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ABSTRACT 

Major depressive disorder (MDD) is a serious public health problem that 
has, at best, modest treatment response—potentially due to its 
heterogeneous clinical presentation. One way to parse the heterogeneity 
is to investigate the role of particular features of MDD, an endeavor that 
can also help identify novel and focal targets for treatment and prevention 
efforts. Our R01 focuses on the feature of psychomotor disturbance (e.g., 
psychomotor agitation (PmA) and retardation (PmR)), a particularly 
pernicious feature of MDD, that has not been examined extensively in 
MDD. Aim 1 is comparing three groups of individuals—those with current 
MDD (n = 100), remitted MDD (n = 100), and controls (n = 50)—on multiple 
measures of PmR and PmA (assessed both in the lab and in the subjects’ 
natural environment). Aim 2 is examining the structural (diffusion MRI) 
and functional (resting state fMRI) connectivity of motor circuitry of the 
three groups as well as the relation between motor circuitry and the 
proposed indicators of PmR and PmA. Aim 3 is following up with subjects 
three times over 18 months to evaluate whether motor symptoms change 
in tandem with overall depressive symptoms and functioning over time 
and/or whether baseline PmR/PmA predicts course of depression and 
functioning. Aim 3 is particularly clinically significant. Finding that motor 
functioning and overall depression severity co-vary over time, or that 
motor variables predict subsequent change in overall depression severity, 
would support the potential clinical utility of these novel, reliable, and 
easily administered motor assessments. 
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INTRODUCTION 

Public Health Significance of Examining PmA and PmR 

Major depressive disorder (MDD) is one of the leading causes of 
disability in the US and is associated with significant economic 
consequences [1–3]. Although treatments have been developed, response 
rates are modest (~40–50%) [4,5].One reason for this mixed efficacy is that 
MDD has different clinical profiles and, therefore, likely has different 
pathophysiologies. Indeed, there are over 1000 different combinations of 
symptoms that could lead to an MDD diagnosis [6]. 

One way to parse the heterogeneity is to investigate the role of 
particular features of MDD, an endeavor that can also help identify novel 
and focal targets for treatment and prevention efforts. One of the most 
pernicious symptom clusters in MDD is psychomotor disturbance. 
Psychomotor disturbance is typically classified as either psychomotor 
retardation (PmR, i.e., a slowing or reduction in physical movements) or 
psychomotor agitation (PmA, i.e., an increase in purposeless and often 
unintentional motor activity) [7]. Both symptom clusters have consistently 
been associated with severe forms of MDD (and perhaps a qualitatively 
different subtype) [8,9] and worse treatment response in multiple trials [9–
11]. PmR and PmA are not specific to MDD as they occur in numerous other 
disorders (e.g., schizophrenia, Parkinson’s disease). Notably, given the 
importance of PmR and PmA to psychopathology, NIMH recently added 
psychomotor abnormalities as a sixth domain of constructs to their 
Research Domain Criteria (RDoC) matrix [12,13]. 

While psychomotor disturbance has been acknowledged as an 
important component of depression for decades, its measurement and 
conceptualization has been extremely coarse. Traditionally, psychomotor 
disturbance has only been assessed by patient self-report or an observer’s 
global observations. These conceptualizations are problematic because 
they (a) confound the cognitive concomitants of psychomotor disturbance 
(e.g., poor concentration, fatigue) with motoric ones, (b) do not separate 
the different components of psychomotor disturbance (e.g., motor 
initiation vs motor inhibition), and (c) are influenced by patient/observer’s 
reporting biases. They also do not allow for patients to have both PmR and 
PmA, which, although rare, does occur [8,14,15]. 

To overcome these problems, our recently funded R01 seeks to examine 
psychomotor disturbance across several units of analysis, including self-
report, observation, laboratory assessment, and naturalistic behavior 
(outside the lab). Each approach has its own unique benefits and provides 
distinct information. For example, the study includes laboratory 
assessments which measure motor disturbance using more fine-grained 
methods that are objective (and thus not subject to a patient or observer’s 
reporting bias) and shown to be reliable. One laboratory task asks subjects 
to apply constant pressure on a strain gauge for a period of time. The 
variability in the subject’s ability to maintain that pressure (and thus limit 
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irregular muscle contractions) is called Force Variability. Another 
laboratory task has subjects draw patterns on a tablet computer. One 
metric extracted from this task is called Velocity Scaling, which reflects the 
ability to increase pen movement velocity across shorter and longer target 
distances. Numerous studies on disorders such as Parkinson’s and 
schizophrenia have used Force Variability and Velocity Scaling as 
indicators of PmA and PmR, respectively [16,17]. However, few depression 
studies (e.g., ref. [18]) have used them, despite the importance of PmA and 
PmR to mood disorders. Thus, the first goal of this study is to characterize 
the PmR and PmA deficits in depression using a range of assessment 
modalities, including state-of-the-art assessments of motor behavior, such 
as Force Variability (for PmA) and Velocity Scaling (for PmR). 

Psychomotor Disturbance Assessed Outside of Lab 

PmR and PmA will also be assessed in daily behaviors measured 
outside of the lab. This is a significant feature of the study as it provides 
objective, continuous assessments of motor behaviors in naturalistic 
settings. We are employing two “outside of lab” measures. First, we are 
capturing naturalistic gross motor behavior using wrist-worn actigraphy. 
Actigraphy is a non-invasive method of continuously recording total body 
movement over days and weeks, and has been used to reliably assess (a) 
activity level and (b) stability of movement patterns (our indicators of PmR 
and PmA, respectively), even in severe psychopathologies [19]. 
Importantly, MPI Walther has shown that actigraphy-assessed motor 
behavior predicts the course of MDD over and above clinician ratings of 
PmR and PmA (see PRELIMINARY STUDIES below).  

Second, we are assessing PmR and PmA through subjects’ naturalistic 
typing behavior on their smartphones. Smartphones are near 
ubiquitous (e.g., in the age range of this study, ownership rates are ~92%) 
[20], and thus offer an excellent platform on which to study naturalistic 
behavior [21–23]. Towards this aim, Co-I Leow developed a smartphone 
app (BiAffect) that uses the phone’s passive sensors to unobtrusively assess 
typing behavior as people type their normal texts, social media posts, etc. 
One indicator of typing behavior, interkey delay (i.e., time between two 
consecutive key presses), is especially likely to relate to psychomotor 
disturbance. Specifically, longer interkey delays (i.e., slower typing speed) 
is likely to be an indicator of PmR, and variability in typing speed is likely 
to be an indicator of PmA. Indeed, Co-I Leow showed that keystroke 
behavior (a) correlates with other measures of motor processing speed 
(i.e., Trail making Test A) and (b) over and above mood symptoms, 
prospectively predicts depressive symptoms 8 weeks later [24] (see 
PRELIMINARY STUDIES below). 
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Possible Neural Mechanisms of PmA and PmR 

The neural basis of psychomotor disturbances in depression is largely 
unknown. A small handful of studies have found that PmR is associated 
with altered perfusion in particular cortical and subcortical areas [25], 
alterations of white matter motor pathways [26,27], and 
hypodopaminergic states [28,29]. Rather than examining whether 
neurotransmitters or isolated neural structures are associated with PmA 
and PmR, a more informative and parsimonious approach is to examine 
whether large scale neural circuits are simultaneously involved in PmA 
and PmR. Decades of animal and human work have identified three 
separate circuits that mediate different aspects of basic motor behavior—
basal ganglia circuitry, cerebellar-thalamo-cortical circuitry, and cortico-
cortical circuitry [13]. Numerous studies have used this neural framework 
to examine motor abnormalities in diseases such as schizophrenia, 
Parkinson’s disease, and bipolar disorder. There is therefore a strong 
scientific premise for examining the role that these motor circuits play in 
PmA and PmR in MDD. To date, studies of neural networks in unipolar 
depression have focused on networks such as the default mode network 
[30] and frontoparietal control networks [31], and not on motor networks 
(however, studies in bipolar disorder have examined these circuits [32,33] 
and suggest that they may be abnormal in unipolar depression). The study 
will therefore provide novel insights into neural mechanisms that are 
involved in motor disturbances in MDD [34]. 

