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ABSTRACT 

Psychosis has been associated with neural anomalies across a number of 
brain regions and cortical networks. Nevertheless, the exact 
pathophysiology of the disorder remains unclear. Aberrant visual 
perceptions such as hallucinations are evident in psychosis, while the 
occurrence of visual distortions is elevated in individuals with genetic 
liability for psychosis. The overall goals of this project are to: (1) use 
psychophysical tasks and neuroimaging to characterize deficits in visual 
perception; (2) acquire a mechanistic understanding of these deficits 
through development and validation of a computational model; and (3) 
determine if said mechanisms mark genetic liability for psychosis. Visual 
tasks tapping both low- and high-level visual processing are being 
completed as individuals with psychotic disorders (IPD), first-degree 
biological siblings of IPDs (SibIPDs) and healthy controls (HCs) undergo 
248-channel magneto-encephalography (MEG) recordings followed by 7 
Tesla functional magnetic resonance imaging (MRI). By deriving cortical 
source signals from MEG and MRI data, we will characterize the timing, 
location and coordination of neural processes. We hypothesize that IPDs 
prone to visual hallucinations will exhibit deviant functions within early 
visual cortex, and that aberrant contextual influences on visual perception 
will involve higher-level visual cortical regions and be associated with 
visual hallucinations. SibIPDs who experience visual distortions—but not 
hallucinations—are hypothesized to exhibit deficits in higher-order visual 
processing reflected in abnormal inter-regional neural synchronization. 
We hope the results lead to the development of targeted interventions for 
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psychotic disorders, as well as identify useful biomarkers for aberrant 
neural functions that give rise to psychosis. 

KEYWORDS: psychosis; fMRI; visual perception; MEG; cortical source 
signaling; endophenotype 

SIGNIFICANCE 

At present, abnormal neural functions that give rise to psychotic 
experiences remain poorly understood. As a result, present 
pharmacological and behavioral interventions remain unguided by 
etiologic mechanisms [1,2]. A promising avenue of research for revealing 
the neural origins of psychosis lies in examining visual perceptual 
anomalies in individuals with psychotic disorders. Visual hallucinations 
are common in individuals with psychosis [3], while visual distortions and 
altered illusions are evident in those with genetic liability for psychosis 
(i.e., first-degree biological relatives; [4]). Generally, the incidence of visual 
hallucinations is estimated to be between 25–30 percent [3]. A recent 
report nonetheless found that more than 50% of patients with 
schizophrenia in a US sample experienced visual hallucinations [5]. 
Critically, these findings generalize across countries: a recent systematic 
review found that visual hallucinations were experienced by 39.1% of a 
sample of 1080 patients with schizophrenia across seven countries in 
Europe, Asia and Africa [6]. In addition, visual hallucinations are 
associated with more severe psychotic symptoms, and poorer patient 
prognoses [3,7,8].  

Less severe aberrations are often described as visual distortions. Visual 
distortions are more common than visual hallucinations [9]; their 
incidence is estimated to be at least double that of hallucinations [10]. 
Although visual processing deficits have been well documented in patients 
with schizophrenia [11–14], they are also seen across the psychosis 
spectrum—they have been documented in individuals at Ultra High Risk 
for conversion to a psychotic disorder [15,16] and in individuals with 
schizotypal personality disorder [17–19]. Moreover, it appears that 
relatives of patients with a psychotic disorder likewise display deficits in 
visual processing [20–22]. Thus, the study of aberrant visual perception 
spans diagnostic and genetic aspects of the psychosis spectrum.  

The purpose of the proposed work is to combine measures of scene 
segmentation and surround suppression behaviors as a measure of 
perceptual organization in schizophrenia. Surround suppression tasks are 
thought to (1) involve gain control mechanisms in early visual cortex [23]; 
and (2) rely on inhibitory GABAergic neurotransmission [24]. The process 
of scene segmentation (alternatively conceptualized as perceptual 
grouping) involves parsing of visual scenes into coherent patterns (i.e., 
texture boundaries) and objects (i.e., surface segregation; [25]). It appears 
that processes involved in the detections of texture boundaries involve 
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feedforward signals from V1 to higher visual areas in parietal and 
temporal cortices, while surface segregation relies on feedback 
connections originating in temporal areas and extending to V1 [26]. 
Patients with psychotic disorders consistently demonstrate deficits in 
early visual processing [27–29]. Examining the upstream and downstream 
connections from early visual cortex could elucidate the neural 
mechanisms underlying a robust finding in the study of psychotic 
disorders. 

