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ABSTRACT 

In this paper, the excitation and propagation of guided waves in multilayer 
hollow cylinders with piezoelectric wafer active sensor (PWAS) 
transducers were modeled with the normal mode expansion (NME) 
method using the semi-analytical finite element (SAFE) formulation. The 
theoretical development of SAFE for hollow cylindrical structures was 
introduced and used to obtain guided-wave mode shapes and dispersion 
curves of multilayer hollow cylinders. The SAFE discretization was applied 
across the thickness. The layers present in the cylinder were modeled by 
grouping the elements in the region corresponding to the respective 
layers. Each finite element region was given the property of the layer that 
it represented. The number of elements in a layer was determined through 
convergence studies. The PWAS excitation effect, introduced using the 
ideal-bonding assumption, was represented by a line-force acting on the 
PWAS boundary. The SAFE-NME solution obtained in the wavenumber 
domain was resolved in the physical domain through inverse Fourier 
transform and residue theorem. Experimental validation of theoretical 
prediction was performed by comparison with scanning laser Doppler 
vibrometer (SLDV) measurements from a “6-inch schedule-40” pipe of 
11 mm thickness installed with a 7-mm square PWAS transducer for wave 
excitation. Numerical prediction of the guided wave propagation 
emanating from the PWAS was first performed and wavefront 
visualization was obtained. An SLDV area scan of the guided waves 
generated by the PWAS was then performed and compared with 
numerical predictions. A good match between experiment and prediction 
was observed. 

KEYWORDS: SAFE; normal mode expansion; hollow cylinders; guided 
wave propagation 

INTRODUCTION 

Multi-layer cylindrical structures are used in a wide variety of 
applications such as nuclear-spent fuel storages, pressure vessels, gas 

 Open Access 

Received: 02 December 2019 

Accepted: 18 April 2020 

Published: 26 April 2020 

Copyright © 2020 by the 

author(s). Licensee Hapres, 

London, United Kingdom. This is 

an open access article distributed 

under the terms and conditions 

of Creative Commons Attribution 

4.0 International License. 

https://doi.org/10.20900/joa20200003
https://joa.hapres.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


 
Journal of Acoustics 2 of 30 

J Acoust. 2020;2:e200003. https://doi.org/10.20900/joa20200003    

pipelines, etc. The structural safety of such multi-layer structures needs to 
be inspected periodically to prevent any catastrophic failure. The aging of 
the structures may initiate slow structural degradation processes such as 
corrosion, microcrack formation, material transformations, delamination, 
etc. leading to complete failure. Guided wave SHM is a solution to detect 
the structural integrity at the early stage [1]. Understanding the guided 
wave propagation in multilayer hollow cylindrical structures is a problem 
of practical interest to use it for nondestructive evaluation (NDE).  

Theoretical development of guided wave propagation in hollow 
cylinders was well studied in the past century. Flexural guided waves in 
pipes have been understood for decades. Gazis studied the exact-analytical 
model for guided wave propagation in the hollow cylinder [2]. It was 
shown that there exists an infinite number of normal modes, including 
axisymmetric modes and non-axisymmetric modes in an elastic hollow 
cylinder. Each mode has its characteristics, such as phase velocity, group 
velocity, etc. Gazis also obtained the general solution of harmonic waves 
propagating in an infinite long hollow cylinder. Normal mode expansion 
(NME) of hollow cylinder modes for a force excitation was first studied by 
Ditri et al. [3]. A closed-form solution for normal mode expansion 
coefficients for hollow cylinder modes due to a force excitation was 
derived in this paper. The excitation and propagation of non-axisymmetric 
longitudinal waves by using NME with different sources are studied by Li 
et al. [4]. The angular profile due to such excitation is obtained by 
constructive and destructive interference of amplitude factors of every 
excited mode. Sun et al. [5] studied flexural torsional wave mechanics and 
focusing on NME.  

Various methods and transducers have been used for selective 
excitation and propagation of axisymmetric and nonaxisymmetric guided 
wave modes in hollow cylinders. Many uses comb transducer as well as 
dry couples normal beam transducer for the generation of axisymmetric 
guided wave generation in hollow cylinders [6,7]. A transducer array 
made of a series of normal beam transducers can also be used for 
axisymmetric guided wave generation [8]. When only a portion of the 
cylinder might be accessible for source loading, non-axisymmetric guided 
waves are generated. In such circumstances, the acoustic field is more 
complicated, and the energy distribution of the wave propagation needs 
to be known to evaluate the guided wave inspection ability and to perform 
frequency and angle tuning [3].  

Several studies used finite element analysis to study the guided wave 
propagation in hollow cylindrical structures. Li et al. [9] modeled the 
guided wave propagation in a pressure vessel using finite element analysis 
and validated with the experimental investigation. The excitation source 
was a piezoelectric transducer in their studies. Sause et al. [10] studied the 
acoustic emission (AE) source modeling and guided wave propagation 
simulation in metallic as well as composite pressure vessels by using FEA. 
They have modeled the AE source using buried dipole excitation using the 
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finite element method to simulate the propagation of AE signals in 
pressure vessels. The disadvantages of finite element analysis are the 
requirement of a robust computation facility and the cost of 
computational time. Many studies were also focused on the improvements 
in the elements used during finite element discretization to improve the 
convergence and to reduce the computational time [11,12]. 