As noted above, the specific motor circuits that are involved in PmA and 
PmR in MDD are unclear. However, several tentative hypotheses can be 
made. The cortico-cortical network (e.g., inputs from DLPFC or dorsal ACC 
to preSMA and SMA) is likely to be hypoactive in PmR given this network’s 
role in movement initiation and action selection. In contrast, PmA is likely 
to be associated with hyperactivity in cortico-basal ganglia circuits. 
However, it is also possible that PmA may involve interactions between 
the three circuits (with particularly important contributions from the 
basal ganglia, cerebellum, dorsal ACC, and preSMA/SMA) as PmA likely 
results from multiple deficits, such as movement inhibition, timing, and 
termination. To test these hypotheses, we will evaluate structural and 
functional connectivity of motor networks in different stages of illness (i.e., 
in episode vs remission). As this is a new area with limited existing data to 
guide firm hypotheses, we will utilize a conservative analytic approach by 
evaluating nodes comprising the three primary networks responsible for 
movement and identify patterns consistent with the tentative hypotheses 
noted above. This approach will also allow us to identify unexpected, 
novel, and potentially path-breaking associations regarding motor 
network circuitry in PmR and PmA. The analysis plan is well suited to 
power this unique and innovative approach. Specifically, we will examine 
key motor ROIs across each of the networks, map white matter tracts 
comprising these networks, and aim to determine coherence within and 
across the motor networks (evaluating coupling between pairs of ROIs, as 

J Psychiatry Brain Sci. 2020;5:e200007. https://doi.org/10.20900/jpbs.20200007 

https://doi.org/10.20900/jpbs.20200007


 
Journal of Psychiatry and Brain Science 5 of 33 

well as within the broader context of the complex networks). The goals of 
this aim are to gain new insight into brain networks underlying PmA and 
PmR in MDD, determine unique and overlapping pathology underlying 
both PmR and PmA, and determine if the phase of illness influences 
patterns of aberrant brain connectivity and respective motor behaviors. 
This will ultimately lay the groundwork for novel biomarkers and 
individualized interventions for this difficult to treat feature of MDD.  

The Importance of Studying Remission 

The few studies that have examined motor disturbance in depression 
only included currently symptomatic individuals. This is problematic as 
these studies cannot differentiate whether the deficits are (a) a function of 
current symptomatology or (b) a core underlying etiological mechanism 
of depression. This study is therefore examining individuals currently in 
an episode of MDD (i.e., acute depression), as well as individuals remitted 
from MDD. While studies of remitted MDD cannot disentangle whether the 
deficit reflects a pre-morbid process or a scar of depression, they do 
provide evidence that the deficit is independent of symptomatology that 
persists into remission. Studying deficits in remitted individuals also 
yields strong preliminary data for longitudinal high risk studies.  

The Longitudinal Course of Motor Behavior 

Previous studies have also not examined the longitudinal course of 
motor behaviors in the context of depression. This hole in the literature 
has important public health significance as it is unclear whether motor 
disturbance ‘tracks’ with fluctuations in depression severity over time, or 
whether it is independent (suggesting that motor disturbance should be 
treated separately from overall depression severity) [35]. To address this 
question, we are re-assessing the in-lab (e.g., self-report, observer 
assessment, Force Variability, and Velocity Scaling) and out-of-lab (e.g., 
actigraphy and smartphone app) motor measures and depressive 
symptomatology three more times during an 18-month follow-up period. 
This prospective, longitudinal design will allow us to not only test whether 
changes in state depression relate to changes in PmR and PmA over time, 
but also whether baseline measures of PmR and PmA (including the 
neuroimaging measures of motor circuitry) predict a worse course of 
illness. The prospective design can also address whether PmR and PmA 
have independent predictive validity on the course of depression. This is a 
critical question because, while one might view PmR and PmA as opposite 
sides of the same coin, several self-report studies have found them to be 
separable, with some depressed individuals exhibiting both PmR and PmA 
[14,15] (mirroring results seen in schizophrenia [36]). Knowing whether 
PmR and PmA reflect correlated vs independent mechanisms will also aid 
in the identification of novel (and individualized) biomarkers.  

In addition to depressive symptoms as outcomes, the present study is 
also testing whether motor disturbance predicts functional impairment 
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(specifically, social and occupational functioning using the SOFAS) [37] 
and overall quality of life (using the WHO-QOL) [38]. Our group and others 
have shown that motor disturbance predicts social and role functioning 
outcomes in other clinical populations (e.g., psychosis risk, psychosis) 
[39,40], but this is the first study examining these associations in 
depression. 

Lastly, having multiple assessments of depression and motor behaviors 
will allow us to use lagged analyses (e.g., whether PmR at one point predict 
depression at subsequent time points) to explore whether PmR and/or 
PmA predict relapse (in the remitted MDD group) or remission (in the 
current MDD group). As preliminary support for this approach, Dr. 
Walther and colleagues recently demonstrated that observer ratings of 
PmR predicted response to electroconvulsive therapy [41].  

Incremental Validity over Self- or Observer-Reported PmR and PmA 

For each of the aims of the grant (cross-sectional group effects, neural 
mechanisms, longitudinal course), we will also test for effects over and 
above self- or observer-reported PmR and PmA. This is an important goal 
because if the lab-based (e.g., Force Variability) and ecologically valid (e.g., 
smartphone typing) measures of motor behavior do not demonstrate 
incremental validity over and above self- and observer-reported PmR and 
PmA in predicting variables such as longitudinal course (Aim 3), their 
potential utility in the clinic would be diminished. Alternatively, self- and 
observer-reported PmR and PmA may provide complementary 
information to the other measures, thus yielding a complete picture of the 
different components of motor disturbance (a goal consistent with RDoC’s 
emphasis on multiple “units of analysis” (i.e., measures) of a particular 
construct) [42]. 

Sex Differences in Motor Disturbance 

A final goal of our study is to examine sex differences in motor 
disturbance. While it is well-established that women are at greater risk for 
and exhibit a different course of MDD than men [43], studies have been 
equivocal as to sex differences in psychomotor disturbance, with some 
reporting higher rates of motor disturbance in depressed men [7] and 
others reporting higher rates in women [44]. Given that these studies only 
used self- or observer-reported measures of motor disturbance, the 
present study is the first to test this question with more fine-grained 
assessments of PmR and PmA (and to test whether sex moderates the 
neural mechanisms and longitudinal course). This is consistent with NIH’s 
goal of examining sex as a biological variable. While our study is not fully 
powered to detect sex differences, it will provide important preliminary 
data regarding sex differences in psychomotor disturbance in MDD. 
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Summary of Scientific and Clinical Significance 

Depression is a highly prevalent disorder and, since its inception, motor 
slowing and/or agitated movements has been identified as one of its most 
pernicious features. Despite this prominence, we know startlingly little 
about these behaviors. Specifically, it is unclear how to best characterize 
PmR and PmA in individuals in episode, and whether they continue into 
remission. One possibility is that they remain present, but become 
attenuated in remission (something that our Aim 1 will be able to test). 
These results would also help inform risk models of MDD. Further, little is 
known about the neurological basis of these movement abnormalities 
(something we found particularly surprising as we planned this study), 
including whether PmR and PmA have separate pathophysiologies. We 
therefore based our tentative hypotheses on what is known from other 
disorders and from our preliminary studies (see Brain Correlates of 
Actigraphy below), and then set a highly conservative analytic plan of 
examining the structure and function of three primary circuits that govern 
motor behaviors in general (Aim 2). As the motor networks have not been 
evaluated in depression, this comprehensive approach is likely to 
elucidate novel information about the pathogenesis of the disorder.  