It has been suggested that early visual processing is partially dependent 
on local gain control mechanisms [30,31], coupled with long-range inputs 
from higher areas along the visual pathway [32]. Therefore, “higher-
order” visual areas provide feedback inputs to local gain control 
mechanisms [33]. It appears that both local and long-range influences—
coupled with feedforward and feedback interactions between levels of 
visual processing—determine the accuracy of visual percepts [34]. Divisive 
normalization has been proposed as a cortical computation to explain a 
neuron’s response as determined by a driving afferent input and divisive 
input from a group of neurons in the same network [35]. Divisive gain 
control—a subset of divisive normalization—has been successfully 
applied to model neuronal properties in early visual cortex [36] encoding 
reward value in decision-making circuits [37], as well as multisensory 
integration [38].  

Schwartz and colleagues [39] found that by revising a Gaussian Scale 
Mixture model (GSM) to account for the probability that a center and 
surround are part of the same visual object, one can closely approximate 
behavioral data from the tilt illusion. Given that GSM models are well-suited 
to modeling statistics in natural images [40], they may also serve to explain 
reduced suppressive effects induced by psychophysical laboratory 
paradigms in patients with schizophrenia [13]. By extending the model 
developed by Schwartz and colleagues [39] to generalize across multiple 
scene segmentation cues [41], one can compare the model parameters 
reflecting local and long-range inhibition to alterations in visual perception 
(see Figure 1). 

Herein, we propose to examine the neural mechanisms underlying 
visual hallucinations and distortions in individuals with a psychotic 
disorder (IPDs) and first-degree biological siblings of individuals with a 
psychotic disorder (SibIPDs) and healthy controls (HC). The cortical 
networks underlying vision constitute some of the best-understood 
mechanisms within cognitive neuroscience—nearly a third of human 
cortex is devoted to visual processing [42]. Present theories suggest that 
early abnormalities in visual perception trigger a neural cascade leading 
to downstream alterations in visual experience in psychosis. Yet, the 
nature of how basic and complex visual functions give rise to aberrant 
visual perception in psychosis remains unclear. The primary goals of the 
proposed work are to use psychophysical tasks and neuroimaging 
techniques to (1) precisely characterize behavioral and neural abnormalities 
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in individuals with psychotic disorders during visual perception; (2) acquire 
a mechanistic understanding of these abnormalities through development 
and validation of a computational model; and (3) determine if said 
mechanisms mark genetic liability for psychosis (i.e., constitute a 
biomarker).  

 

Figure 1. Expanded model originally proposed by Schwartz and colleagues and adapted in our previous 
work [41] to describe the influence of scene segmentation cues on the tilt illusion in HCs. The proposed 
model accounts for perceived contrast in a range of laboratory and naturalistic stimuli, as well as the 
interaction of perceived contrast with higher-level scene segmentation cues such as directed spatial 
attention and object recognition. This model lets us characterize visual perceptual abnormalities in terms 
of specific alterations to local inhibitory responses and local and long-range excitatory response. 

SPECIFIC AIMS AND HYPOTHESES 

By studying individuals that vary along the psychosis spectrum (e.g., 
schizophrenia, bipolar disorder with psychotic features, schizoaffective 
disorder), as well as individuals with intermediate clinical phenotypes 
(i.e., SibIPDs), we can determine how dimensional variation along the 
psychosis spectrum differentially influences the manifestation of visual 
hallucinations and visual distortions/illusions. The proposed work has the 
following specific aims: 

Aim 1: Assess the impact of scene segmentation cues on early visual 
processes in IPDs, their unaffected biological siblings (SibIPDs), and 
healthy controls (HCs), and determine how lab-based task 
performance predicts self-reported visual misperceptions. H1: 
Individuals prone to visual hallucinations have reduced gain control in 
neural circuits of early visual cortex (V1, V2), which will be reflected by 
improved accuracy on a surround suppression task (i.e., reduced 
suppression); H2: Reduced intracortical connectivity within visual cortex 
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(e.g., connectivity between V1 and V2), will be reflected in aberrant 
detection of co-linearity between visual elements and poor suppression of 
irrelevant elements of a visual scene; H3: Reduced activity in more 
anterior visual brain regions (LOC/fusiform, frontal cortex) and early 
visual cortex, will be characterized by deviant object identification due to 
weak use of high-level object templates to identify relevant targets in 
ambiguous scenes. 

Aim 2: Determine whether variation in self-reported visual 
hallucinations and illusions is associated with the location, timing and 
synchronization of neural responses in IPDs, SibIPDs, and HCs during 
perceptual tasks. H4: IPDs prone to visual hallucinations will exhibit 
stable neural abnormalities in early visual cortex (V1, V2), and will be 
associated with errors in processing visual elements in simple scenes; H5: 
Visual hallucinations result in IPDs when long-range influences from 
“higher-order” brain regions (LOC/fusiform, prefrontal cortex) visual 
percepts are deviant, and will be reflected by anomalous inter-regional 
synchronization within theta/gamma frequencies; H6: SibIPDs prone to 
anomalous visual distortions will share this stable decrement in long-
range influences on visual perception reflected in anomalous inter-
regional synchronization in theta/gamma frequencies. 