Semi-analytical finite element method (SAFE) has been used for guided 
wave calculations in hollow cylinders [13]. Long-range calculations can be 
done with little computational time and memory with the SAFE method 
since it does not require discretization in the wave propagation direction. 
Early works of the SAFE method were done by Nelson et al. [14]. They 
successfully formulated SAFE wave equations for elastic layered 
orthotropic cylinders and plates through mono-dimensional cross-section 
interpolation. Afterward, the SAFE method has been effectively used to 
model guided wave propagation in anisotropic composite cylinders [15], 
laminated composite plates [16], wedges [17], rails [18], functionally 
graded cylinders [19], piezoelectric plates [20], laminated piezoelectric 
cylinders [21], and channel beams [22]. SAFE approach for accounting 
viscoelastic materials is also developed [23,24].  

Another “semi-analytical” approach found in the literature is the one 
in which a local FEM model is used for wave excitation, whereas a global 
analytical model is used for wave propagation. Ref. [25] describes such a 
method in which the PWAS is analyzed as a piezoelectric body affixed to 
the plate. Under electric excitation, the PWAS generates interaction forces 
at the junction with the plate; these junction forces excite the guided waves 
traveling on the plate. An FEM-like discretization using Chebyshev-Lobatto 
interpolation functions and grid points is successfully used for local 
analysis. Good simulation of the wavefront generated through a tone-burst 
excitation is obtained and compared very favorably with experiments. 
Another semi-analytical local-global approach is described in ref. [26,27] 
under the name “hybrid-global local” approach. In these references, the 
local FEM model is used to simulate the wave-damage interaction and to 
model the scattering of guided waves from the damage; subsequently, the 
scattered waves are allowed to propagate analytically through the rest of 
the plate until they reach the sensing locations [26,27]. 

Even though many studies discussed guided wave excitation and 
propagation in hollow cylinders using various transducers, the analytical 
modeling of active structural health monitoring using finite-size PWAS 
transducers in hollow cylindrical structures was not well explored as in 
plate-like structures [28–32] to the best knowledge of the authors. The 
novelty of the present research work is the analytical predictive modeling 
of finite size piezo transducer for excitation and propagation of guided 
waves in hollow cylindrical structures. The analytical modeling was 
performed by using the SAFE approach. The SAFE approach for theoretical 
modeling of guided wave propagation due to a finite size PWAS excitation 
in hollow cylinders and experimental validation was not reported 
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anywhere in the literature. A closed-form expression for finite width 
PWAS excitation on a multi-layer hollow cylinder was derived using the 
SAFE approach, which is another important novelty of this research. An 
ideal bonding condition (also known as the pin-force model) of PWAS to 
the hollow cylinder was assumed in which all the load transfer is assumed 
to take place over an infinitesimal region at the PWAS ends [31,32]. 

In this paper, the theoretical and experimental study of excitation and 
propagation of guided waves in multilayer hollow cylinders through 
PWAS transducers by using the SAFE approach is discussed. Normal mode 
expansion was performed to predict the guided wave propagation in 
hollow cylinders, and the predicted result was compared with the 
experimental measurements. This paper is divided into the following 
sections. Section “SAFE SOLUTION FOR GUIDED WAVES IN A 
MULTILAYER HOLLOW CYLINDER” discusses SAFE theoretical 
development for guided wave propagation. In Section “SAFE Dispersion 
Curves and Modeshapes” the numerical calculation of dispersion curves 
for specific multilayer geometry is explained. Section “Complete 
Analytical Solution of Guided Wave Propagation” is on SAFE-NME for 
guided wave propagation in multilayer hollow cylinders due to a PWAS 
excitation, and Section “Simulation of Complete Analytical Solution” is 
on numerical prediction based on the theoretical development. Section 
“WRAPPED PLATE APPROXIMATION FOR GUIDED WAVE 
PROPAGATION IN CYLINDERS” discusses a simplified approach, 
wrapped plate approximation for guided wave propagation due to ideal 
bonded PWAS excitation [31] on hollow cylinders and its comparison with 
the analytical model discussed in Section “SAFE Dispersion Curves and 
Modeshapes”. In Section “EXPERIMENTAL VALIDATION OF 
ANALYTICAL SOLUTION,” theoretical predictions are compared with 
SLDV experimental results. Later a discussion on the convergence of 
circumferential modes in the analytical formulation is provided. The 
paper ends with a summary and suggested scope of future work. 

SAFE SOLUTION FOR GUIDED WAVES IN A MULTILAYER HOLLOW 
CYLINDER 

This section reviews the SAFE solution methodology for modeling 
guided wave propagation in hollow cylinders as presented in ref. [1]. For 
a stress-free hollow cylinder, the governing equation provided by the 
virtual work principle is given as following. 

0T T

V V

dV dVδ ρ δ⋅ + ⋅ =∫ ∫u u ε σ

 

(1) 

T is the matrix transpose, ρ is density, u is the displacement field, σ is the 
stress field and u  is the second derivative of u with time t. 

The volume integral dV is given dV = rdrdθdz. For hollow cylinder SAFE, 
finite element approximation is adopted for r  dimension. Exact analytical 
harmonic solutions are used in θ and z-direction. For harmonic wave 
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propagation in the z-direction, the displacement at any point can thus be 
represented as follows. 