What is also striking is the lack of understanding about how motor 
behaviors change across the course of MDD. No study has examined if 
motor disturbance changes as overall depression and functioning 
improves, or if they change as remitted patients move towards relapse 
(questions that Aim 3 will address). Studies of psychomotor disturbance in 
Parkinson’s disease and psychosis offer tremendous promise for how 
subtle motor biomarkers can predict clinical changes [45,46]. Finding that 
motor and depressive symptom changes co-vary over time, or that motor 
variables predict subsequent change in overall depression severity, would 
support the potential clinical utility of our novel, reliable, and easily 
administered motor assessments. For example, demonstrating that 
smartphone typing behavior tracks with overall depression changes 
would inform a future study on the feasibility and utility of updating 
clinicians in real time about the status of their patients (e.g., an automatic 
email sent from the smartphone app) [47]. 

INNOVATION 

Although motor dysfunction has long been viewed as a key feature of 
depressive disorders [7], there is a surprising lack of understanding 
surrounding these core behaviors. There are numerous ways that this 
study addresses the significant holes in this literature in innovative ways, 
using cutting edge methodologies.  

First and foremost, the current study seeks to understand PmR and 
PmA using in-depth and novel measures of motor disturbance. While prior 
studies of motor disturbance in MDD almost exclusively utilized self- and 
observer-ratings, the present study is measuring PmR and PmA using 
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multiple methods, including laboratory (e.g., force variability, velocity 
scaling) and ecologically valid (e.g., actigraphy, typing behavior on 
smartphones) methods. These sensitive measures will elucidate subtler 
and more fine-grained indicators of PmR and PmA (in contrast to self- and 
observer-reports, that largely identify more overt signs) and allow for the 
parameterization of motor behaviors using objective, unbiased methods.  

Second, the evaluation of both structural and functional connectivity in 
networks responsible for motor behavior has never been attempted in 
studies of MDD. The well-supported models of brain networks underlying 
motor behavior in general will serve as an anchor point for mapping out 
neural networks involved in PmR and PmA. This approach has been 
fruitful in psychosis risk populations (providing insights into disease 
progression [48]), suggesting that taking a similar approach in MDD stands 
to be informative as well. Additionally, we will be able to elucidate how 
motor behaviors map on to stable (white matter tracts) and more 
temporally sensitive (functional connectivity patterns) motor network 
components, as well as how these networks interact. Indeed, higher-order 
functions linking cognition and movement take place in cortico-cortical 
networks, while the basal ganglia loops help to select/inhibit a particular 
action or sequence, and the cerebellar circuits operate in tandem to fine-
tune these actions. These circuits work in close concert [49], and it is not 
possible to have a comprehensive understanding of the contributions of 
one circuit without examining all three.  

Third, we will move beyond seed-based connectivity approaches and 
investigate these motor networks at rest using a graph theoretical network 
approach. Such a methodological approach will allow us to investigate the 
network dynamics of the motor network(s) as a whole, as opposed to the 
patterns of connectivity for one given motor seed region. Additionally, 
comparisons of these metrics will provide a network-level view of 
differences due to disease state (remitted vs. current MDD) and 
symptomatology (PmA vs PmR). By combining tractography and resting-
state methods, we will be able to lay a foundation for the first 
comprehensive model of motor dysfunction in MDD, and thus provide a 
framework for biomarker research that will inform novel pharmaceutical 
and brain stimulation treatment studies.  

Fourth, this study is highly innovative in its use of both actively and 
remitted depressed subjects, and in following these groups over 18 
months. The current design will provide new, and vitally important, 
information on how motor behaviors and related brain networks appear 
in remitted and active disease states. Findings of motor disturbance 
(relative to controls) in remitted individuals would suggest that motor 
disturbance continues into remission (and perhaps reflects a vulnerability 
for relapse). Further, and most notably, modeling motor behavior and 
depressive symptom changes in these groups over time (i.e., as depressed 
patients improve or remitted patients relapse) will help us evaluate the 
potential of mechanistically relevant and easily assessed biomarkers for 
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this populations, as well as how motor behaviors change as a function of 
disease course [50].  

Finally, there is increasing evidence highlighting the importance of 
motor behaviors in a broad range of psychiatric disorders [13,51,52]. In 
recognition of this, NIMH recently added a Motor Domain to the RDoC 
matrix [12]. Importantly, however, no study has employed an RDoC 
approach to understanding these important behaviors. While the present 
study adopts multiple aspects of the RDoC initiative (e.g., multiple units of 
analysis, operationalizing PmR and PmA as continuous dimensions), it is 
not examining the transdiagnostic aspect of RDoC as it is only examining 
one disorder (MDD, see refs. [53,54] as exemplars of such a transdiagnostic 
approach). However, it should be noted that RDoC is agnostic with respect 
to respect to current definitions of disorders, thus, the fact that the present 
study is only focusing on one disorder is not inconsistent with the 
initiative. In sum, by employing multiple units of analysis (self- and 
observer-report, lab-based and ecologically valid behavioral measures, 
structural and functional circuitry), operationalizing PmR and PmA as 
continuous dimensions, and studying changes in these RDoC constructs 
across disease states and time, the present study will be the very first to 
take an RDoC approach to understanding motor phenomena in MDD.  

PRELIMINARY STUDIES 

Actigraphy in Depression 

In support of Aim 1, MPI Walther showed that overall gross motor 
activity, as measured by wrist actigraphy, is reduced in acutely depressed 
individuals [27,55] and stable over 1 week [56]. This replicates other 
studies of MDD across the lifespan (youth, late life) [57–60]. As a 
preliminary test of whether this deficit continues into remission, MPI 
Walther examined actigraphy levels of 22 MDD patients during treatment. 
While activity levels increased over the course of treatment, the 11 
patients who achieved remission had slightly lower activity levels than 
controls (Cohen’s d = 0.49, see Figure 1). Actigraphy-assessed activity levels 
also tracked with other measures of psychomotor disturbance: (a) the 
Hamilton depression scale item “work and activities”, even after 
controlling for overall Hamilton depression severity (r = −0.35) [56], and 
(b) the Salpêtrière Retardation Scale in a small pilot study (see Figure 2).  

In support of Aim 3’s goal of examining longitudinal course, lower 
baseline actigraphy levels predicted a worsening of MDD symptoms over 
4 weeks (N = 56), over and above clinician ratings of psychomotor 
retardation at a trend level (β = 0.23, p < 0.08). 
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Figure 1. Actigraphy levels in current (N = 22) and remitted MDD (N = 11).  

 

 

Figure 2. Actigraphy levels relates with Salpêtrière Retardation Scale (N = 9). 