Aim 3: Test whether a “flexible normalization” model can capture 
abnormal gain control in early visual responses and abnormal 
coordination between early visual areas with scene-based or goal-
directed signals from other brain regions. H7: Reduced surround 
suppression in IPDs (i.e., failure of local contextual modulation) can be 
characterized as a reduction in local gain control strength; there will be no 
contribution of intra- regional coordination; H8) Deficits in attention 
regulation and perception of complex scenes in IPDs and SibIPDs cannot 
be explained merely by reduced gain control and require an additional 
term describing reduced efficacy of long- range (intra-regional) 
projections. 

INNOVATION 

The proposed work has several notable innovations. First, the 
assessment of early visual processing through behavioral task 
performance and attentional manipulations in the same individuals 
within a single study will elucidate the proportional influences of local and 
long-range mechanisms on self-reported visual hallucinations and 
distortions. Second, most visual psychophysical tasks employ an adaptive 
staircase procedure in order to individualize difficulty level to equate 
performance across subjects; doing so eliminates the generalized deficit 
confound that would be expected in IPDs (and to some extent SibIPDs), 
thereby equating true score variance across tasks. Third, combined use of 
248- channel MEG and 7T fMRI to derive cortical source signals for 
retinotopically mapped areas of striate cortex will optimize both spatial 
and temporal resolution allowing for dynamic comparisons of neural 
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responses across levels of visual processing. Fourth, quantitative modeling 
will parameterize the determinants of subjects’ visual percepts during 
specialized psychophysical tasks and allow integration of experimental 
findings across tasks, groups, and modalities. Fifth, MEG-derived cortical 
source signals will allow investigation of the interdependence between 
theta and gamma frequencies in occipital and other cortices during visual 
processing. Sixth, use of the Reduced Interference Distribution (RID) time 
frequency (TF) transform will yield a precise characterization of the 
timing of select frequency band activity [43,44]; this method avoids energy 
loss and trade-off between time and frequency resolution that occurs with 
traditional wavelet analysis [45]. Seventh, the inclusion of IPDs beyond 
traditional diagnostic boundaries of schizophrenia, as well as SibIPDs—
some of whom experience visual distortions—will clarify whether 
mechanisms of errant visual perception map onto dimensional clinical 
phenotypes of psychosis. Because SibIPDs do not have clinically significant 
psychotic symptomatology, their inclusion will allow some appraisal of the 
effect of treatment confounds on aberrant visual perception in psychosis. 
Eighth, the inclusion of 4- and 8-month follow-up appointments with IPDs 
will allow an examination of the associations between changes in 
psychotic symptomatology, and aberrant visual perception.  

APPROACH 

Overall Structure 

This is an R01 currently in its third year. Dr. Scott Sponheim is the 
Principal Investigator. There are two sites: the Minneapolis VA Health Care 
System and the University of Minnesota’s Center for Magnetic Resonance 
Research (CMRR). Participants are recruited through the Minneapolis VA, 
and community-based providers in the Twin Cities area. Subjects complete 
psychophysical tasks, and undergo behavioral, clinical and cognitive 
assessment at the Minneapolis VA. Subjects undergo magneto-
encephalography (MEG) scans while completing psychophysical tasks 
within the Brain Sciences Center at the VA. Participants undergo 7T MRI 
scanning at the CMRR, in addition to completing additional psychophysical 
tasks. In order to assess the role of altered visual perception in psychotic 
symptomatology, IPDs will have 4- and 8-month follow-up appointments 
for both MEG and MRI. Dr. Cheryl Olman oversees both 7T fMRI analyses, 
including retinotopic mapping of visual cortex and functional localization 
of other visual regions (e.g., LOC, ITC etc.), as well as the implementation 
of psychophysical tasks and neural network models. Dr. Seung Suk-Kang 
oversees both MEG analyses, and the derivation of cortical source signals 
using T1-weighted structural scans. Dr. Nathaniel Helwig will oversee 
statistical analyses, and provide consultation on quantitative methods 
related to MRI and MEG analyses.  
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Study Design 

Total study enrollment will include 150 subjects total: 50 IPDs who are 
receiving outpatient or community-based mental health services, 50 
SibIPDs, and 50 HCs. All participants will complete a clinical assessment 
protocol that will document current and lifetime symptomatology as well 
as perceptual illusions. For Aim 1, IPDs, SibIPDs, and HCs will complete 
visual perceptual tasks described below in addition to a brief standard 
cognitive battery to document overall intelligence and domains affected 
by psychotic disorders. For Aim 2 participants will complete separate 
sessions for MEG and MRI acquisitions. The 9 to 12 hour protocol will be 
conducted over a 2 to 3 day period, depending on participant factors. 
Clinical and conventional visual perceptual procedures will be interleaved 
as necessary in order to prevent ocular fatigue and to ensure the best data 
quality and motivation possible in participants, particularly IPDs. To 
assess within subject changes in visual distortions IPDs will additionally 
complete symptom ratings, MEG, and fMRI at 4- and 8-months after their 
baseline set of procedures. 