2
( )

1
( , , , ) ( ) j i z n t

j
r z t r e ξ θ ωθ + −

=

=∑u N U  
(2) 

Here ξ is the wavenumber in the z-direction and n represents the 
circumferential wavenumber. Also, Uj is the nodal displacement vector at 
the jth element and N(r) is the shape function in the thickness direction r. 
For the two-node element, Uj is a six-element vector and N(r) is a 3 × 6 
matrix. Hence the shape function matrix is given as follows: 
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For two-noded element, using linear shape functions, we get 
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Here −1 ≤ k ≤ 1 is the natural coordinate in the r direction. The strain 
displacement relations in cylindrical coordinates are given as follows 

1

1

1

r
rr

r

z
zz

z
z

r z
rz

r
r

u
r

uu
r r
u
z

uu
r z
u u
z r

u uu
r r r

θ
θθ

θ
θ

θ θ
θ

ε

ε
θ

ε

γ
θ

γ

γ
θ

∂
=
∂

∂
= +

∂
∂

=
∂

∂∂
= +

∂ ∂
∂ ∂

= +
∂ ∂

∂∂
= + −

∂ ∂

 

(5) 

Equations (2) and (4) in (5), will give, 
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Where 
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Using the constitutive law the stresses can be computed from the strains 
by [1] 

( )
1 2( ) j i x n ti e ξ θ ωξ + −= = +σ Cε C B B U  (10) 

Here, C  is the stiffness matrix. Substituting Equations (2), (6) and (10) into 
Equation (1), we get the following equation for an arbitrary element j. 

2 2
1 2 3( ) 0j j j ji Qξ ξ ω+ + − =K K K M  (11) 
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3 2 2
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Hence Equation (16) can be rewritten as a first-order eigensystem as 
following 

[ ] 0
k

ξ
 

− = 
 

U
A B

U
 (16) 

where 

2 2
1 1

2
31 2

0 0
,ˆ 0

ω ω
ω

 −  −
= =   −−    

K M K M
A B

KK M K
 (17) 

For elastic materials, the matrices A and B are 4N × 4N. Where N represents 
the number of elements. The total 4N eigenvalues for wave number ξ and 
eigenvectors for mode shapes can be solved at each frequency from 
Equation (16). If the original vector U is of dimension M then the 

dimension of 
ξ
 
 
 

U
U

 is 2M. At each frequency ω, one obtains 2M 

eigenvalues ξm and corresponding 2M left eigenvectors ˆ L
mV  ( 1 2M×

dimension) and 2M right eigenvectors ˆ R
mV  ( 2 1M ×  dimension). 

SAFE Dispersion Curves and Modeshapes 

Dispersion curves 

The eigenvalue problem in Equation (16) is solved for the eigenvalues 
and eigenvectors to get dispersion curves and mode shapes. A scaled-down 
“TN32 multilayer cylinder” configuration, as shown in Figure 1 was 
considered for the solution. Tn 32 cylindrical casks are used for the safe 
storage of nuclear-spent fuel rods. Multiple metallic layers are provided 
for the structure for the safe storage of the spent fuel rods. For ensuring 
the safety of the cask and the nuclear-spent fuels, regular non-destructive 
testing is a convenient methodology. The development of a reliable guided 
wave structural health monitoring is a good solution for non-destructive 
testing of multi-layer hollow cylinders similar to TN32 casks. For the 
analytical investigation of the theoretical formulations derived in the 
previous sections, a scaled-down TN32 model was considered. The radius 
and thicknesses of the multilayer cylinder in Figure 1, which are 
considered for simulation, are presented in Tables 1 and 2. Material 
properties considered for the layers are given in Table 3. The inner layer 
was considered of AISI type 304 stainless steel and the outer layer was of 
AISI 4130 steel.  
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Figure 1. SAFE model for wave propagation in multilayer hollow cylindrical structures. 

Table 1. The radius of the multilayer cylinder in Figure 1. 

Radius (in mm) 
R1 38 
R2 38.5 
R3 43.5 

Table 2. The thickness of the multilayer cylinder in Figure 1. 

Layer thicknesses (in mm) 
T1 (Inner layer) 0.5 
T2 (Outer layer 5 

Convergence study 

The convergence study of the multi-layer cylindrical structure was 
performed to find out the optimum number of elements required for 
performing the SAFE analysis. The axisymmetric guided wave modes up 
to 500 kHz were studied by varying the number of elements (Ne) gradually 
from 6 to 22. The dispersion curves when Ne was taken as 6, 10, 16, and 22 
are presented in Figure 2. As the number of elements increased from 6 to 
10, a drastic change in the phase velocity dispersion curve at higher 
frequency (~500 kHz) was observed. When the number of elements was 
changed from 10 to 16, and 22 number of elements, very little change in 
the dispersion curve was observed. Hence 10 number of elements were 
considered as converged to provide sufficient accuracy. 
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Figure 2. The convergence of the dispersion curve of the multilayer cylinder with the increase in the 
number of elements (Ne) used for SAFE calculation. The dispersion curves were calculated when the number 
of elements in the thickness direction was increased from Ne = 6 to 22. The figure represents the overlapped 
dispersion curves when Ne = 6, 10, 16, 22. 

Axisymmetric and non-axisymmetric mode dispersion curves 

The guided waves in hollow cylindrical structures can travel in the 
circumferential and axial direction. For an omnidirectional excitation 
similar to a PWAS excitation, both circumferential and axial hollow 
cylinder guided wave modes is generated. In this research, the guided 
wave propagation in the axial direction in cylindrical structures are 
discussed. 