BiAffect Smartphone App 

Co-I Leow conducted a pilot study on the BiAffect smartphone app in 24 
mood disorder and healthy subjects, and found that Trail Making Test A (a 
well-established test of processing speed) correlated with average interkey 
delay (r = 0.50, p < 0.001). Additionally, independent of baseline mood [24], 
variability in typing behavior during a 2-week baseline period 
longitudinally predicted Hamilton depression 8 weeks later (R2 = 0.70). 
Typing behavior also predicted follow-up depression over and above 
clinician ratings of retardation and agitation at a trend (β = 0.24, p < 0.10). 
These results provide preliminary evidence supporting our use of 
smartphone typing behaviors as indicators of disturbance (Aim 1) and 

                            Psychomotor retardation 
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support the goal of examining whether PmR/PmA predicts the course of 
depression (Aim 3). 

Laboratory Motor Measures and Brain Motor Networks 

Force variability and brain networks 

In a pilot study to support the brain-motor behavior predictions in 
Aim 2, MPI Mittal evaluated the association between Force Variability (our 
laboratory indicator of PmA) and brain connectivity (seed-to-voxel resting 
state analysis) in 61 healthy controls. The seeds included motor network 
hubs, such as left/right caudate, left/right putamen, left/right thalamus, 
M1, and SMA. Increased Force Variability was related to increased 
connectivity between M1 and superior parietal cortex, and to decreased 
connectivity between right putamen and hippocampus, precuneus, and 
superior parietal cortex (see Figure 3). 

 

Figure 3. Resting state fMRI analysis showing positive (red) and negative (blue) correlations with Force 
Variability (top) and Velocity Scaling (bottom). (Corrected to a voxel level of p < 0.001 and cluster level 
p[FDR] < 0.05). 

Velocity scaling and brain networks  

Velocity scaling, a handwriting kinematics indicator of PmR, was 
collected in 61 healthy controls in a pilot study examining the link between 
variability in slowing and brain connectivity. Increased PmR was related 
to reciprocal decreased connectivity between seed regions of the left 
caudate and thalamus. In addition, decreased connectivity between the 
left caudate and inferior frontal gyrus was related to increased slowing. 
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Taken together, these findings suggest different neural networks may 
contribute to PmA and PmR. However, it will be critical to evaluate this 
question in MDD (Aim 2), utilizing methods that will allow for a more 
comprehensive perspective of structural and functional indices of 
network integrity. 

Brain Correlates of Actigraphy 

Further supporting Aim 2, MPI Walther has published numerous 
studies on the associations between PmR, as measured by actigraphy, and 
(a) whole brain resting-state perfusion and (b) white matter 
microstructure in major depression. Results indicated associations 
between actigraphy levels and (a) perfusion in the vmPFC and (b) key 
motor circuit regions (e.g., pre-SMA) [25,55]. Furthermore, while controls 
exhibited an association between actigraphy levels and perfusion within 
core motor areas, such as the cingulate motor area and external globus 
pallidus, this association was not found in MDD subjects [25]. MPI Walther 
has also shown that activity levels in MDD patients and controls are linked 
with white matter microstructure of motor pathways and limbic pathways 
[26,27,61,62]. However, the associations between white matter properties 
and activity differed between patients and controls within cortico-cortical 
motor pathways, suggesting that structural connectivity alterations 
between prefrontal and premotor/motor cortices hamper spontaneous 
motor behavior in patients [26]. Collectively, these findings indicate that 
cortico-cortical circuit alterations contribute to PmR in MDD, but 
contribution from the other two motor circuits is possible. Additionally, no 
study of MDD has investigated the associations of activity levels and 
functional or structural connectivity at the network level. 

RESEARCH DESIGN AND METHODS 

Overview 

This project is assessing the motor functioning of 250 individuals (50 
controls, 100 current MDD, 100 remitted MDD). The baseline assessment 
consists of (a) a diagnostic assessment (SCID) and measures of functioning, 
(b) laboratory (e.g., Velocity Scaling) and ecologically valid measures (e.g., 
actigraphy) of motor functioning, and (c) an MR scan to examine 
connectivity of motor circuitry. Depression/functioning and the laboratory 
and ecologically valid measures of motor functioning are also being re-
assessed three additional times over an 18-month follow-up period. 

Diagnostic Inclusion/Exclusion Criteria 

The current MDD group (N = 100) meets current DSM-5 criteria for 
MDD. The remitted MDD group (N = 100) meets past, but not current, 
criteria for MDD and have Hamilton Depression Scores (a measure of 
current depressive symptomatology) of less than 7. We are excluding from 
the remitted MDD group those with a major current DSM disorder (i.e., 
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anxiety, trauma, substance/alcohol use disorder, obsessive compulsive-
spectrum, or eating disorder). The control group (N = 50) does not meet 
lifetime criteria for any major DSM-5 disorder. However, in order to 
examine depressive symptoms dimensionally in the whole sample (see 
Data Analytic Plan and Hypothesized Results below), controls are allowed 
to have current subthreshold MDD. Additionally, as epidemiological 
studies suggest that the two MDD groups will likely be ~2/3 women [41], 
we are oversampling control women to ensure that the three groups have 
a comparable sex distribution. Given the significant lifetime comorbidity 
between MDD and other psychopathologies, in order to increase the 
generalizability of the sample, we are not excluding most past 
comorbidities from the two MDD groups. During recruitment, we are 
attempting to balance the two MDD groups on past comorbidities. 
However, individuals with lifetime ADHD or tic/Tourette’s disorders are 
excluded from all 3 groups given our focus on motor disturbance (note: 
these represent a minority of participants with MDD [63]), as well as 
current moderate or severe alcohol/substance use disorders. These 
inclusion and exclusion criteria are being determined using the SCID-5.  

Other Inclusion/Exclusion Criteria 

All participants are right handed (assessed with the Edinburgh 
Inventory) [64] given the association between neural lateralization and 
handedness; able to read English; and have no serious head trauma (loss 
of consciousness > 2 min), neurological conditions, or personal or family 
history of mania or psychosis. Participants are between 18 and 60. We are 
excluding those older than 60 given the association between psychomotor 
slowing and normal aging [65], although age will be included as a 
covariate in our statistical models. Given the aims associated with the 
smartphone app, we considered requiring that participants own a 
smartphone as this would not limit recruitment (ownership rate in this age 
range is ~92%) [20] and providing a phone to those who never owned one 
before might yield a subsample with different typing behavior. However, 
this might bias our sample to be more affluent, so this is not an inclusion 
criterion (although we will include “previous smartphone ownership” as 
a covariate in our models).  

Medication 

The role of medications is an important consideration in our study. A 
blanket exclusion would not be feasible or scientifically justified given that 
(a) PmR and PmA are rare side-effects for antidepressants (ATD) [66], (b) 
exclusion would make recruitment difficult as many eligible subjects will 
be taking ATDs, and, most importantly, (c) this strategy would yield a non-
generalizable sample. Instead, we are choosing to exclude subjects with 
long-term recent exposure to specific compounds that are most likely to 
impact motor function. Specifically, subjects on continuously 
administered medications that impact dopaminergic (DA) functioning 
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(e.g., immunomodulators, anticonvulsants, and ATD (such as bupropion 
and nortriptyline)) are being excluded given the potential impact of DA, a 
neurotransmitter important to motor functioning [67–69]. Subjects 
periodically taking medications that impact dopamine or other 
compounds that may impact motor functioning (e.g., antibiotics, 
antihistaminic, or antiemetic) will undergo a withholding period of four 
weeks prior to assessments. However, we are only excluding those who 
use benzodiazepines (BZO) 3 or more times per week as 7–10% of MDD 
patients take BZO [70] (and thus exclusion would decrease 
generalizability) and a power analysis excluding 7–10% of the current and 
remitted MDD groups did not decrease power below 80% (allowing us to 
run analyses with and without those on BZOs). We will thoroughly note 
subjects’ dosages and types of medications (for all classes, including BZOs), 
and examine whether medication status and/or class should be included 
as covariates in our model.  

