𝑇𝑇)
𝑁𝑁𝑚𝑚

𝑚𝑚=0

 for 𝑟𝑟 =  1, … ,𝑁𝑁 (15) 

where 𝛿𝛿(𝑟𝑟) denotes the Dirac impulse, and ℎ is a filter with the transfer 
function 

𝐻𝐻(𝑧𝑧) =
1 − 𝑧𝑧−1

1 − 2 𝑐𝑐𝑐𝑐𝑠𝑠( 2𝜋𝜋 ⋅ 0.2)𝑟𝑟𝑧𝑧−1 + 𝑟𝑟2𝑧𝑧−2
 (16) 

Firstly, an impulse signal 𝑠𝑠[𝑟𝑟] (time duration is 1 s and the sampling 
frequency is 104 Hz) with length N =104 is produced, where 𝐷𝐷𝑇𝑇  = 600 and 
𝑁𝑁𝑚𝑚 = 16. Secondly, the impulse signal 𝑠𝑠[𝑟𝑟] is passed through a filter 𝐻𝐻(𝑧𝑧), 
with r = 0.95 to synthesize the transient signal 𝑥𝑥(𝑟𝑟). Finally, Gaussian noise 
is added to the transient signal to obtain the simulated signal y(𝑟𝑟) while 
maintaining the SNR = −10 dB. A simple illustrative example is shown in 
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Figure 1, where the transient signal (in green color) is buried in strong 
additive noise (in blue color). 

(A) 

 

(B) 

Figure 1. (A) A synthetic measured signal with white noise (SNR = −10 dB). (B) A synthetic periodic transient 
signal. 

Then, a Hanning window with length 𝑁𝑁𝑤𝑤  = 50 is selected for  
STFT-based SST, and the corresponding spectrogram of the raw signal and 
the transient signal are shown in Figure 2. It can be seen that the structure 
of the transient signal can be well captured after the transformation. On 
the contrary, the noise is spread over the entire time–frequency matrix. In 
other words, the low-rank of transient signal will not be actively changed 
after transform and can be considered as low-rank or semi-low-rank in the 
transformed domain. Therefore, the SSGD algorithm is used to decompose 
the spectrum of a raw signal into its low-rank and sparse components. 

(A) (B) 

  
Figure 2. (A) Spectrogram of synthetic measured signal with a Hanning window with length Nw = 50  
(SNR = −10 dB). (B) Spectrogram of the synthetic clean transient signal with Hanning window with length 
Nw = 50. 
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In this case, two important parameters in the SSGD is set to r = 1 and  
λ = 0.02. It is found that the decomposed low-rank and sparse spectrum can 
be attributed to the synthetic transient signal and the noise, respectively, 
as shown in Figure 3. However, there are differences between the 
extracted low-rank spectrum and spectrogram of the clean synthetic 
transient signal. These differences come from the fact that the transient 
signal in the time–frequency domain is not exactly low-rank, but it would 
be approximately low-rank. Therefore, the decomposed low-rank matrix 
can still be used to reconstruct transient signals. 

(A) (B) 

  
Figure 3. (A) Low-rank spectrum decomposed by SSGD algorithm with r = 1 and λ = 0.02. (B) Sparse spectrum 
decomposed by SSGD algorithm with r = 1 and λ = 0.02. 

(A) (B) 

  

Figure 4. (A) Low-rank spectrum decomposed by RPCA algorithm with λ = 0.02. (B) Sparse spectrum 
decomposed by RPCA algorithm with λ = 0.02.  

Similar to the previous work using RPCA for low-rank decomposition 
[30], here, RPCA is used to decompose the STFT-based SST spectrum and 
the results are presented in Figure 4. It is not easy to determine whether 
the transient signal is in the low-rank or the sparse component, compared 
with Figure 3. Further, the singular values of the decomposed matrices are 
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calculated to test the validity of low-rank and sparse decomposition 
algorithm. Distributions of singular values of the decomposed low-rank 
and sparse matrix by SSGD and RPCA are displayed in Figure 5. It can be 
found that the rank of the low-rank matrix obtained by RPCA is even larger 
than the sparse matrix. The reason for this may be the convex relaxation 
of RPCA. Due to its convexity relaxation, the decomposed results are 
insufficiently promoted for low-rank or sparsity. On the contrary, the low-
rank matrix decomposed by SSGD satisfies its definition well just because 
the algorithm imposes a hard constraint on the rank. Besides, SSGD is 
significantly less time-consuming than RPCA.  

(A) (B) 

  
Figure 5. (A) Distribution of singular values of the decomposed low-rank and sparse matrix by SSGD.  
(B) Distribution of singular values the decomposed low-rank and sparse matrix by RPCA. 

 

Figure 6. Filtered low-rank spectrum matrix 𝑸𝑸 = 𝑭𝑭⊙ 𝑿𝑿 with G = 6. 
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Then, the phase information of the raw signal spectrum is used to 
recover the low-rank complex spectrum. A binary time‐fr equen cy m ask  i s 

used to remove noise to obtain a more accurate low-rank spectrum. The 
filtered low-rank complex spectrum 𝑸𝑸 = 𝑭𝑭⊙𝑿𝑿 is presented in Figure 6. 
Compared with Figure 2B, it is found that the result is good with the clean 
transient signal spectrum. 