The axial propagation of guided waves in hollow cylinders consists of 
longitudinal and torsional modes. The longitudinal wave modes have 
dominant particle motion in r and z coordinate, whereas torsional wave 
modes have dominant particle motion in θ coordinates. Generally, the 
letter “L(m,n)” represents the longitudinal family of modes, and the letter 
“T(m,n)” represents the torsional family of modes. The letter “m” 
represents the group order of a mode. The letter “n” represents the 
circumferential wavenumber. “n = 0” represents the axisymmetric hollow 
cylinder mode, and “n ≥ 1” represents a non-axisymmetric hollow cylinder 
mode. 

Given the dimensions and material properties of the multilayer 
cylinder considered, dispersion curves of the multilayer cylinder are 
generated by solving Equation (16) and are presented in Figure 3. The 
dispersion curves are generated for L(1,n), L(2,n), and T(1,n) modes. The 
circumferential variation of axisymmetric and non-axisymmetric hollow 
cylinder modes are presented in Figure 4. Axisymmetric modes have zero 
circumferential nodes. Non-axisymmetric modes have twice the order of 
axisymmetry circumferential nodes. For example, non-axisymmetric 
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mode of order one has two circumferential nodes, as we observe from 
Figure 4. From Figure 3, one can observe that the cutoff frequency of 
modes in a particular family increases with the circumferential wave 
number. Therefore, the modes of higher circumferential order appear 
only at higher frequencies. At higher frequencies, all axisymmetric, as well 
as non-axisymmetric circumferential modes, converges to Rayleigh wave 
speed. 

 

Figure 3. Dispersion curves of the multilayer cylinder generated using the SAFE approach. The dispersion 
curves are generated for L(1,n), L(2,n) and T(1,n) family. 
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Figure 4. Circumferential variation of axisymmetric and non-axisymmetric hollow cylinder modes with 
variation in circumferential wave number “n”.  

Complete Analytical Solution of Guided Wave Propagation  

A novel SAFE-NME model for PWAS excitation and propagation of 
guided waves in a multilayer hollow cylinder is developed in this section. 
The model discussed in this section considers axisymmetric and non-
axisymmetric hollow cylinder guided wave modes. The normal mode 
expansion (NME) setup of the analytical model for finite-size PWAS 
excitation on a multilayer hollow cylinder is presented in Figure 5. 
According to the coordinate system defined, the excitation is non-
axisymmetric in nature with respect to angular coordinates; hence, the 
guided wave propagation also will be non-axisymmetric in nature. So, the 
non-axisymmetric hollow cylinder guided wave modes is also required to 
predict the resulting wave motion accurately for a PWAS excitation. Thus, 
the analytical modeling and numerical calculation of PWAS excitation are 
complicated. Because many numbers of hollow cylinder modes need to be 
considered for obtaining the convergence of the solution. Even though the 
solution can provide an accurate solution, the slow convergence is a 
disadvantage for a finite size transducer excitation. 
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Figure 5. The normal mode expansion (NME) setup of the analytical model for finite-size PWAS excitation 
on a multilayer hollow cylinder. External traction force acting on the surface of the plate due to PWAS patch 
excitation is represented as arrows. 

The displacement field solution for a non-homogeneous condition 
where loading F ≠ 0 can be obtained by using the normal mode expansion 
method. The displacement field is represented as the summation of the 
orthogonal hollow cylinder guided wave modes as following [23] 
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And Φm,n is the modeshape vector. Here P is the excitation. 
To obtain the displacement field in the physical domain from the 

displacement field in the wavenumber domain in Equation (18), we take 
inverse Fourier transform with respect to wavenumbers, ξz 
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The excitation due to an ideally bonded PWAS is expressed as the traction 
acting at the edges of a rectangular PWAS of width, α as represented in 
Figure 5. The traction acting is non- axisymmetric. The PWAS excitation is 
considered to act over angular coordinate from −θp/2 to θp/2 as represented 

z 
1-D element for cross 
section discretization 

r

θ   

/ 2pθ−   

/ 2pθ+   

a
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in the figure. We neglect torsional waves as well as corresponding 
excitations for the time being since the torsional waves have predominant 
in-plane tangential displacement. 

For a rectangular ideally bonded PWAS excitation [31,32], the forcing 
functions zτ are represented as line force as following 

0[ ( ) ( )] ( / 2)z r a r aτ τ δ δ θ= − − − ∏  (21) 

Where δ represents the Dirac delta function and ∏ represents the 

rectangular function. Both function together mathematically represents 
the longitudinal line force excitation given by the PWAS in Figure 5. These 
line forces are coupled with the relevant surface nodes of the thickness-
wise FEM discretization, i.e., with the nodes which are part of the plate 
surface on which the PWAS is attached. Only some local nodes are 
affected, i.e., those around the PWAS periphery. 