Feasibility of Recruitment 

We are posting advertisements on websites and at clinics, and are 
attempting to recruit subjects from MPI Shankman’s recently completed 
MDD study (R01 MH098093). We will enroll 5.31 subjects each month 
during the 54-month recruitment period, a rate consistent with prior 
studies by MPI Shankman. 

Attrition 

Our recruitment goals and power estimates account for attrition and 
data loss. First, for Aims 1 & 2, we conservatively estimate (based on our 
prior work) that 15% of subjects will be excluded due to neuroimaging 
motion and/or general data loss. Thus, 287 subjects will be recruited to 
yield an N of 250. Second, we powered Aim 3 to have an N of 180–70 
current MDD, 70 remitted MDD, and 40 controls. This sample is smaller 
because (a) growth curve modeling with 3 follow-ups allows for a smaller 
N, (b) subjects recruited after month 6 of year 4 will not have completed 
their 18-month follow-up by the end of year 5, and (c) general feasibility 
concerns about conducting 3 follow-ups on a larger sample (although each 
follow-up assessment is <2 h). This reduced targeted N will allow us to 
naturally lose 28% of subjects to attrition during the follow-up.  

STUDY INSTRUMENTS 

A key aspect of NIMH’s RDoC initiative is to utilize multiple units of 
analysis to measure a construct [40,71,72]. The current study adopts this 
strategy by measuring PmR and PmA via self-report (IDS), interviewer’s 
observations (MARS/CORE), and multiple behavioral measures (Velocity 
Scaling [PmR], Force Variability [PmA], Actigraphy, and smartphone 
typing behavior). Each measure is described below. 
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Baseline Ratings of Psychopathology and PmR and PmA 

At baseline, psychiatric diagnoses are being assessed with the SCID-5. 
To determine inter-rater reliability, a 2nd interviewer will re-score 10% of 
videotaped SCIDs annually. We will also assess depression with the 
Hamilton Depression Scale (interview) [73] and the Inventory for 
Depressive Symptoms (self-report; IDS) [74] for secondary analyses 
examining depression severity dimensionally. Measures of social and 
occupational functioning (SOFAS) [37] and overall quality of life (World 
Health Organization’s Quality of Life [WHO-QOL]) [38] will also be 
administered.  

Observer ratings of PmR and PmA will be made from videos of the SCID 
interviews. Raters will use the CORE, the gold standard measure of PmR 
and PmA, and the Motor Agitation and Retardation Scale (MARS), an 
inventory that, unlike the CORE, only assesses the motor components of 
PmR and PmA (and not the cognitive components, e.g., inattentiveness). 
These observer ratings will not be made by the SCIDer so that PmR/PmA 
ratings can be blind from diagnosis.  

Laboratory Assessments of Motor Disturbance 

Lab measurement of PmA 

Laboratory PmA is being assessed using Force Variability, a validated 
measure of PmA in MDD [75]. Subjects are asked to match a target on a 
monitor by applying constant pressure on a strain gauge with their index 
finger as steadily as possible (9 trials of varying force for each hand 
(approximately 350 cN of force per trial)). The variability in the subject’s 
applied force reflects the subject’s dyskinesia and is the direct result of 
irregular muscle contractions that produce changes in measurable force 
over time. The task consists of three 20-s trials, separated by 5-s rest 
periods. After removing any tremor component (via a low pass filter), the 
segment with the greater range in force (i.e., the force minima and maxima 
over the medial 80% of each segment) will be subjected to quantitative 
analysis of error. Force Variability is defined as the coefficient of variation 
from the mean and standard deviation of the force waveform. 

Lab measurement of PmR 

Handwriting samples are being obtained to compute Velocity Scaling to 
index PmR [76]. Lower values of Velocity Scaling reflect the slowing or 
inability to increase pen movement velocity across shorter and longer 
target distances, and have been linked to motor slowing in several clinical 
populations [17,18,77]. Handwriting samples are acquired using 
Neuroscript MovAlyzeR software (http://www.neuroscript.net), installed 
on a Fujitsu T901 tablet computer, and a non-inking pen. Subjects are 
instructed to write 8 loops continuously for 3 trials within a 2 cm or 4 cm 
vertical boundary, using their dominant hand (see Figure 4). Subjects are 
instructed to write at their normal speed. Each trial consists of 16 vertical 

J Psychiatry Brain Sci. 2020;5:e200007. https://doi.org/10.20900/jpbs.20200007 

https://doi.org/10.20900/jpbs.20200007
http://www.neuroscript.net/


 
Journal of Psychiatry and Brain Science 16 of 33 

strokes, which will be segmented and processed for target variables: peak 
vertical velocity and absolute size of stroke. Valid trials will include at least 
10 segments. A regression with peak vertical velocity as the predicted 
variable will be entered, with absolute size of the stroke (to account for 
variance of individual stroke sizes) and condition (2 cm and 4 cm) as 
covariates [78]. 

 

Figure 4. Loops from a 4 cm trial. These will be compared with those from a 2 cm trial to calculate a VS ratio 
(an indicator of PmR). 

Postural control 

As an additional laboratory measure of motor functioning, we are also 
assessing individuals’ postural control using an instrumental balance task, 
a putative probe of cerebellar abnormalities [79]. Data is acquired using 
an Advanced Mechanical Technology Incorporated (AMTI) AccuSway 
force platform (Watertown, MA, USA). Participants are instructed to stand 
still on the force platform with their arms rested at their sides, look 
straight ahead, and complete four 2-min-long task conditions: (1) feet 
together with no cognitive load, (2) feet together with cognitive load, (3) 
feet shoulder-width apart with no cognitive load, and (4) feet shoulder-
width apart with cognitive load. Cognitive load is manipulated by having 
participants count backwards by 13 from 1000. The center of pressure 
(COP) is the variable of interest, and it is recorded at a sampling rate of 
50 Hz. We will apply a 9th-order Butterworth filter with a 20-Hz cut-off 
frequency to isolate the low-frequency postural sway process in the 
recorded data. Higher COP area is associated with poorer postural control. 

Ecologically Valid Measures of Motor Disturbance 

Actigraphy assessment 

Wrist actigraphs (Philips Respironics, USA) are placed on the 
nondominant arm for continuous recording of motor activity for 1 week 
(at 30 s intervals). Actigraphy uses accelerometers to collect movement 
counts per interval. Data will be processed in Dr. Walther’s lab, focusing 
on activity levels (i.e., average activity counts per hour during wake 
periods of the day). Subjects also complete a sleep log to indicate wake 
periods and for cross-validation [56]. Time series analysis will be used to 
test for temporal stability of the movement patterns [75]. Specifically, the 
time series of logged activity data will be subject to a partial 
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autocorrelation function (PACF) on defined actigraphy data periods of 
several hours when most subjects are awake (e.g., from 9:00 AM to 12:00 
AM). The PACF focuses on the time series of movement counts in 
chronological order and indicates the number of lags with significant 
autocorrelation (with the correlation in the opposite direction partialled 
out). In time series with low numbers of significant lags (e.g., 2), the 
movement count in lag 1 is only associated with movement in lag 2. Higher 
numbers of significant lags are interpreted as more stable movement 
patterns. The PACF derived number of lags is covaried for the total amount 
of movement. PmR will be defined as the amount of total activity level, and 
PmA will be defined as unstable movement patterns (i.e., low number of 
significant lags). As an exploratory measure, actigraphy data will also be 
used to analyze circadian variation of motor activity [80].  

