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ABSTRACT 

Psychiatric genetic studies have uncovered hundreds of loci associated 
with various psychiatric disorders. We take the opportunity to review 
achievements in the past and provide our view of what is coming in the 
fields of molecular genetics, epigenetics, and cellular models. We expect 
that SNP-array and sequencing-based studies of genetic associations will 
continue to expand, covering more disorders, drug responses, 
phenotypes, and diverse populations. Epigenetic studies of psychiatric 
disorders will be another promising field with the growing recognition 
that environmental factors impact the risk for psychiatric disorders by 
modulating epigenetic factors. Functional studies of genetic findings will 
be needed in cellular models to provide important connections between 
genetic and epigenetic variants and biological phenotypes.  
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INTRODUCTION 

Molecular genetic research into psychiatric disorders has made 
substantial progress in the last several decades, delivering important 
findings about the genetic risks of several conditions. Fast-evolving 
genotyping and sequencing technologies have driven this progress. The 
most important findings came from genome-wide association studies 
(GWASs), whole-exome sequencing (WES), and whole-genome 
sequencing (WGS) of various disorders, behavioral traits, and other 
phenotypes. GWASs has produced the majority of findings in the past ten 
years [1]. We have learned that common single nucleotide 
polymorphisms (SNPs), rare copy number variants (CNVs), and rare de 
novo mutations all contribute substantially to the etiology of psychiatric 
disorders like schizophrenia (SCZ), bipolar disorder (BD), autism 
spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD) 
and others. However, these variants still account for only a small fraction 
of all the genetic risk for these highly heterogeneous disorders, and much 
of the heritability remains to be explained. Moreover, the biological 
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significance of those disease-associated variants and the true causal 
factors remain to be discovered.  

Which major research areas of psychiatric genetics will yield major 
breakthroughs in the coming years? Research on deep phenotypes, new 
phenotypes, epigenetics of large cohorts, cross-disorder analyses, 
pharmacogenetics, and cellular models will likely bring novel 
understandings about the etiology and pathology of psychiatric disorders, 
and better guide development of new treatments. Herein we review a few 
approaches, including genetics, epigenetics, and molecular and cellular 
functional studies, and preview their anticipated impacts on the field. 

GWAS/WES/WGS WILL CONTINUE TO EXPAND, COVERING MORE 
DISORDERS, DRUG RESPONSES, PHENOTYPES, AND DIVERSE 
POPULATIONS 

GWASs will continue to grow in terms of sample size for major 
psychiatric disorders and will expand to include other heritable 
disorders. More importantly, researchers designing GWASs should pay 
attention to population diversity and include under-studied ancestral 
groups, especially those groups that will help narrow blocks of linkage 
disequilibrium in the search for causal variants. Pharmacogenetics must 
catch up with disease GWAS. Gradually, phenotyping will steal center 
stage from genotyping, but the change will be gradual as phenotyping is 
more complex and more expensive.  

The Psychiatric Genomics Consortium (PGC) currently comprises 
large-sample studies of SCZ, BD, ADHD, major depression, Tourette 
Syndrome, obsessive-compulsive disorder, post-traumatic stress disorder, 
ASD, eating disorder, anxiety, substance use disorder, and Alzheimer’s 
disease. Those studies will continue to grow, leading to discoveries of 
more common-SNP associations with smaller effects, and polygenic risk 
scores (PRS) capable of explaining greater variance with increased 
precision. Several common psychiatric disorders with clear genetic risks 
have received minimal genetic research efforts to date, including 
personality disorders [2], sleep disorders [3], conduct disorder [4] and 
learning disabilities [5].  