Fourier transform of excitation in Equation (21) is expressed as follows 

0

sin( / 2)
2 sin( ) p

z

n
ia a

n
θ

τ τ ξ= −  (22) 

Where, 
sin( / 2)pn

n
θ
π

 is the Fourier transform in polar coordinates of 

square pulse function from −θp/2 to θp/2. The integral in Equation (20) 
could be singular at points corresponding to real roots of hollow cylinder 
guided wave equation or roots of shear-horizontal (SH) waves or both 
after substituting zτ . The excitation zτ will correspond to excitation for 

propagating longitudinal hollow cylinder guided wave corresponding to 
the roots. Excitation for longitudinal guided wave propagation due to 
PWAS, or the component P in Equation (20) by considering the line forces 
are coupled with the relevant surface nodes of the thickness-wise FEM 
discretization, is written as follows, 

ˆ
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 (23) 
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(24) 
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Hence, we write, 

0 1 0

sin( / 2) sin( / 2)
( 2 sin( ) ) ( 2 sin( ) )p pn n

ia a ia a
n n
θ θ

τ ξ τ ξ= − = −1P P P  (25) 

where,  

ˆ
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1
1

0
P

F
 (26) 

Substituting Equation (26) into Equation (20) we get, 
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Applying residue theorem for integrating Equation (27), we get the 
expression for displacement field as following 

,( ), 1
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ˆ sin( / 2)1( , ) ( sin( ) )ˆ ˆ
m n

LM
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π =
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V P
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 (28) 

Simulation of Complete Analytical Solution 

The analytical solution derived in Equation (28) is used for simulation 
of guided wave propagation due to a PWAS excitation in the scaled-down 
TN32 multilayer hollow cylinder discussed in Section “Dispersion 
curves”. The simulation method used is presented in the flow chart in 
Figure 6. First, the Fourier transform of the excitation signal, P1, was 
performed. Then, the structural transfer function G(z,ω) was calculated by 
using Equation (28). Then, the excitation signal was multiplied with the 
structural transfer function in the frequency domain to obtain the 
frequency domain of the signal at the sensing location. Finally, the inverse 
Fourier transform of the multiplication result was performed to obtain the 
time domain signal. 

For numerical simulation, 60 kHz Hanning windowed 3-count tone 
burst excitation is assumed to be applied in the longitudinal direction by 
using a PWAS. A longitudinal excitation excites only longitudinal modes 
and torsional modes. The relative amplitude factors for L(1,n) and L(2,n) 
families for different circumferential orders, n, are plotted by using the 
structural transfer function equation G(z,ω) discussed in Figure 6 and are 
presented in Figure 7. Coefficients are obtained for axisymmetric 
circumferential order mode (n = 0) and first 64 non-axisymmetric 
circumferential order modes (0 < n ≤ 64). The axisymmetric mode has the 
highest amplitude. With variation in the order of non-axisymmetry, the 
change in the amplitude factor can be clearly understood from the figure 
for the specific dimension of the PWAS. The number of modes needs to be 
considered for the prediction of the accurate solution depends on the 
amplitude factor and the excitation frequency. Figure 8a represents the 
frequency spectrum of the 60-kHz 3-count tone burst. The limit of the 
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major frequency content of the excitation signal is marked in green lines. 
The phase velocity dispersion curves of L(1,n) and L(2,n) mode 
superimposed with the excitation frequency limit is presented in Figure 
8b,c. One can neglect the modes, which have cutoff frequency outside the 
excitation frequency limits without losing considerable accuracy to the 
prediction, because of their negligible contribution in the final solution. 
Hence from Figure 8, we can conclude that for L(1,n) family, first 16 
circumferential order modes, and for L(2,n) family, the first seven 
circumferential order modes need to be considered for the predictive 
modeling for the present excitation frequency. The numerical prediction 
in this section was performed accordingly. 

Out of plane displacement waveform was predicted for L(1,n) and 
L(2,n) family of modes and are presented in Figure 9. Only L(1,n) and 
L(2,n) family of modes are considered for the simulation since the 
torsional modes have predominant radial displacements. L(2,n) family of 
mode has higher wave speed compared to L(1,n) mode. Hence, they arrive 
earlier than L(1,n) mode. After the arrival of L(2,n) and L(1,n) mode, 
wrapping around of the longitudinal modes occur, which can also be 
observed from the plot. The amplitude of L(2,n) mode is very less 
compared to L(1,n) mode at the present frequency. 

 

Figure 6. The flow chart of the simulation method used for predictive modeling of guided wave propagation 
in a hollow cylinder. 

Perform Fourier transform 
of excitation  

Calculation of the amplitude factor of the modes from Equation(28) 

 

Multiplication of the excitation with the structural 
transfer function 

 

Perform inverse Fourier 
transform 
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Figure 7. Relative amplitude factors of axisymmetric (circumferential order n = 0) and non-axisymmetric 
(circumferential order n > 0) wave modes (a) For L(1,n) family of modes and (b) For L(2,n) family of modes. 

 

Figure 8. The selection of the number of circumferential order to be considered for normal mode expansion. 
(a) 60 kHz 3-count tone burst frequency spectrum. The excitation frequency major frequency content limits 
are marked by green lines. (b) L(1,n) family of mode and excitation frequency limit. (c) L(2,n) family of mode 
and the excitation frequency limit. The contribution of modes having a cut-off frequency outside the 
frequency limit is negligible in the normal mode expansion. 
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Figure 9. Normalized out of plane displacement at a distance of 170 mm and 0-degree circumferential 
variation from the PWAS excitation location. 