Interviews and Questionnaires 

In order to assess symptom domains in IPDs, SibIPDs, and HCs, a 
trained and supervised research staff, a clinical psychology doctoral 
student, or a doctoral-level psychologist, completes the Structured Clinical 
Interview for DSM-IV (SCID-I; [46]) for each subject. To ensure 
comprehensive coverage of psychotic symptomatology (including 
insidious as opposed to rapid onset of psychosis) and to allow more 
comprehensive examination of dimensional clinical phenotypes, the 
Psychosis Module of the Diagnostic Interview for Genetic Studies (DIGS: 
Module K; [47]) is administered in place of the SCID Psychosis module. A 
trained research assistant conducts a medical chart review when records 
are available to obtain collateral information about the subject’s current 
level of functioning, and past and present symptomatology (which will be 
largely absent for SibIPDs and HCs). These records will also be used during 
a clinical consensus to finalize diagnoses.  

Based on the SCID, chart information, study staff complete initial 
ratings of symptomatology using the Scale for the Assessment of Negative 
Symptoms (SANS: [48]) and the Scale for the Assessment of Positive 
Symptoms (SAPS; [49]), with additional queries built into the interviews to 
obtain the necessary information to complete all rating instruments. 
Global scores for negative (i.e., alogia, affective flattening, avolition-
apathy, anhedonia-asociality, and attention) and positive (i.e., delusions, 
hallucinations, and positive formal thought disorder) symptom domains 
are then computed. Interviewers also make clinical ratings using the Brief 
Psychiatric Rating Scale 24-item version (BPRS; [50]) to quantify mood and 
other behavioral characteristics of clinical state.  
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Because the proposed work focuses on hallucinatory phenomena and 
includes individuals with intermediate levels of symptomatology (i.e., 
SibIPDs) we will also rely on dimensional measures that span from health 
to disorder (i.e., schizophrenia and other psychotic disorders). While 
current measures of psychotic symptomatology are derived from 
clinician-ratings (SAPS, SANS, BPRS), lifetime symptomatology is 
characterized with the Operational Criteria Checklist (OPCRIT; [51]) 
informed by interview and clinical records (again, largely absent for 
SibIPDs and HCs). For targeted assessment of hallucinatory phenomena, 
subjects complete the Structured Interview for Assessing Perceptual 
Anomalies (SIAPA; [9]) and questionnaires tapping visual illusions and 
distortions (i.e., the Schizotypal Personality Questionnaire (SPQ; [52]; and 
Personality Inventory for DSM 5 (PID-5; [53]) and sensory gating (SGI; [54]). 
Severity of visual hallucinations will be assessed via the BPRS, while the 
duration and temporal etiology of visual hallucinations will be assessed 
via the Psychosis module of the DIGS (i.e., K-DIGS). Other clinical measures 
including the SAPS, will allow us to distinguish the severity of visual 
hallucinations from other forms of hallucinations. Critically, the SIAPA, 
SGI. BPRS and SAPS/SANS are all assessed at each follow-up appointment 
for IPDs as well, allowing us to determine how shifting severity of aberrant 
visual phenomena is associated with changes in behavioral and neural 
findings during psychophysical tasks. Patient functioning is assessed using 
the Social Functioning Scale (SFS; [55]) and with the Global Assessment 
Scale (GAS; [56]). 

Although the primary focus of the work is the dimensional assessment 
of psychotic symptomatology, diagnoses will secondarily be assigned 
according to DSM criteria through a consensus process involving at least 
two trained advanced degree clinical psychology students, or doctoral 
level psychologists, and include the review of a subject’s interview, 
symptom ratings, chart review, and informant information whenever 
possible. The diagnostic method will approximate the best-estimate 
approach as articulated by Leckman et al. [57]. Dr. Sponheim acts as the 
supervisor for all clinical assessments, and will oversee consensus ratings.  

Cognitive Assessments 

We will include a small set of measures to assess general cognitive 
functioning and test for select deficits in IPDs and SibIPDs. Intellectual 
ability will be estimated from the Wide Range Achievement Test III [58], 
and performance on Matrix Reasoning and Similarities subtests of the 
Wechsler Adult Intelligence Scale-IV [59]. Additional cognitive tests will 
assess working memory (WAIS-IV Digit Span Forward and Backwards), 
episodic memory (California Verbal Learning Test-II [CVLT-II]; [60]), 
attention and set shifting (Trails A & B), processing speed (Digit Symbol), 
phonemic fluency (Controlled Oral Word Association Test (COWAT; [61]), 
and context processing (Dot Pattern Expectancy Task [DPX]; [62]). 
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Aim 1 