The population diversity of psychiatric GWASs has been relatively 
limited to date. The majority of GWASs included only samples from 
patients of European ancestry. A smaller number of studies involved 
Asian patients (Han Chinese [6–15], Japanese [16–19], Korean [20], Indian 
[21,22], Pakistani [23]). Even fewer studies have been completed on 
populations originating from Africa or South America. From the 
researcher’s point of view, the inclusion of diverse populations in genetic 
studies can improve the resolution of genetic maps and enhance our 
ability to identify specific risk genes and regulatory elements in the 
human genome. In terms of eliminating health disparities, the inclusion 
of diverse populations in genetic studies is the only way for all humanity 
to benefit from modern genetics research.  
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Pharmacogenetics focuses on identifying genetic factors that influence 
treatment response, including efficacy and side effects. Although its 
clinical significance is obvious, pharmacogenetics research into 
psychiatric diseases is in its early stages, having fewer than 5000 samples 
tested to date per drug studied. GWASs have been performed on the 
therapeutic effects and side effects of antipsychotics, selective serotonin 
reuptake inhibitors, and lithium. As we observed, however, GWASs of 
drug response to date did not recover any of the top pharmacodynamic 
candidate genes, such as CYP2D6 and CYP2C19. Future, sufficiently 
powered GWASs investigating the efficacy and side effects of treatment 
should better predict appropriate drug choices than current candidate 
genes. Relating individual genes, gene sets, or polygenic scores to 
treatment response is the foundation for developing precision medicine. 
Pharmacogenetic GWASs are more expensive than disease GWASs due to 
the complexities of the clinical setting, their demand of time and 
personnel investment for collecting treatment-related data, and the 
greater degree of patient involvement. The PGC’s organizational model of 
combining data from many small studies could be one of the solutions for 
building powerful pharmacogenetics datasets. Acquiring data from major 
medical institutes that have large medical record data collections coupled 
with biobanks should also be pursued. Meanwhile, current data from small 
studies are being compiled and interpreted for clinical use by the Clinical 
Pharmacogenetics Implementation Consortium (CPIC; https://cpicpgx.org/). 
Researchers should also be aware of an ongoing debate about best practices 
in establishing the clinical utility of pharmacogenetic findings [24]. 

Intermediate phenotypes (also called endophenotypes) are 
quantitative biological traits that are believed to mediate the effects of 
genes on disorders while having a simpler genetic architecture than the 
disorders themselves. Such phenotypes have attracted researchers for 
two major reasons: (1) they can be used to construct a causal framework 
of complex traits leading to disorders; therefore, they may help to 
elucidate the biological path between genetic variants and, ultimately, 
higher-order disease phenotypes; and, (2) they could have a more direct 
connection to underlying genetics than to the disorder per se. GWASs of 
intermediate phenotypes could be more powerful than disease GWASs if 
the simpler genetic architecture of the former is, as hypothesized, 
associated with larger effect sizes for GWAS SNPs. Consequently, the 
genetics of intermediate phenotypes could be used to explain GWAS 
signals (via, for example, Mendelian randomization studies) or to 
facilitate the identification of disease risk genes.  

Several projects have pioneered the collection of intermediate 
phenotype data from large cohorts. Within the NIMH Research Domain 
Criteria (RDoC) initiative, the Bipolar and Schizophrenia Network for 
Intermediate Phenotypes (BSNIP) project has collected deep phenotype 
data, including cognitive functions, brain imaging, brain 
electroencephalogram, and eye movement, in patients with BD and SCZ. 
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The Philadelphia Neurodevelopmental Cohort [25] has intensive data of 
cognitive functions. The SUNY Upstate Reward Regulation Project 
(SUREREG) is studying the genetics of the RDoC Positive Valence System, 
which comprises several reward-related phenotypes. Brain imaging data 
has been the focus of the ENIGMA consortium [26].  

Several other population- or community-based projects, including the 
UK Biobank, the Million Veteran Program (MVP), the National Institute of 
Health (NIH)’s “All of Us”, Adolescent Brain Cognitive Development 
(ABCD) and 23andMe, should yield important insights into the genetics of 
many behavioral traits, such as personality, sleep, education, smoking, 
brain volume and brain connectivity, plus a host of cognitive traits. These 
big data projects have extensive phenotype data originating from 
numerous fields. They will offer unique opportunities to study 
phenotypic and genetic relationships among various disorders and traits. 
Some of the relationships will be causal, while others will not. Pleiotropic 
effects will be a common confounder in isolating causal effects. Resolving 
their relationships will be informative in revealing disease mechanisms.  