WRAPPED PLATE APPROXIMATION FOR GUIDED WAVE 
PROPAGATION IN CYLINDERS 

In the previous section, the complete solution of guided propagation in 
multilayered hollow cylinders due to a finite size PWAS was analyzed. A 
multilayered hollow cylinder can be assumed to be a plate which is 
wrapped around to form the geometry like in Figure 10. If the cylinder is 
assumed as a wrapped plate, the guided wave propagation in the hollow 
cylinder can be considered as plate guided waves propagating in a curved 
geometry whose edges are finely welded together. This simplified 
approach is used for modeling guided wave propagation for the present 
hollow cylinder geometry. The simplified approach has many advantages 
and disadvantages compared to the complete solution. First, the simplified 
approach is very easy to understand, model and visualize, because the 
plate guided wave equations are very simple and well developed for 
metallic as well as composite structures. The complete solution of finite 
size PWAS excitation on the hollow cylinder is more precise, but it 
involved guided wave families that are not so familiar to every engineer. 
The simplified approach is an approximation, but it used Lamb waves and 
SH waves, which are more familiar to many engineers. Our study shows 
that the two concepts are equivalent to the low-order modes; it also builds 
a bridge of understanding between the complicated cylinder guided waves 
and the simpler plate guided waves. Second, many researchers have 
explored the theory of guided wave propagation in various plate 
structures very well [25–27]. The simplified approach concept allows 
utilizing these theoretical developments to hollow cylinders. One 
disadvantage of the simplified approach is the dependence of the 
convergence of the simplified approach to the complete solution on the 
curvature of the cylindrical structure. The solution may not be accurate 
for high curvature structures. 

N
or

m
al

iz
ed

 o
ut

-o
f-

pl
an

e 
di

sp
la

ce
m

en
t, 

U
r 

L mode 
wrapping 

L (2, n) 

L (1, n) 

https://doi.org/10.20900/joa20200003


 
Journal of Acoustics 18 of 30 

J Acoust. 2020;2:e200003. https://doi.org/10.20900/joa20200003    

 

Figure 10. Wrapping a multilayer plate to form a cylinder. This concept is used for modeling Guided wave 
propagation is in multilayer cylinder This concept considers plate guided wave modes numerically 
manipulated to predict cylinder guided wave modes due to a PWAS excitation. 

For a PWAS bonded to a cylinder, wrapped plate approximation of 
guided wave propagation was assumed and the simulation was 
performed. For guided wave propagation in a multilayer plate, the 
modeling was performed by using the SAFE approach [1]. 

SAFE adopts harmonic domain formulation ( )i x te ξ ω− , to describe the 
wave behavior in the wave propagation direction x with ξ representing 
the wavenumber, ω the angular frequency, and t is the time. The finite 
element discretization of the SAFE method takes place in the thickness 
direction of the waveguide (Figure 11). A governing equation for the wave 
motion of each element can be obtained through the virtual work 
principle, as represented in Equation (1). 

0T T

V V

dV dVδ ρ δ⋅ + ⋅ =∫ ∫u u ε σ  (29) 

For a one-dimensional discretization and adopting the conventional 
finite element assembly methodology, we obtain the eigenvalue problem 
in the global coordinate system as follows [1]: 

2 2
1 2 3

ˆ( ) 0ξ ξ ω+ + − =K K K M Q  (30) 

Equation (30) can be rewritten as a first-order eigensystem as follows: 
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If the original vector Q̂  is of dimension M , then the dimensions of ˆ
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 
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Q

Q
, 
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and corresponding 2M left eigenvectors ˆ L
mV  (1 2M× dimension) and 2M 

right eigenvectors ˆ R
mV ( 2 1M ×  dimension). 
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Figure 11. SAFE model for wave propagation in plate structures. 

PWAS Excitation Using NME in a Multilayer Plate 

The displacement field solution for a non-homogeneous condition 
where loading F ≠ 0 can be obtained by using the normal mode expansion 
method. The displacement field will be the summation of the orthogonal 
modes as following [23,34] 

2

1

M

m m
m=

=∑U U Φ  (33) 

Where Φm is the mode shape vector and Um is the normal mode expansion 
coefficient given as [33] 
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V PV

 (34) 

For obtaining the displacement field in the physical domain from the 
displacement field in the wavenumber domain in Equation (33), we take 
inverse Fourier transform with respect to wavenumbers, ξx, ξy, i.e.,  

( )
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x y e d dξ ξω ξ ξ
π ξ ξ

+∞ +∞
+

=−∞ −∞

=
−

∑∫ ∫
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Following ref. [34], one can derive the closed-form expression for a 
PWAS excitation presented in Figure 12 in a multilayer cylinder as 
following, 
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(36) 

Here, excitation for Lamb wave propagation due to PWAS, or the 
component P in Equation (36) is written as 

ˆ
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where,  

  

z 

y 

x 

1-D element for cross 
section discretization 

https://doi.org/10.20900/joa20200003


 
Journal of Acoustics 20 of 30 

J Acoust. 2020;2:e200003. https://doi.org/10.20900/joa20200003    

0 1

0 1 1 0 1

( ) cos 1
0 0

ˆ ˆ. . ( ( ) cos ) ( ( ) cos )
. .
0 0

ia J a

ia J a ia J a

τ ξ θ

τ ξ θ τ ξ θ

−   
   
   
   = = − = −
   
   
     

F F  

(38) 

Hence, we write, 
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Figure 12. Traction acting on the surface of the plate due to PWAS excitation. 

Simulation of Wrapped Plate Guided Wave Propagation 

The phase velocity dispersion curve of a 5.5 mm multilayered plate 
with layer dimensions and material properties as given in Tables 2 and 3 
is obtained by solving Equation (31) numerically. Six quadratic elements 
were considered for calculating dispersion curve and mode shapes from 
SAFE. The phase velocity dispersion curve obtained from SAFE is 
presented in Figure 13a and the group velocity dispersion curve is 
presented in Figure 13b. 
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Table 3. Material properties of layers in the multilayer cylinder. 