Finally, the estimated filtered low-rank spectrum matrix can be 
transformed back to the time domain using the inverse STFT-based SST, to 
obtain the transient signal, which is presented in Figure 7C. It can be seen 
that the periodic transient signals are almost entirely recovered, 
compared with Figure 7A,B, which proves the effectiveness of the 
proposed method. 

(A) 

 

(B) 

(C) 

Figure 7. (A) A synthetic measured signal with white noise (SNR = −10 dB). (B) A synthetic periodic transient 
signal. (C) The extracted transient signal by our proposed method (Figure 6 shows that only 10 transients 
are recognized because the other values are too small to display). 

In addition, there are many methods to recover sparse transients from 
noise. To emphasize the advantage of the low-dimensional modeling of 
fault signal, a Matching Pursuit (MP) based algorithm is used for 
comparison [31]. The crucial step of MP-based algorithms is the 
establishment of a sparsity-promoted dictionary, and the majority of 
known ways for establishing a dictionary can be divided into two general 
categories: analytic- and learning-based approaches [31]. An important 
issue is that such an analytic dictionary always needs to be established in 
advance, which inevitably causes the effect of extraction to be greatly 
affected by the dictionary. Often, in practical applications, it is very 
difficult to choose and build a dictionary properly. 

Figure 8 shows the extraction of transient signals by the MP algorithm. 
It can be found that both methods can capture the time of transient signal 
well, but the transient signal extracted by the MP-based algorithm is still 
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mixed with some noise, and the proposed method performs well in noise 
reduction. In comparison, our method requires only a small number of 
parameters to achieve good results, and the method is robust to 
parameters. 

(A) 

 

(B) 

(C) 

Figure 8. (A) A synthetic measured signal with white noise (SNR= −10 dB). (B) A synthetic periodic transient 
signal. (C) The extracted transient signal by MP-based method. 

VALIDATION ON VIBRATION SIGNALS 

This section illustrates the application of the proposed method on 
actual vibration signals, as often encountered in industrial applications. 
The rolling bearing experimental data are from the MFPT Challenge data 
[32], which comprises data from a bearing test rig (nominal bearing data, 
an outer race fault at various loads, and inner race fault and various loads). 
A fault is mainly identified by estimating the fault frequency and 
associating it to a given component in the machine. The prevailing method 
in the modern literature is surely the squared envelope spectrum, which 
reveals the repetition frequency of the transient signal series [33]. The 
following shows the application of the proposed method and envelope 
spectrum analysis in real vibration data. 

As for inner race fault, the expected components in the envelope 
spectrum are ball pass frequency inner race (BPFI) and its harmonics, and 
sidebands spaced at shaft speed and their harmonics [5]. The envelope 
spectrum of the raw inner race fault shows that most of the energy is 
focused on BPFI and its harmonics, as shown in Figure 9. It indicates an 
inner race fault of the bearing, which matches the fault type of the signal. 
Therefore, the type of bearing fault can be detected by envelope spectrum 
analysis. Figure 10A indicates that the inner race fault signal has 
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significantly larger impulsiveness in the time domain, making envelope 
spectrum analysis capture the fault signature at BPFI effectively. 

Then, the extracted transient signal by the proposed method is 
displayed in Figure 10B, which approximately captures the time position 
of the transient signal. Besides, the envelope spectrum of the extracted 
transient signal by the proposed method is presented in Figure 11. It is also 
found that most of the energy is focused on BPFI and its harmonics, which 
indicates the fault type of the signal. Moreover, the proposed method 
captures the sidebands in the low-frequency region better than the 
envelope spectrum directly on the raw signal. It also proves that the 
proposed algorithm is very effective in diagnosing fault types. 

 
Figure 9. Envelope Spectrum of the raw inner race fault signal, the expected BPFI and its harmonics (red 
dashed line) and the expected sidebands (green dashed line). 

(A) 

 

(B) 

Figure 10. (A) The raw inner race fault signal data. (B) The extracted transient signal by the proposed 
method. 
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Figure 11. Envelope Spectrum of the extracted transient signal by the proposed method. 

The expected components in the envelope spectrum are ball pass 
frequency outer race (BPFO) and harmonics of an outer race fault signal. 
Therefore, most of the energy in the envelope spectrum of the outer race 
signal should be concentrated at BPFO. However, it is found that there are 
no clear peaks at BPFO harmonics when the raw signal envelope spectrum 
is analyzed, as shown in Figure 12. It illustrates that envelope spectrum 
analysis on the raw signal does not provide useful diagnostic information. 
The outer race fault signal does not have a significantly larger 
impulsiveness, and it is masked by the loud noise, as shown in Figure 13A, 
making envelope spectrum analysis unable to capture the fault signature 
at BPFO effectively. Therefore, the raw signal needs to be preprocessed to 
extract the transient signal under strong signal before envelope spectrum 
analysis. Here, the proposed method is used for preprocessing, and the 
extracted transient signal is shown in Figure 13B. 