Developing biobanks coupled with electronic health records (EHR) is 
an attractive approach to establish large datasets that can be used for 
studying the biology of various diseases, including psychiatric disorders. 
Vanderbilt University, Partners HealthCare, and the Mayo Clinic are a 
few institutes leading the efforts to implement hospital-wide programs. 
BioVU (https://victr.vumc.org/pub/biovu/) is the Vanderbilt biobank 
contains medical records of more than 200,000 subjects. The Partners 
HealthCare Biobank (https://biobank.partners.org/) serves affiliated 
hospitals in the Boston area. More than 100,000 subjects have been 
collected by them so far. About 30,000 subjects have been collected by the 
Mayo Clinic Biobank. Moreover, Mayo Clinic has a separate Biobank 
specific for bipolar disorder [27]. The Electronic Medical Records and 
Genomics (eMERGE) network [28], involving ten institutes including 
Vanderbilt, MGH, and Mayo clinic, has been the major NIH-funded 
project utilizing medical records for genomic research. ADHD and ASD 
are part of the project. Otherwise, current EHR-biobank projects do not 
have a major emphasis on psychiatric disorders yet.  

Besides those commonly studied phenotypes described above, we 
should also adopt and develop new phenotypes that can be measured 
more efficiently within populations using mobile devices and that have 
the underlying genetics of large effect size. Mobile device-based digital 
phenotyping is currently a hot topic with great potential for many 
creative uses in genetics. Digital phenotyping enables fast collection of 
large data sets [29,30]. New phenotypes can target traits of potentially 
large genetic effect size. These are two different approaches that would 
boost statistical power to detect the genetics of new phenotypes. The 
discovered SNP-associated phenotypes can be used to annotate functions 
of the SNPs. The phenotype-annotated SNPs can be used to refine the 
study of disorders. Algorithms like PrediXcan [31] and MetaXcan [32](or 
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sPrediXcan) and MulTiXcan [33] will benefit from these data to perform 
gene-based analyses. On the other hand, genes and pathways associated 
with intermediate phenotypes will help to dissect mechanism, explain 
the biology of psychiatric disorders, and many other traits through the 
technique of phenome-wide association study (PheWAS)[34].  

Not all phenotypes are equal in terms of the effect sizes of their 
genetic factors. Good examples of phenotypes with large effect sizes are 
molecular phenotypes. Molecular phenotypes, like gene expression and 
DNA methylation have triumphed in the mapping of regulatory elements. 
One hundred samples are sufficient to map expression and methylation 
quantitative traits (eQTLs and mQTLs)[35,36]. Inflammation is another 
highly interesting phenotype that deserves genetic mapping, given its 
potential involvement across many psychiatric disorders; nevertheless, 
only limited studies have been performed so far. One GWAS study of 
circulating cytokines and growth factors pioneered the mapping of 27 loci 
[37]. Cellular studies will provide additional promising new phenotypes 
that will be discussed later in this essay.  

Since many more samples will be studied with many more 
phenotypes including common variants of weak-effect and rare variants 
of relatively strong effect, these will implicate risk genes and regulatory 
variants for disease onset, persistence, and treatment response. Polygenic 
risk scores for traits and disorders will be further refined. But genetics 
alone will not be enough to accomplish the goals of better disease 
classification, diagnosis, and treatment; the power of epigenetics and 
functional studies will be needed to improve the resolution and help 
uncover mechanisms. And, to fully understand the etiology of psychiatric 
disorders, the interaction of environmental and genetic risks will require 
clarification. 

Cross-disorder studies will be particularly fruitful in the coming years 
for psychiatry. It is expected that most psychiatric disorders share some 
genetic risk variants. The degree of sharing likely defines the degree of 
shared clinical features among disorders. Cross-disorder studies will not 
only identify risk genes that contribute to multiple disorders but will also 
help to identify genes and other genomic features that may differentiate 
disorders. Cross-disorder genetic and epigenetic studies may eventually 
redefine current disease classifications, becoming biology-based, 
objective classifications.  

EPIGENETICS OF PSYCHIATRIC DISORDERS WILL BE PURSUED, 
PROMPTED BY THE EVIDENCE THAT ENVIRONMENTAL FACTORS 
CHANGE EPIGENETICS AND RISK FOR PSYCHIATRIC DISORDERS 

Epigenetic factors, including DNA methylation, histone modifications, 
non-coding RNAs, and others, are dynamic regulators of gene expression. 
They are frequently products of interactions between genetic and 
environmental factors. Epigenetics is a critical part of the formula to 
classify disorders and predict risks and treatment response. Normally, 
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epigenetic profiling will be performed along with transcriptome profiling, 
since the chief functional impact of epigenetic modification is thought to 
alter gene expression.  