Material Modulus of elasticity 
(GPa) 

Poisson’s 
ratio 

Density 
(kg/m3) 

AISI type 304 stainless steel (Inner layer) 193 0.29 8000 
AISI 4130 steel (Outer layer) 205 0.29 7850 

 

 

Figure 13. (a) Phase velocity dispersion curve of 0.5–5 mm multilayered steel plate (b) Group velocity 
dispersion curve. 

For simplifying the simulation method, a wrapped plate assumption 
was adopted for the multi-layered cylinder. Simulation of plate guided 
wave propagation was performed by using Equation (36) for a PWAS 
excitation. The excitation was assumed to be at 60 kHz. 3D wave 
propagation simulation figure as well as out of plane displacement at 
sensor location (160 mm z distance and 0-degree angular distance) was 
plotted and is presented in Figure 14. Because of the higher wave speed of 
S0 mode, the S0 mode arrives earlier compared to A0 mode. For the out of 
plane displacement, the S0 mode has a relatively very low amplitude 
compared to A0 mode. After the arrival of S0 and A0 mode, the guided 
wave, which is wrapping around the hollow cylinder, reaches the sensing 
location as a third wave packet. The wrapped guided wave mode is 
equivalent to the hollow cylinder circumferential Lamb type (CLT) waves. 
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Figure 14. Wrapped plate approximation simulation of the multilayered cylinder for 60 kHz 3.5 count tone 
burst excitation (a) 3d guided wave propagation; (b) out-of-plane displacement at a z location of 160 mm 
and angular location of 0 degrees from the transmitter. 

Comparison of the Complete Analytical Model and Wrapped Plate 
Model 

A comparison of the complete analytical model and wrapped plate 
approximation model was performed by comparing the out of plane 
velocity at 160 mm z distance and 0-degree angular distance from the 
excitation source. The predictions are presented in Figure 15. 
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Figure 15. Comparison of the  complete analytical model and wrapped plate approximation prediction 
(a) Complete analytical model (b) Wrapped plate approximation model. 

The L(2,n) family of modes in the complete analytical model 
corresponds to S0 mode in a wrapped plate approximation model, 
whereas L(1,n) mode in the complete analytical model corresponds to A0-
mode in the wrapped plate approximation model. The complete analytical 
model considers only longitudinal, guided waves. Wrapping around the 
hollow cylinder of the longitudinal modes are visible after the arrival of 
L(1,n) mode in the analytical model. Due to circumferential excitation of 
PWAS, circumferential Lamb type waves are generated. Wrapped plate 
approximation model considers the circumferential Lamb type waves by 
default; hence, we observe a higher amplitude third wave packet after the 
arrival of A0 mode. On the other hand, the circumferential Lamb type 
wave packet is missing in the complete analytical model, because the 
present solution considers only longitudinal hollow cylinder guided wave 
modes. 
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EXPERIMENTAL VALIDATION OF ANALYTICAL SOLUTION  

Experimental validation of theoretical developments was performed 
on a “6-inch schedule 40” pipe. The pipe was made of T304 steel material 
(Modulus of elasticity: 193 GPa, Poisson’s ratio: 0.29, Density: 8000 kg/m3). 
The inner radius of the pipe was 77.9 mm and the wall thickness of the 
pipe was 11 mm. A Hanning windowed 3-count tone burst at 90 kHz 
central frequency excitation was applied using a square PWAS (APC 850: 
7 mm × 7 mm dimension and 0.2 mm thickness). The instrumentation used 
and experimental set up for measurement is provided in Figure 16a, and 
Figure 16b. A 14-volt peak to peak 90 kHz 3 count tone burst excitation was 
generated using an Agilent 33120A function generator. The signal 
generated was amplified to 140 V peak to peak using an HSA 4014 power 
amplifier. The out of plane velocity component of ultrasonic guided wave 
propagation is sensed by OFV-505 laser head and processed by scanning 
laser Doppler vibrometer (SLDV) system. The measurement of the out of 
plane velocity was conducted through SLDV scans in different directions 
and the measurement was post-processed. Thus, the hybrid PWAS-SLDV 
system was used for the measurements. Under the electrical excitation, the 
PWAS undergo expansion and contraction and generates guided waves in 
the hollow cylinder. The generated guided waves travel by out-spreading 
in the area of the hollow cylinder and undergo geometric spreading, 
causing exponential decrement in the amplitude, undergo dispersion and 
are received by the SLDV finally. 

In order to validate the simulation, the proposed SAFE approach in 
Section “Complete Analytical Solution of Guided Wave Propagation” 
was used to perform the simulation of the time response of guided wave 
propagation in a “6-inch schedule 40” pipe. The SAFE method was used to 
obtain the dispersion curves and mode shapes of the pipe using the 
material properties and geometry. Then the SAFE approach was used for 
predictive modeling of guided wave propagation in the pipe and compared 
with the experimental observation. A very good match of experiment and 
simulation was observed. 