BiAffect smartphone app 

BiAffect was developed by Co-I Leow and colleagues and won the RWJ 
Foundation’s Mood Challenge award in 2017. BiAffect tracks metadata of 
character category (e.g., alphanumeric, lower vs upper case), timestamps 
of keypresses, distances between consecutive keypresses, backspaces, 
autocorrect, and typos. BiAffect runs on all smartphone operating systems, 
utilizes an open source framework, and has a HIPAA compliant data 
management system (Safe Bionetworks). The indicator of PmR is the 
average interkey delay over 2 weeks, and PmA is indicated by daily 
variability in typing speed. It should be noted that these classifications are 
made tentatively as PmA may lead to difficulty typing (leading to a higher 
interkey delay). We will also explore other variables from the Biaffect app 
(e.g., Backspace Ratio [# of backspaces/total keypresses] and Autocorrect 
Ratio [# of autocorrect events/total keypresses]). 

Neuroimaging Assessment 

Data acquisition 

All scanning is being completed using a 3 tesla Siemens MAGNETOM 
Prisma scanner. The scanner has a full set of established sequences for 
functional, anatomic, and diffusion weighted imaging, and is also 
equipped with automated shimming. We use foam padding to minimize 
head motion, though we will correct for any motion during preprocessing. 
The study employs sequences from the Human Connectome Project (HCP) 
Lifespan protocol. There are several benefits to this protocol. First, these 
are publicly available, well-validated protocols and will aid in future 
reproducibility and data-sharing efforts. Second, the sequences are 
relatively short, which is optimal for the clinical population being studied 
here (total time for all scanning is 40 min). Furthermore, the imaging 
methodologies employed here eliminate potential task confounds and 
show a high degree of reproducibility within subjects and across testing 
sites [81,82].  
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Our specific parameters are outlined in detail on the HCP website 
(protocols.humanconnectome.org). We are collecting a high resolution T1-
weighted anatomical image with whole-brain coverage (MPRAGE; 0.8 mm3 
isomorphic voxels, 208 interleaved slices; FOV = 256 mm) to facilitate 
normalization for our resting state and diffusion images. Resting state 
functional blood oxygen level dependent (BOLD) connectivity will be 
collected in two separate multi-band imaging scans, each lasting 5:12 min, 
with complete brain coverage and 2.0 mm3 isomorphic voxels, and with 
opposite phase encoding directions (anterior to posterior, and posterior to 
anterior). The two shorter scans will help to minimize movement 
confounds during data acquisition. Finally, all participants will undergo 4 
diffusion weighted imaging scans with the following parameters: two with 
98 gradient directions and two with 99 gradient directions. Each scan has 
1.5 mm3 isomorphic voxels and two shells, β-value = 1500 s/mm2 and 
3000 s/mm2 interleaved at a 1:2 ratio, 6 β0 images, and will last 5:38 min. 
Each couplet of diffusion scans is collected with opposite encoding 
directions. The additional diffusion scans are necessary for modelling 
crossing fibers using tractography in our proposed analyses.  

Resting state connectivity processing 

We will use the HCP processing pipeline [83] to investigate the 
connectivity of these circuits. We will take a graph-theoretical approach, 
implemented using the Brain Connectivity Toolbox [84] 
(https://sites.google.com/site/bctnet/). We will also investigate the network-
based statistic (NBS) [85]. The NBS allows us to investigate overall network 
dynamics and is particularly informative when looking at differences 
across diagnoses [86] (and, as such, stands to be particularly informative 
for our investigation here). For the motor networks, we will create regions-
of-interest (ROIs) for the key nodes of the motor circuits [13], defined a 
priori. We will use spherical seeds, 6 mm in diameter. These nodes will be 
put together into one large motor network, concatenating across the 
circuits. The network nodes to be used in our analyses are pictured using 
the Brain Connectivity Toolbox (see Figure 5). We will quantify the 
clustering coefficient (C) and the clustering strength (S), in addition to the 
NBS. C measures the degree of local connectivity within a network, while 
S quantifies how closely network nodes are connected. This will allow us 
to not only assess the small-worldness of the motor network, but to also 
look at overall network dynamics. In addition, we will investigate these 
metrics in the three motor circuits discussed [13]. We will then compare 
the organization and graph metrics between the groups. We will also 
compute the associations between the graph measures and the measures 
of PmR and PmA and psychiatric symptomatology. 
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Figure 5. Regions in the motor network to be used for graph theory analysis. Top = left & right hemispheres; 
Bottom = superior view. 

Diffusion imaging processing 

DTI data will be analyzed using a probabilistic tractography approach 
to target tracts of interest, connecting key motor nodes of the brain. We 
will follow similar methodologies employed in our recent work on 
cerebellar circuits and thalamo-hippocampal connections [49,87,88]. 
Diffusion data processing will be completed using FSL’s FDT toolbox. We 
will correct for motion and eddy current distortion. We will then use 
BEDPOSTX to calculate diffusion parameters at each voxel [89]. We will 
compute probabilistic tractography analyses for several tracts of interest 
in FSL using ProbtrackX. We will model the specific parameters after our 
prior work [49,87,88]. In order to test our hypotheses related to motor 
disturbance in MDD, we will look at several tracts tapping into the striato-
cortical, cortico-cortical, and cerebello-thalamo cortical circuits. These 
tracts include the connection from cerebellar lobule V to the thalamus, 
from the thalamus to M1, the striato-cortical connections from the 
putamen to both M1 and SMA/pre-SMA, and caudate to pre-motor cortex 
[90], and ,finally, the cortico-cortical connections between DLPFC and 
SMA. We will compute the probabilistic tractography between the two 
regions of interest, which will serve as endpoints. From these tracts, we 
will compute fractional anisotropy (FA), radial diffusivity (RD), and axial 
diffusivity (AD). 

Longitudinal Follow-up Assessment (for Aim 3) 

Psychopathology (SCID, symptom measures, and functioning) and 
motor behaviors (Force Variability, Velocity Scaling, 2 weeks of BiAffect 
App data, and 1 week of actigraphy) are being re-assessed at 6, 12 and 18 
month follow-ups. At each follow-up, we are also administering the 
Longitudinal Interview Follow-up Evaluation (LIFE) to assess monthly 
psychopathology since the previous assessment. The LIFE is critical as it 
provides a more nuanced assessment of the timing and duration of 
psychopathology episodes that are not assessed in the SCID. As discussed 
in the Attrition section above, we plan to only follow-up with 70 current 
MDD, 70 remitted MDD, and 40 controls. 
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Reproducibility and Rigor 

The current study has taken a number of steps to ensure 
reproducibility and rigor: (1) employing reliable and valid measures that 
have been used in prior studies of motor disturbance [75,76,91]; (2) 
ensuring sufficient power to test study aims; (3) creating a detailed 
statistical plan; (4) utilizing a representative, community sample that will 
likely have adequate variability in our measures; (5) detailing a plan for 
appropriate handling of missing data (see Data Analytic Plan and 
Hypothesized Results below); (6) facilitating reproducibility of results by 
other research groups, as all de-identified data will be placed in NIMH’s 
RDoC database (see Resource Sharing Plan); and (7) employing imaging 
methodologies (fcMRI, DTI) that have a high degree of within subject test-
retest reliability and are highly replicable across scanners and labs 
[81,82,92].  