The epigenotype is the signature of epigenetic marks, the equivalent 
of DNA genotype. Profiling epigenotypes is more expensive than 
genotyping and is fraught with technical uncertainties. DNA genotypes 
are typically biallelic; whereas epigenotypes are mostly quantitative, and 
their measurement is frequently unstable. Influenced not only by many 
technical and biological factors, but epigenotypes are also regulated by 
genetic and environmental factors. DNA methylation is currently the 
most accessible epigenotype. It costs several hundred to three thousand 
dollars to assay one sample of one of two types of DNA methylation (5mC 
and 5hmC)[38], both of which may represent distinct regulatory 
functions. 5hmC and non-CpG methylation may carry important 
regulatory information or case-control differences that have been 
overlooked in the past because of the limitation of technologies used for 
profiling.  

An epigenome-wide investigation into psychiatric disorders or 
treatment response is early in development. Longitudinal studies and 
large consortium projects will be needed to fulfill its promise. Unlike 
genetics, epigenetics must consider tissue-specificity, age, sex, treatment 
status, environmental exposure, and other factors. Longitudinal studies 
of peripheral tissues could track the epigenetic changes associated with 
different clinical symptoms and treatment stages while serving as a 
source of useful biomarkers. Unfortunately, most epigenetic studies 
today are still cross-sectional or case-controlled. Few have been 
published with two or more time points. The cost of collecting such data 
is the major limiting factor, as epigenotyping and following-up with 
patients to collect biospecimens are prohibitively expensive. Instead, a 
large biobank or collaborative consortium may be necessary to 
accelerate research progress. Small studies have insufficient statistical 
power, despite their superior quantitative characteristics of continuous 
epigenetic data relative to dichotomous genotype data. For this reason, 
small studies should be designed to follow a consensus design, using 
standard quality controls to readily combine small data into large 
analyses.   

Gene expression and epigenetic profiles are specified by tissue and 
cell type. While tissue or cell-type specificity is a big challenge, it also 
presents an opportunity. As in transcriptome studies, profiling 
epigenetics in mixed cells could mask differences in subgroups of cells. 
Single-cell assays are gradually moving to the center stage of research. 
Nonetheless, applying single-cell assays to large populations still faces a 
cost barrier. Creative computational and statistical methods could be 
used to deconvolute the data from mixed cells or gross tissues [39–42], 
although some details could be lost in deconvolution. Moreover, the 
validity of those deconvolution methods remains to be proven. The 
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compromise between resolution and comprehension in single-cell assays 
must be balanced, contingent upon specific hypothesis.  

Epigenetic markers are not only regulators of gene expression and 
mediators of high-level phenotypes, including disease diagnoses or 
behavioral phenotypes; they are also products of genetic-environmental 
interactions. Medication, drinking, smoking, psychological stress, diet, 
and many other environmental conditions can provoke epigenetic 
changes. Integrating epigenetics with genetics and with other –omics 
may help to resolve some causal contributors to psychiatric disorders.  

Environmental factors are known to contribute to epigenetic changes 
and disease risks. Several prenatal and postnatal factors, associated with 
alterations of DNA methylation in rodent model experiments and in human 
patients, may ultimately contribute to disease risk [38]. Alcohol and 
smoking are the two most studied factors [43–47]. Sex is another very 
important factor associated with both differential DNA methylation and 
differential risks for psychiatric disorders [48]. Many environmental factors 
promote neuroinflammation [49–51], increase oxidative stress [52,53], 
disturb neuronal development [54,55], and disrupt neuronal networks 
[55,56]. Such mechanistic models, connecting environmental factors as 
well as epigenetic and genetic variations to disease risks could be studied 
in large human populations, including both healthy and affected 
participants.  