The Equation (16) was solved numerically for the dimensions and 
material properties of the pipe to obtain the dispersion curves. The 
dispersion curves of L(1,n) and L(2,n) family of modes are presented in 
Figure 17. It can be noted that the dispersive nature of L(1,n) and L(2,n) 
family of modes change depending on the circumferential order, ‘n’ of the 
mode. L(2,1) is not very dispersive at the frequency below 250 kHz. But, as 
the circumferential order increases, the modes in L(2,n) family becomes 
highly dispersive. Variations in the dispersive nature of L(1,n)-mode was 
also observed with increment in the circumferential order. Theoretical 
prediction of the elastic wave propagation was obtained by using the 
Equation (28). A comparison of experimental measurements with 
theoretical predictions is presented in Figure 18. Figure 18a represents the 
theoretical prediction of the wave propagation animation plot at an 
instant, and Figure 18b represents the waveform at 150 mm distance from 
PWAS. Figure 18c and Figure 18d represent the corresponding 
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experimental predictions. The theoretical predictions match very closely 
with the experimental measurements, as we observe from Figure 18c and 
Figure 18d. L(2,n) family of mode travel at a higher speed compared to 
L(1,n) mode. The out of plane component of L(2,n) mode is very low 
compared to L(1,n) mode at the present frequency (90 kHz), which can be 
observed in theoretical prediction as well as in the experiment. 

 

Figure 16. Instrumentation used for measurement of out of plane velocity measurement in the “6-inch 
schedule 40” pipe due to PWAS excitation. 
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Figure 17. Dispersion curve of “6-inch schedule 40” pipe using the SAFE approach. The dispersion curves 
are generated for L(1,n) and L(2,n). 

 
Figure 18. Comparison of experimental with SAFE- NME predictions. (a) Simulation of longitudinal guided 
wave propagation in “6-inch schedule 40” pipe due to PWAS excitation. (b) Out of plane velocity predictions 
at a distance of 150 mm from PWAS. (c) SLDV measurement of guided wave propagation in “6-inch schedule 
40” pipe. (d) Out of plane velocity measurements at a distance of 150 mm from PWAS using SLDV. 
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Factors Affecting the Convergence of Complete Analytical Model 
Simulation 

Excitation frequency 

One of the major deciding factors for convergence of analytical model 
simulation is the frequency of excitation. Certain non-axisymmetric 
modes do not exist, or the contribution may be poor, depending on the 
tone burst central frequency due to the cut off frequency of that particular 
mode. Hence the significance of that particular mode will be poor in 
normal mode expansion. 

Normal mode expansion coefficient 

Another important deciding factor for convergence of analytical model 
prediction is the relative amplitude factors of the various circumferential 
order modes. If the relative amplitude factor of a higher-order non-
axisymmetric mode is very low compared to axisymmetric as well as the 
first few non-axisymmetric modes, those modes do not contribute 
considerably to the predictions. The relative amplitude factor for the 
multi-layer cylinder considered in Section “Dispersion curves” is 
presented in Figure 7. The coefficients post “n ~> 40” are smaller compared 
to “n ~< 40”. We also observe some nonaxisymmetric modes are not 
excited or have zero amplitude (mode-rejection). The trend of 
nonaxisymmetric mode amplitude and the mode-rejection depends on the 
dimension of the PWAS. 

SUMMARY, CONCLUSIONS, AND FUTURE WORK 

Summary 

Guided wave propagation in multilayered hollow cylinders, for a 
localized excitation, such as PWAS excitation, consists of axisymmetric 
and non-axisymmetric hollow cylinder guided wave modes. In this 
research, the SAFE approach is used for obtaining axisymmetric as well as 
non-axisymmetric guided waves in a multilayer hollow cylinder. Non-
axisymmetric hollow cylinder modes possess a higher number of 
circumferential nodes with an increase in the order of non-axisymmetry, 
which helps to predict the guided wave propagation due to a non-
axisymmetric excitation. The theoretical equation of finite size PWAS 
excitation on a multilayer hollow cylinder was developed using the novel 
SAFE-normal mode expansion method. The complete analytical model 
developed was used for predictive modeling of guided wave propagation 
in a multilayer hollow cylinder. Predictive modeling of guided wave 
propagation in the multilayer hollow cylinder was also performed by 
using a novel wrapped plate approximation method. A comparison of the 
complete analytical model for hollow cylinder guided wave propagation 
and the wrapped plate approximation was performed, and a good match 
was observed for the dimension of the multilayer hollow cylinder under 
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consideration. Experimental validation of the theoretical development 
was also achieved in this paper. A “6-inch schedule-40” pipe was excited 
with PWAS, and the guided wave propagation area scan was performed 
by using SLDV. Complete analytical model guided wave prediction due to 
PWAS excitation was compared with experimental observation, and a 
close match of prediction and experiment was observed. 

Conclusions 

The present complete analytical model developed for predictive guided 
wave propagation due to a finite size PWAS transducer excitation showed 
a good match compared to the experimental measurements. Finite-size 
PWAS excitation excites axisymmetric as well as nonaxisymmetric hollow 
cylinder guided wave modes. Many nonaxisymmetric guided wave modes 
need to be included in the solution in the case of such a finite-size 
transducer excitation source for accurate prediction of guided wave 
modes. The contribution of nonaxisymmetric guided wave modes in the 
complete solution in each mode-family depends on the finite-size of the 
transducer. The simplified Lamb wave approximation of hollow cylinder 
guided wave propagation proposed in the present research is a good 
method for wave propagation prediction in low curvature multi-layered 
cylinder to avoid complexity due to non-axisymmetric hollow cylinder 
mode.  

Future Work 

An immediate extension of this work would be, a complete solution of 
PWAS excitation hollow cylinders by adding circumferential Lamb type 
(CLT) mode also in the simulation. The present manuscript did not discuss 
the improvements in the method, which can be obtained by improvements 
in the SAFE meshing methodology to make the computation more efficient 
and fast [32,33]. The proposed method can be improved by using efficient 
SAFE-meshing methods. 
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