Data Analytic Plan and Hypothesized Results 

Data collection began in the fall of 2019. The following data analytic 
plan outlines how we will conduct our analyses to test the study’s aims. 
Analyses for outliers, non-normal distributions, and nonlinear relations 
will be conducted; data transformations will be considered where 
appropriate. Missing data will be accommodated using robust maximum 
likelihood estimation procedures or multiple imputation, as 
recommended by modern missing data guidelines [93]. Preliminary 
analyses will examine whether any of the following covariates should be 
included: years of education, ethnicity/race, medication status (including 
specific classes; see Research Design and Methods above), and whether the 
subject had a smartphone vs was loaned one for the study. We will also 
explore age and variables related to prior course (age of onset, number of 
episodes, etc.) as potential moderators given their potential effects on 
motor behavior. Conclusions for all aims will primarily be determined 
based on effect sizes with 95% confidence intervals, rather than statistical 
significance, in order to maximize reproducibility of our findings. 

Sex differences. As there are important sex differences in the presentation 
and risk factors for MDD (see Sex Differences in Motor Disturbance), we 
will also test for sex differences by including sex as a moderator in the 
below statistical models.  

Aim 1—Compare three groups on laboratory and ecologically valid 
measures of PmR and PmA. To test this aim, we will conduct separate 
MANCOVAS for each indicator of PmR and PmA with group (current MDD, 
remitted MDD, and controls) as a between groups factor and covariates 
identified in our preliminary analyses. These will be followed-up with 
simple effects to test Hyp. 1a and 1b regarding which groups differ from 
each other. Consistent with the RDoC initiative, we will examine multiple 
indicators of PmR and PmA:  
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• PmR: Velocity Scaling ratio (lab behavior), lower actigraphic activity and 
slower typing speed on smartphone (outside of lab behavior), IDS (self-
report (item 23)), and CORE/MARS (interviewer-report).  

• PmA: Force Variability (lab behavior), variability in actigraphic activity 
and typing speed (outside of lab behavior), IDS (self-report (item 24)), 
and CORE/MARS (interviewer-report). 

Exploratory analyses. As an exploratory aim, to reduce the number of 
PmR/PmA indicators, we will also conduct a confirmatory factor analysis 
to create PmR and PmA latent variables (see ref. [94] for a similar RDoC 
approach). These latent factors might not account for a large portion of the 
indicators’ shared variance due to the high method variance (behavior, 
self-report, etc.). However, the latent factors will reflect the core of PmR 
and PmA. Factor scores for PmR and PmA will then be used as dependent 
variables in the above ANCOVAs. 

Aim 1 power. We used G × Power Software [95] to compute the power 
estimates from an ANCOVA test with 3 groups and 3 covariates. Using 
established [96,97] guidelines and methods to calculate the required 
sample sizes, the targeted sample of 250 (which takes into account 15% 
attrition) will have greater than 80% power to detect medium effect sizes 
(f = 0.25) at α = 0.05. Thus, the analyses for aim 1 are adequately powered. 

Aim 2. Examine the neural mechanisms (structural (white matter) 
and functional (resting state fMRI) connectivity) of PmR/PmA in MDD. 
As discussed in Possible Neural Mechanisms of PmA and PmR above, given 
the lack of foundational studies in this area to draw from, we have elected 
an innovative, but still primarily conservative, test of the neural 
mechanisms underlying motor disturbance in MDD (i.e., examining the 
structural and functional connectivity of the 3 primary brain circuits that 
have been shown in human and animal studies to regulate motor 
behaviors [13]). With this broad approach and accompanying strategy for 
understanding network coherence within and across the circuits, as well 
as the large sample size and optimized statistical strategy, our study is 
well-powered to detect small to medium effects that will help us to isolate 
which brain mechanisms are implicated in motor symptoms in 
depression. Our hope is that our findings will provide a sound foundation 
for future studies to build upon. 

• Hyp 2a: The motor system circuitry of the three groups will exhibit 
different structural and functional connectivity (specifically, in a 
cortico-cortical motor network and basal ganglia mediated motor 
circuitry). 

• Hyp 2b: Lab and ecologically valid measures of PmR/PmA will correlate 
with neural circuitry abnormalities. 

We will focus our analysis on a model of the motor network made up 
of the three circuits discussed [13]. In addition, for the resting fMRI data, 
we will investigate graph theory measures of these three motor circuits as 
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these metrics are predicted to relate differently with PmR and PmA. We 
will compare the organization and graph metrics between the groups. To 
test Hyp. 2a with respect to functional connectivity, we will use group × 
graph metric (3 × 3) mixed model ANOVAs for the network measures in 
question. This analysis will allow us to test the hypothesis that network 
dynamics are differentially impacted across motor circuits in those with 
MDD, relative to individuals with remitted MDD and healthy controls.  

To test Hyp. 2a as it relates to structural connectivity of motor circuits, 
we will conduct a mixed model group (current MDD vs remitted MDD vs 
controls) by motor tract (3 × 6) ANOVA for each white matter measure (FA, 
RD, AD). The motor tracts are the cerebello-thalamic connection, the 
thalamo-M1 white matter tract, cortico-striatal white matter connections 
between the putamen and M1 and SMA/pre-SMA, respectively, and 
caudate to pre-motor cortex, and finally, cortico-cortical white matter 
connecting DLPFC and SMA. These analyses will be Bonferroni corrected, 
given the multiple comparisons across white matter measures.  

Hyp. 2b will be tested with multiple regression models using measures 
of network coherence, and with white matter metrics as dependent 
variables and the indicators of PmR/PmA as independent variables (and 
relevant covariates as described above). We will also explore whether 
group (current vs remitted vs control (dummy coded)) moderates the 
association between PmR/PmA and the neural measures. We hypothesize 
(albeit tentatively) that PmR will be associated with reduced structural 
connectivity and less global efficiency of resting state parameters (from 
graph theory metrics) of cortico-cortical circuits. PmA is expected to relate 
to increased functional and structural connectivity in the cortico-basal 
ganglia loop. Given the novel nature of this aim, we will also explore other 
PmA/PmR and motor circuit associations as well as interactions of the 3 
circuits.  

Exploratory analyses will examine whether the network connectivity 
measures longitudinally predict the course of depressive symptoms and 
motor disturbance. These analyses have the potential to elucidate the 
predictive utility of motor neurocircuitry on disease trajectories over time. 

Aim 2 power. The primary analyses for Aim 2 rely upon ANCOVA with 
three groups and three covariates. Thus, the power considerations for Aim 
2 are comparable to that of Aim 1. Notably, however, we are employing 
multimodal neuroimaging measures, in which issues related to statistical 
power are notoriously complex [98]. The large sample size employed here 
is substantially larger than what is often used in this type of research. 
Further, our analysis plan avoids many of the challenges and pitfalls 
associated with more traditional resting state connectivity, or whole brain 
diffusion tensor imaging analyses. Traditional seed-based analyses of 
resting state data, or whole-brain diffusion tensor imaging analyses, are 
subject to concerns regarding multiple comparisons as modelling is 
conducted across every voxel in the brain, which also presents unique 
challenges with respect to statistical power. With our a priori data-driven 
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approach using graph theory, we are better powered to detect group 
differences in these network parameters, and we are less susceptible to 
the issues of false positives that can occur, even with statistical corrections 
in whole brain analyses.  