 
Figure 12. Envelope Spectrum of the raw outer race fault and the expected BPFI and its harmonics (red 
dashed line). 
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(A) 

 

(B) 

Figure 13. (A) Raw outer race fault signal. (B) The extracted transient signal by the proposed method. 

Further, envelope spectrum analysis is carried out for the extracted 
transient signal, as shown in Figure 14A. It can be seen that there is a 
significant peak at BPFO, compared with Figure 12, which proves that the 
proposed preprocessing method is very useful for the extraction of fault 
information. Moreover, the envelope spectrum of the transient signal 
extracted by the proposed algorithm is compared with SK algorithm, as 
presented in Figure 14. It is found that the proposed method captures fault 
information well in high-frequency harmonics compared to the SK 
method. It further demonstrates the effectiveness of the proposed method 
in the diagnosis of vibration fault signals. 

(A) (B) 

  

Figure 14. (A) Envelope Spectrum of the extracted transient signal by the proposed method. (B) Envelope 
Spectrum of the signal by SK algorithm. 

CONCLUSIONS 

This paper has introduced a low-dimensional model for the vibration 
signal of rolling element bearing faults, which has the typical form of a 
series of transients overlaid with stationary background noise. It is based 
on the sparse representation of the signal and the characteristics of 
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transient signals expressed in a sparse representation. In this work, STFT-
based SST is utilized to transform the noisy measured signal to the high-
resolution time–frequency domain. The low-rank of the transient signal 
will be preserved in the transformed domain. The filtered transient signal 
can be recovered through the inverse transformation of the low-rank 
component of the SST magnitude spectrum, which is obtained by solving 
the optimization problem using the Semi-Soft GoDec algorithm. This paper 
aims to exploit the low-dimensional model of periodic transient signals 
and establish a low rank and sparse model for fault detection of bearings. 
The performance of the proposed method has been tested on several 
synthetic signals and real vibration signals. In terms of reconstruction of 
the fault signal, results demonstrate that the method is effective and 
robust. The proposed model also deals with signals acquired from the 
actual vibration machine. The advantage of the proposed method is that it 
does not require prior training or other particular features and only 
requires the setting of a few parameters.  
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APPENDICES 

Appendix A 

Fast low-rank approximation [24]: 
Given r bilateral random projections (BRP) of an m × n dense matrix 

𝑋𝑋 , i.e., 𝑌𝑌1 = 𝑋𝑋𝐴𝐴1  and 𝑌𝑌2 = 𝑋𝑋𝑇𝑇𝐴𝐴2 , wherein 𝐴𝐴1 ∈ ℝ𝑚𝑚×𝑟𝑟  and 𝐴𝐴2 ∈ ℝ𝑟𝑟×𝑟𝑟  are 
random matrices, 𝐿𝐿 = 𝑌𝑌1(𝐴𝐴2𝑇𝑇𝑌𝑌1)−1𝑌𝑌2𝑇𝑇  is a fast rank-r approximation of 
matrix 𝑋𝑋. When singular values of X decay slowly, L may perform poorly. 
A modification for this situation based on the power scheme is used. In the 
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power scheme modification, we instead calculate BRP of a matrix  
𝑋𝑋� = (𝑋𝑋𝑋𝑋𝑇𝑇)𝑝𝑝𝑋𝑋 , whose singular values decay faster than X. To obtain the 
approximation of X with r, we calculate the QR decomposition of 𝑌𝑌1 and 
𝑌𝑌2, i.e., 𝑌𝑌1 = 𝑄𝑄1𝑅𝑅1, 𝑌𝑌2 = 𝑄𝑄2𝑅𝑅2. Therefore, the low-rank approximation of X is 

𝐿𝐿 = 𝑄𝑄1[𝑅𝑅1(𝐴𝐴2𝑇𝑇𝑌𝑌1)−1𝑅𝑅2𝑇𝑇]
1

2𝑝𝑝+1𝑄𝑄2𝑇𝑇 . In addition, the power scheme modification 
reduces the error of low-rank approximation by increasing p. In this paper, 
the values of p are all set to 6. 

A soft thresholding operator for any matrix Q is defined as: 

𝑆𝑆𝑐𝑐𝑖𝑖𝑡𝑡_𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑠𝑠ℎ𝑐𝑐𝑜𝑜𝑑𝑑(𝑸𝑸, λ) = 𝑚𝑚𝑎𝑎𝑥𝑥(|𝑞𝑞| − λ, 0)𝑠𝑠𝑔𝑔𝑟𝑟(𝑞𝑞) 

where q denotes each entry of the matrix Q and sgn() is the sign function. 

 

 

 

 

 

 

 

 

 

Appendix B 

Parameter (r, λ, G) selection strategy: 

1. Fix the rank r = 1. 
2. Set a larger parameter value for λ and G and visualize the decomposed 

L and S matrices. 
3. Alternately reduce the value of G until the low-rank of the L matrix and 

the sparse of the S matrix can be clearly seen. 
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