Relating peripheral biomarkers to changes in the central nervous 
system could employ information gleaned from postmortem brains. The 
PsychENCODE project [57] concentrates a rich resource of brain -omics 
data for psychiatric studies. It has the advantage of both depth and 
breadth by collecting multiple types of data from the same individuals 
while profiling a large number of individuals. PsychENCODE is one of the 
largest datasets of postmortem brain samples from patients with SCZ, BD, 
and ASD. After the first set of publications [58–67], the data will be made 
available to the public for further mining. Much more remains to be 
discovered from these data.  

FUNCTIONAL FOLLOW-UP OF GWAS RESULTS WILL BE PERFORMED 
IN CELLULAR MODELS 

Identifying GWAS associations is only the first critical step in 
understanding how a genetic variant can affect the risk for a complex 
disease. Fine-mapping of associated loci is essential to determine which 
of several variants in a haplotype block may be truly responsible for the 
association signal. But identifying causal variation also falls short of 
having a practical impact, as simply knowing the identity of the variant 
does not suggest a clinically actionable route, neither a specific gene nor 
a biological pathway. Thus, the mechanistic study of associated loci is the 
necessary next step. GWASs alone have limited values without functional 
follow-up studies.  
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Functional follow-up studies of GWAS “hits” (regions of the genome 
associated with the disease in question) have three primary goals:  
(1) identifying target genes of disease-associated variants; (2) establishing 
regulatory relationships, pathways, or networks among all associated 
variants and genes; and (3) revealing functional impacts of the associated 
genetic variants and genes on phenotypes at all levels, from molecular and 
cellular phenotypes to behavioral traits and disorders. These studies pose 
the greatest challenge for future research. We expect that shortly, cellular 
models will be the most productive field for discovering target genes, gene 
networks, and cellular functions relevant to psychiatric illness.  

The biological significance of most GWAS signals remains elusive, 
without even a clear target gene or regulatory sequence for many 
associated SNPs. Given that an associated SNP could impact the 
expression of a distant gene, functional studies should begin with those 
associated SNPs. Brain eQTL and Hi-C data can be used to connect SNPs 
to their putative target genes. Reporter gene assays, knockdown and 
overexpression, and CRISPR (clustered regularly interspaced short 
palindromic repeats) editing can be used to validate the functional 
impact of specific SNPs and the putative regulatory elements where the 
SNPs reside [68–71]. Most published research to date typically concludes 
with an SNP regulating gene expression. Few studies investigate cellular 
phenotypes, which should be an important focus in the coming years.  

Data integration and network construction will generate new 
knowledge of biological systems, including causal factors, underlying 
disease risks, and drug responses. Since genetics, multi–omics, and 
dimensional phenotype data will be generated from large populations, 
sorting out their relationships and causal connections will be important to 
resolving the puzzle of disease biology. Computational methods like 
weighted gene coexpression network analysis (WGCNA) and others have 
been used to build correlation-based networks. Construction of regulatory 
networks is a fast-evolving field. Networks can be developed based on 
quantitative correlations, physical interactions, and literature of 
biochemical experiments. High-throughput methods will speed up the 
growth of knowledge about networks. It should be noted that regulatory 
relationships predicted by in silico analyses need to be experimentally 
validated. Cellular experiments similar to those done for POU3F2 [59] and 
DGCR5 [58] will help to construct regulatory networks of gene expression.  

Cellular phenotypes are phenotypes that can be measured in cells 
within a culture or within the living body. Commonly accessible cellular 
phenotypes include cell morphology, cell functionality, and cell division 
and differentiation speed, ion channel properties, electrophysiology, 
cellular responses to drugs or other insults, and interaction with other 
cells. Cellular phenotypes are another level of intermediate phenotypes 
that represent functional effects. They reflect biological changes 
associated with disease risk or with drug response. Cellular phenotypes 
bridge molecular phenotypes and high-level traits of behavior, brain 
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structure, and function. This field requires tremendous investment to 
reduce cost and increase throughput. The challenges and potential 
solutions for using cellular models to study psychiatric disorders have 
been reviewed [72–74]. Molecular profiling coupled with high-
throughput techniques that measure cellular phenotypes in vivo, ex vivo, 
and at the single-cell level, will advance the field significantly. 