Aim 3—Re-assess PmR and PmA and depression/functioning three 
times over 18-month follow-up period. The analyses for this aim will use 
multilevel modeling (MLM) as the repeated observations (e.g., follow-up at 
6 months, 12 months, etc.) will be “nested” within participants. This 
approach is superior to repeated measures ANOVAs as it (a) allows 
participants to have missing observations (as it uses maximum likelihood 
procedures to estimate parameters), (b) has less stringent overall 
assumptions, and (c) accounts for individual differences in baseline 
responses (random intercept) and changes over time (slopes) [99,100]. 

Equation 1 presents an example of the multi-level model to test Hyp. 3A 
that baseline measures of PmR and PmA will predict a worse 
depression/functioning course over time. We will consider the model for a 
continuous outcome of depression denoted as Hamiltoni,t, recorded at time 
point t on subject i. Similar models will use functioning as the outcome. 
The multi-level model is given as follows:  

Hamiltoni,t = 𝛽𝛽0 + TIMEi,t × 𝛽𝛽1 + (PmR/PmA)i,1 ×  𝛽𝛽2 + (TIME)i,t × 
(PmR/PmA)i,1 ×  𝛽𝛽3 + εi,t 

(1) 

where 𝛽𝛽0, 𝛽𝛽1, 𝛽𝛽2 and 𝛽𝛽3 are the fixed effects, and εi,t is the residual error, 
which will be assumed to have a covariance matrix that models the 
autocorrelation among repeated observations.  

Hypothesis testing will test for significant interactions between (TIME) 
and baseline (PmR/PmA)i,1. Specifically, a significant positive (negative) 
regression coefficient for the vector β3 indicates that baseline measures of 
PmR and PmA predict a worse depression/functioning course over time. 
We will also explore whether group moderates these associations (i.e., 
whether the effect of PmR/PmA on the course of MDD is different for each 
of the 3 groups) by adding a group-level random effect (dummy coded) to 
the model in Equation 1, along with the interaction of group × PmR/PmA. 
Analyses will be conducted in R (lme4 package). 

To test Hyp. 3b that over time, changes in overall depressive symptoms 
will relate to changes in PmR and PmA, a multilevel model will be 
conducted with the following equation. 

Hamiltoni,t = 𝛽𝛽0 + TIMEi,t × 𝛽𝛽1 + (TIME)i,t × (PmR/PmA)i,t−1 ×  𝛽𝛽2 + εi,t  

The significance of 𝛽𝛽2 will be used to test whether previous PmR or PmA 
scores (i.e., time = 1) predict the subsequent Hamilton score (after 
adjusting for previous Hamilton score). The opposite directional model 
(i.e., depression → subsequent motor disturbance) will also be run to test 
the specificity of the motor → depression pathway. As with the Hyp. 3a 
models, we will also explore whether group moderates these associations. 
Comparable models will be run with functioning. 
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Models for Hyp. 3a and 3b will also be run using (a) Hamilton scores 
calculated without the Hamilton’s PmR and PmA items (item #8 & 9), to 
rule out criterion contamination (i.e., where the criterion variable 
contains the predictor variable), and (b) Psychiatric Status Ratings from 
the depression module from the LIFE.  

Aim 3 power. Power analysis and sample size calculations for linear 
mixed effects models are challenging because assumptions have to be 
made about many key model parameters. Note, however, that linear 
mixed effects model can handle missing values, and thus generally 
produce larger statistical power than a repeated measures ANOVA 
analysis with the same sample size. Therefore, we used G*Power Software 
to compute conservative power estimates from a repeated measure 
within-between interaction ANOVA. To ease the computation for power 
analysis, we followed [101] to approximate the distribution of the 
continuous variables PmA and PmR using discretization with 20 equal-size 
bins for power analysis. Using an alpha of 0.05, and assuming an intraclass 
correlation of 0.5 between the repeated measures from the same 
participant, the sample size of 180 that will participate in the follow-up 
will have more than 80% power to detect medium effects (f = 0.25; note: as 
stated above, this N factors in the planned attrition from the larger sample 
of 250).  

Incremental validity of behavioral measures 

For each aim, we will also examine the incremental validity of the 
behavioral measures (e.g., Velocity Scaling, Actigraphy) over and above 
traditional diagnostic measures of psychomotor disturbance (e.g., CORE, 
self-report) by including both types of indicators of PmR (or PmA) in the 
same model. These analyses are designed to test whether the more fine-
grained behavioral measures of PmR/PmA contribute additional 
predictive power over the coarser diagnostic measures. 

Exploratory analysis: Depression as a dimension 

As several studies suggest that MDD might be better conceptualized 
dimensionally rather than categorically [102,103], in the three aims, we 
will also explore the impact of depression when it is defined as a 
dimension instead of a category. These analyses will use an average of 
Hamilton and IDS depression severity (i.e., an interviewer- and self-report 
depression measure), instead of group (current vs remitted MDD vs 
control), in the above models. As these analyses employ fewer degrees of 
freedom than the three group variable, they will have more statistical 
power to detect effects. 
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Potential Issues, Alternative Approaches, and Future Directions 

It is important to note that, while our study focuses on abnormal motor 
behaviors, our neuroimaging methods are sensitive to motion. However, 
in our prior studies [48,82], as well as other studies of depression [104] and 
disorders associated with movement dysfunction (e.g., Huntington’s 
disease [105]), investigators have effectively employed tactics to limit 
motion in the scanner and control for motion effects analytically. To 
address this issue, however, we are attempting to limit motion during the 
scan session (e.g., foam cushioning to fix head in place) and employ state-
of-the-art methods to account for the motion artifacts in our analyses.  

When completed, the current study will map out motor dysfunction in 
MDD for the first time using state-of-the-art methods. Our “RDoC 
approach” of employing multiple indicators of PmR and PmA will allow 
for an in-depth investigation of these behaviors, and the use of 
smartphone technology, in particular, will help bridge our results to future 
real-world translational applications. Further, because the motor circuits 
are well understood, but have not been extensively studied in MDD, our 
multimodal imaging approach to determining pathophysiology will serve 
as the basis for a novel theory of motor dysfunction in depression. Even if 
our imaging hypotheses are not supported, we could explore other 
important questions (e.g., whether the course of depression is linked to 
specific neural seeds at baseline). Similarly, if remitted MDD subjects do 
not differ from controls (i.e., Hypothesis 1b is false), then motor 
disturbance could be a state, rather than trait, marker of MDD. In this case, 
we could still test the state effects of motor disturbance in hypothesis 3a 
(whether PmR/PmA predict a poorer course over 1.5 years) and 3b 
(changes in depression relate to changes in motor disturbance).  

In short, because motor disturbance is a central feature of MDD and so 
little work has been done in this domain, this is a low risk, high reward 
project. To maximize the potential for success, we put together an expert 
team of investigators, a comprehensive approach to studying phenotype 
and mechanism, and a well-powered conservative analytic strategy. The 
resulting project, therefore, has significant potential to identify novel 
treatment targets, and test promising biomarkers that will ultimately 
improve detection, monitoring, and treatment of a devastating and 
prevalent psychiatric disorder. 
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