Psychophysical tasks 

Location Masking Task: The task has been described previously [22,63]. 
Briefly, participants first complete a procedure to determine the critical 
stimulus intensity (CSI) for the masking task to equate participants on the 
target threshold. After establishing a participant’s CSI, staff administer a 
target location task with a high-energy visual mask. A trial consists of a 300 
ms fixation cross, 100 ms blank screen, 13 ms target, a variable post target 
period, and then a 26 ms mask. The participant identifies which quadrant 
the target appears in: the upper left, upper right, lower left, or lower right 
of fixation. The time between the onset of the target and the onset of the 
mask (SOA) varies between 0, 13, 27, 40, 53, 67, and 80 ms, with 12 trials 
per condition. Previous work has demonstrated that reduced accuracy on 
backwards location masking is reduced in patients with schizophrenia 
[64], differentiates schizophrenia from bipolar disorder [65], and that 
fragility in early visual percepts (i.e., reduced accuracy on SOAs 13 and 27) 
marks genetic liability specific to schizophrenia [22]. 

Degraded Stimulus Continuous Performance Test (DS-CPT): For a 
detailed description of the task, please see Nuechterlein & Asarnow [66]. 
The task consists of a CPT with both task stimuli and background visually 
degraded: 40% of white numeral pixels are switched to black, and 40% of 
black background pixels switched to white. Sensory control trials are 
administered consisting of “just look” (participants instructed to look 
passively at the screen) and “press every” (participants instructed to 
respond to each stimulus) at 80 trials each. Following a practice block, 
subjects then receive DS-CPT instructions and complete three 
experimental blocks wherein 25% of stimuli are targets (“0”) while the 
remainder are nontargets (numerals “1” to “9”). Previous work has 
demonstrated that reduced perceptual sensitivity to target stimuli 
differentiates schizophrenia from bipolar disorder [67], and that first-
degree relatives of patients with schizophrenia have a larger number of 
false alarms to stimuli that share contours with targets (numerals “6”, “8” 
and “9”), suggesting impaired contour detection in individuals with 
genetic liability for psychosis [68]. 

Broadband Surround Suppression: In order to characterize basic visual 
functions in IPDs, SibIPDs, and HCs, we measure contextual modulation of 
perceived contrast of naturalistic textures (Figure 2A). Participants are 
instructed to compare texture disks with and without annular surrounds 
(while fixating on a central target and viewing both in peripheral vision) 
and indicate which of the texture disks has the greatest contrast. Instead 
of using traditional luminance gratings (consisting solely of regular 
stripes), broadband images (photographs of textures) are used. This is 
because the excitation/inhibition balance that regulates gain control is 
different for narrow band (grating) versus broadband (naturalistic 
texture) images [69]. In normal vision, detection of both contours and 
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boundaries is improved in natural scenes because the texture similarity 
results in adaptive suppression [70]. By quantifying sensitivity to the 
relative orientation of center and surround, which changes the predictive 
power of the surround, we can test the hypothesis that predictive coding 
mechanisms that regulate local gain control are altered for IPDs and 
SibIPDs. An additional manipulation of attention during fMRI and MEG 
scans will allow us to discern the differential impact of focal and radial 
attention respectively [71,72].  

 

Figure 2. (A) Surround suppression in more naturalistic scenes will be studied with a 2AFC perceived 
contrast task at a single pedestal contrast (unsurrounded reference at 25% RMS contrast on one side of the 
screen, and target with 33% RMS contrast, matched or non-matched surround on the other side) for stimuli 
composed of line segments, natural scene segments, and synthetic textures (first and second-order statistics 
derived from natural scene segments, generated by Simoncelli’s “steerable pyramid” toolbox; [73]). This task 
will be used to quantify surround suppression in uniform and segmented textures. The same underlying 
model will be employed, but the more sparse neuronal responses will probe a wider range of neural network 
states for representations of the central stimulus, as well as constrain terms representing long-range 
projections signaling grouping probability or scene segmentation cues. (B). An object recognition task using 
line-segment textures to depict either meaningful or meaningless objects will let us test the effect of object 
recognition on contrast discrimination, fMRI and MEG responses in early visual cortex, and the interaction 
between neurophysiological signals in early visual cortex and prefrontal cortex. 

Fragmented Ambiguous Object Task (FAOT): The development of the 
FAOT is detailed in Olman et al. [74]. The task stimuli equate low-level 
features such as orientation and contrast, while simultaneously 
manipulating intermediate- and higher-level features (i.e., contour 
organization and contour shape; Figure 2B). The task is better suited to 
tapping higher-level object recognition and corresponding neural 
correlates than the DS-CPT; previous studies have demonstrated that 
visual areas such as inferior temporal cortex (ITC; [75]), and medial frontal 
gyrus (MFG; [76]) are implicated in object recognition. One-third of FAOT 
stimuli are highly recognizable (designated “meaningful”), one-third are 
moderately recognizable (designated “ambiguous”), and one-third are 
minimally recognizable (designated “meaningless”). During the FAOT a 
participant determines whether they recognize the object (“yes”/“no”). 
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Catch trials of objects deemed to be highly recognizable are also included 
as an attentional control. The FAOT assesses participants’ abilities to 
distinguish meaningful shapes from noise, and permits examination of 
high-level long-range mechanisms required for integrating global scene 
information with local features such as orientation contrast. We expect 
that a failure of high-level long-range effects will be evident in behavioral 
data as increased reaction times for detecting objects, and that both IPDs 
and SibIPDs will have impaired object recognition and neural responses 
to stimuli relative to HC.  