Identifying cellular phenotypes of genetic variants is different from 
uncovering a complete molecular mechanism, which requires detailed 
characterization of each molecule and its physical and biochemical 
interactions in the process—from the genetic variants to the phenotypes, 
like electrophysiological measures. Normally, establishing the complete 
biological mechanism demands extensive experimental steps, including 
the screening and manipulation of relevant genes and environmental 
conditions. In contrast, identifying cellular phenotypes associated with 
genetic variants of both direct and indirect causal relationships would be 
a reasonable alternative, associating a given cellular phenotype to one 
gene or genetic variant even while intermediate factors remain unknown. 
Cellular phenotyping is a readily practical approach for advancing large-
scale screening, an essential component of genetic studies. Certainly, 
establishing valid cellular phenotypes and developing high-throughput 
phenotyping methods still require major investment.  

A REMAINING CHALLENGE: GENE NETWORKS AND THE OMNIGENIC 
MODEL  

Current GWASs clearly show that psychiatric disorders involve 
hundreds, even thousands, of genes. The omnigenic model even 
proposed that almost every gene could contribute to disease risks and 
that “peripheral genes” cumulatively contribute more heritability 
through trans- effects than “core genes” do through cis-effects [75,76]. 
Although the omnigenic model is still actively debated, it offers a new 
perspective about the genetics of complex disorders [77–85]. For the time-
being, it is hard to appreciate the complete biological meaning of genetic 
findings for all psychiatric disorders. Although only a few specific genes, 
such as C4, CACNA1C, DRD2, and a few others are the primary focus of 
many hypotheses, they account for a tiny fraction of disease genetic 
associations. The same is true for polygenic risk scores and top GWAS 
signals. We are still “blind men feeling the elephant.” Instead, the 
solution may reside in understanding how proteins coded by implicated 
genes interact with one another and with regulatory variations identified 
with GWASs. Recognizing these coded proteins will, in turn, help us to 
understand their related upstream and downstream biology. Genetic and 
epigenetic studies, along with cellular experiments, will piece together 
these networks and improve our understanding of the biological systems 
underlying psychiatric disorders.  
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SUMMARY AND CONCLUSIONS 

In the 1930s, researchers discovered that genetics contribute to 
psychiatric disorders [86]. Since then, particularly in the last two decades, 
psychiatric genetics has evolved into an extensive research field and has 
achieved significant progress. Advanced new technologies and statistical 
methods made genetic and epigenetic exploration possible, developing 
more phenotypes in larger populations and in different biological levels. 
In another ten to twenty years, we will not only have a better 
understanding of the risk for psychiatric disorders, but we should also 
have a better understanding of drug-target options for treating them.  

Major data resources and consortium projects discussed in this paper 
are summarized in Table 1. 

Table 1. Major biobanks and consortium projects for psychiatric genetics and epigenetics. 

Biobanks/Projects Data Websites 
Psychiatry-specific 
Psychiatric 
Genomics 
Consortium 

GWAS of major psychiatric disorders https://www.med.unc.edu/pgc/ 

PsychENCODE Epigenomic of postmortem brains https://www.nimhgenetics.org/resources/psychencode 

Philadelphia 
Neurodevelopment
al Cohort 

Deep phenotyping project https://www.med.upenn.edu/bbl/philadelphianeurodeve
lopmentalcohort.html 

Mayo Clinic Bipolar 
disorder biobank 

Bipolar disorder biobank https://www.mayo.edu/research/centers-
programs/bipolar-disorder-biobank 

BSNIP Deep phenotyping project http://b-snip.org/ 

ConLiGen Consortium on Lithium genetics http://www.conligen.org/ 

ENIGMA Consortium on neuro-imaging 
genetics 

http://enigma.ini.usc.edu/ 

General 
GTEx Genetics of gene expression 

regulation 
https://gtexportal.org/home/ 

UK Biobank Genetics of diseases and traits of 
500k UK people 

https://www.ukbiobank.ac.uk/ 

MVP Genetics of diseases and traits in US 
veteran 

https://www.research.va.gov/mvp/ 

All of Us Research program on environment, 
life style and biology of 1 million 
people 

https://allofus.nih.gov/ 

ABCD Adolescent Brain Cognitive 
Development Study, the largest long-
term study of brain development 
and child health in the United States 

https://abcdstudy.org/ 

Emerge EHR-Biobank consortium https://emerge.mc.vanderbilt.edu/ 
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