Statistical analyses 

In addition to interpreting the results of long-range and local influences 
on alterations in visual perception by utilizing the proposed 
computational model (Aim 3), we will use data-driven nonparametric 
regression to examine relationships between self-reported visual 
hallucinations/ alterations and psychophysical task performance [77–79]. 
Nonparametric regression models the relationship between the predictor 
and response variables based on the data (e.g., they are not assumed to be 
linear or quadratic; [80]). The relation of self-reported experience of visual 
misperceptions to task performance can be formulated as: 

𝑦𝑦 =  (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐, 𝑐𝑐𝑏𝑏𝑏𝑏𝑠𝑠𝑐𝑐𝑐𝑐 𝑠𝑠𝑖𝑖𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑦𝑦)  +  𝑠𝑠 

where y is self-reported visual distortions (e.g., hallucinations), “contrast” 
represents the performance on BBSS, and both scene statistics (i.e., 
contour organization), and “object identity” (i.e., contour shape) are 
indicative of performance on FAOT. f() is the unknown function linking 
the perceptual task performance to the self-reported visual hallucinations 
and distortions—the function estimated from the data—and e is the model 
error term. Using these methods, we can determine how individual and 
group differences in self-reported visual misperceptions relate to 
differences in laboratory-based tasks without a priori assumptions about 
the nature of the relationship. We will complement these analyses with 
the Simultaneous Component Analysis (SCA) model, which will allow us to 
capture both intraindividual and interindividual differences across 
numerous observations (i.e., baseline, 4-month, and 8-month follow-up 
appointments; [81]).  

Aim 2 

Functional neuroimaging 

MEG Acquisition: MEG data is being collected at 1017 Hz using a 248-
sensor axial gradiometer MEG system (Magnes 3600WH, 4D-
Neuroimaging), located within an electromagnetically-shielded room in 
the Brain Sciences Center at the Minneapolis VA Medical Center. 
Environmental noise will be removed from the data by relating signals 
from separate reference channels to cortical channels. Eye movements are 
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at the same sampling rate using horizontal and vertical electrooculograms 
(HEOG, VEOG) for later artifact removal. Sensor configuration and head 
position are obtained using a spatial digitizer. The MEG is equipped with 
a calibrated projector and accompanying screen to present visual stimuli.  

MEG Processing: MEG data processing and analysis procedures will be 
conducted using custom Matlab scripts (The MathWorks, Inc. Natick, MA, 
USA). In order to remove slow artifacts related to slow-drift noise, high-
pass filtering with a cut-off of .1 Hz will be applied to the data. MEG signals 
will be segmented into trial periods defined in relation to task timing and 
trial parameters (e.g., stimulus onset). Independent component analysis 
(ICA) using the Fast ICA algorithm in a custom pipeline will be used to 
remove additional signal artifacts [82]. Noisy sensors and epochs with 
artifacts due to movement will be identified and removed with analyses of 
the low- (<8 Hz) and high-frequency (>30 Hz) signal powers and visual 
inspection. These epochs will be rejected before initiation of ICA 
decomposition procedures. 

In order to obtain an optimal ICA decomposition and prevent under-
fitting or over-fitting of the 248-sensor data, dimensionality will be 
estimated using the Bayesian information criterion (BIC; [83]). Principal 
component analysis (PCA) will be applied to reduce data to the estimated 
number of dimensions before applying ICA. Along with Independent 
components (ICs) reflecting artifacts such as vertical and horizontal eye-
movement and heart signals, other possible sources of noise in beta and 
gamma frequency oscillations will be considered, including 
microsaccades [84], and small muscle contractions of the neck and head. 
Myogenic and microsaccade artifacts will be identified based on 
characteristics of IC topography, spectral power, time-series, and the 
relationship with EOG sensor signals, which have been described in 
McMenamin et al. [85], and Keren et al [86]. Artifact ICs will be removed 
from MEG data prior to reconstituting the signals. 

Derivation of Cortical Source Signals: Procedures to compute cortical 
source signals are summarized in the left panel of Figure 3. Briefly, they 
consist of the following steps: (1) FreeSurfer is used to create 
individualized cortical surface models with T1-weighted structural MRI 
data; (2) Cortical surface models with more than 100,000 cortical vertices 
for each participant are down-sampled to generate an epi-cortical surface 
model for each participant with approximately 10,000 cortical vertices; (3) 
The boundary element method (BEM; [87]) model with 3 layers (scalp, 
outer skull, and inner skull), 1,200 elements, and 600 nodes is applied for 
the forward calculation of magnetic field; and 4) Coordinates of sensor 
locations and head surface data collected during the MEG session are 
registered to the cortical surface and BEM models generated from MRI. 
Registration in MEG is done using coordinate rotation by linear 
transformation and translation based on 5 landmarks: nasion, left/right 
pre-auricular points and VEOG and MEOG coils on the forehead. Pictures 
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are taken of each participants ears, so that that these registration points 
can be applied to structural data.  

 

Figure 3. Left. Computation of cortical source signals. 248 channel axial gradiometer MEG recordings 
during the Gabor contour task were localized to cortical ROIs. Right. Example of cortical source signals 
applied to a Collinear Gabor Task. Using a retinotopic mapping technique during fMRI, early visual cortical 
areas were mapped according to their functional and spatial layout. This allowed us to map regions of early 
visual cortex where the contour appeared in the visual field. These are shown on the inflated 3D brain for 
V1 and V3 (orange), and ILO (green). IPDs have reduced power in ILO, as well as right V1 and V3. 

To solve the inverse problem as part of computing source signals, the 
leadfield matrix relating sensor space (MEG) to cortical source space 
(fMRI) will be created using the BrainStorm program. The inverse operator 
W (center panel Figure 3) is derived from the leadfield matrix, 
source/noise covariance matrices, and regularization parameter 
determined by using a signal-to-noise ratio (SNR) estimate. The inverse 
operator allows direct conversion of 248 MEG sensor signals to the 10,000 
cortical vertex signals. To create cortical source time-series for active 
brain areas we will identify regions by employ functional localizers in 
retinotopically mapped regions of striate cortex [88], task contrasts in 
high-level visual regions, and significant PPI in frontal (potentially 
parietal) regions. Typically, 40 to 80 vertices are selected for each cortical 
ROI. In order to generate a principal signal of an ROI from the multiple 
vertex signals PCA will used to define the first dominant component be 
carried out for vertex signals belonging to each ROI, with the first PCA 
selected as the representative signal of the ROI. An example of cortical 
source signals applied to a contour detection task can be seen in the right 
panel of Figure 3. 

fMRI Acquisition: fMRI experiments will be performed using a 7 Tesla 
scanner at the CMRR. Briefly, a Nova Medical single channel (circularly 
polarized) transmit, 32-channel receive head coil is used to acquire 
functional data. Anatomical reference data will be acquired in a separate 
scanning session at 3 Tesla. The scanner is equipped with a calibrated 
projector for display of visual stimuli and MR-compatible button boxes for 
subject response collection. Eye-tracking equipment is available and are 
used to verify fixation stability. Functional data are acquired with 2 s 
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temporal resolution and 1.6 mm isotropic spatial resolution, using multi-
band and parallel imaging strategies to accelerate acquisition in the 
through-slice as well as phase-encode direction [89]. PE-reversed EPI scans 
are acquired to enable distortion compensation during post-processing. 

fMRI Processing: fMRI data processing will be performed using a 
combination of AFNI (preprocessing, GLM and functional/anatomical 
registration), and FreeSurfer (surface-based visualization and cortical 
segmentation). The majority of the analysis will focus on ROI-based 
analyses in predetermined ROIs in visual cortex (e.g., V1, V2), in order to 
mitigate the multiple comparisons problem. Posterior ROIs (in 
retinotopically mapped areas of visual cortex; top panel Figure 3) will be 
defined by utilizing functional localizers. Data in these regions will be 
extracted and averaged to estimate response amplitudes in each visual 
area. Additional regions in higher-level visual areas (e.g., ITC, MFG) will be 
defined using whole-brain analysis during BBSS (attended and unattended 
texture patches) and FAOT (meaningful vs. meaningless stimuli). Voxel-by-
voxel contrast maps for the entire brain will be calculated. Individual 
voxels correlated with the task at uncorrected p < 0.01 will be subjected to 
cluster-size thresholding in order to select regions related to the task with 
corrected p < 0.01. These regions of interest will be seeds for task-
dependent connectivity (psychophysiological interaction) analyses (PPI; 
[90]) to assess the role of downstream visual areas in temporal and frontal 
cortices.  

Computation of time-frequency (TF) energy and phase synchrony: 
Time-domain analysis reliably delineates neural responses that are 
consistently timed with a stimulus. To account for the possibility that 
individuals with psychosis show variability in evoked activity, we will 
characterize changes in frequency across time. We will use a RID 
algorithm to resolve time-frequency elements in EEG signals. Dr. Kang has 
expertise in generating RID waveforms.  

Statistical analyses 

Statistical tests of TF energy for MEG-derived cortical source signals of 
functionally localized ROIs will be carried out to describe neural activity 
associated with regulation of early visual processes that to the formation 
of visual percepts, and to test whether anomalous neural responses 
evident in IPDs and SibIPDs predict self-reported visual hallucinations and 
illusions. In order to ensure that we capture effects not predicted by the 
proposed computational model in Aim 3, we will use nonparametric 
mixed-effects (NPME; [91,92]) regression to examine functional 
relationships between self-reported experiences of visual misperceptions 
and abnormalities in the activity or interactions of visual cortex with other 
brain regions. NPME models are an extension of a linear mixed-effects 
regression (LMER; [93]) model. LMER models correlated data (e.g., 
repeated measures). Unlike LMER models, a NPME model does not require 
a priori assumptions about the nature of the relationship between the 
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response (e.g., self-reported visual misperceptions) and the predictors 
(responses and interactions of brain regions).  

Aim 3 

Computational model 

The model that will be used to interpret behavioral and neuroimaging 
data is adapted from one developed by Schwartz and colleagues, [39]. It 
has two main components that describe center/surround interaction in 
primary visual cortex: divisive normalization and segmentation. The 
former is implemented by local inhibitory (i.e., GABAergic) neurons [36] 
with regulation from excitatory neurons that are modulated by attention 
[94]. During both attention and object-recognition manipulations, the local 
GABAergic gain control is regulated by long-range influences that are 
nearly always mediated by Glutamatergic neurons [95,96]. Crucially, the 
strength of this regulation is sensitive to natural scene statistics; this 
‘flexible normalization [97] removes suppression at probable object 
boundaries, leading to efficient scene segmentation [98]. 

Neuronal responses in primary visual cortex are estimated as a mixture 
of two separate neuronal populations, one of which experiences surround 
suppression (Eg|c,s) and one that does not (Eg|c): 

𝐸𝐸𝑖𝑖 =  (1 − 𝑝𝑝)𝐸𝐸𝑔𝑔|𝑐𝑐 +  𝑝𝑝𝐸𝐸𝑔𝑔|𝑐𝑐,𝑠𝑠  

where Ei is the channel (orientation column) tuned to the ith orientation, 
and p is the probability that the classical receptive field and the 
extraclassical receptive field belong to the same object. Thus, the p term 
reflects learned scene statistics encoded by extrastriate neuronal 
populations [99] that regulate surround suppression in V1. Using this 
model to simultaneously fit data from multiple behavioral and 
neuroimaging tasks will allow an estimate of the strength and tuning of 
the p parameter as well as the gain control terms that determine Eg|c,s 
(early visual responses after surround suppression) and Eg|c (responses in 
the subset of neurons in early visual cortex that are not subject to 
surround suppression). 

Application of Computational Model: The tasks in Aim 1 and Aim 2 were 
selected because of their ability to quantify the separate contributions of 
visual mechanisms to perception. These tasks will allow examination of 
how early visual mechanisms may be regulated by higher-order neural 
computations supporting spatial attention, scene segmentation and object 
recognition.  

Two parameters regulate the local response term (Eg|c,s): a scalar that 
reflects the size of the extra-classical receptive field, and a scalar that 
reflects the relative strength of local inhibition. Three additional parameters 
regulate the grouping probability (p): a term that represents sensitivity to 
relative orientation, a term that represents sensitivity to higher-order scene 
statistics, and a term that represents object detection. The model can be used 
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to predict 7 experimental outcomes: suppression of perceived contrast by 
parallel and orthogonal similar and dissimilar textures (4), fMRI response 
suppression by parallel vs. orthogonal similar vs. dissimilar textures (2), and 
V1 response modulation by object recognition (1).  

Preliminary analyses of fMRI data show a significant overall V1 signal 
increase during viewing of meaningful compared to meaningless objects 
(FAOT), and task-dependent connectivity analysis has revealed that IPD 
and HC differ in the relative strength of the interaction between V1 and 
pre-frontal cortex. Thus, we will also correlate task-dependent 
connectivity measures from the two tasks against appropriate components 
of the long-range connectivity term (p) in the model to verify model 
estimates of the strength of the long-range grouping terms, to test the 
hypothesis that alterations in long-range (excitatory) neural mechanisms 
are altered in SibIPDs. 

Statistical analyses 

Classical multivariate statistics (MANOVA) will be used to assess group 
differences in relative fit of the model parameters. Group by term 
interactions of interest involve parameters 𝐸𝐸𝑔𝑔|𝑐𝑐,𝑠𝑠 and 𝐸𝐸𝑔𝑔|𝑐𝑐  based on our 
previous findings that differences in orientation tuning of surround 
suppression are evident in IPDs [14]. We will also use the modeled neural 
population responses to develop a practical estimate for the effective 
contrast that enables systematic comparison across different stimulus 
categories (e.g., sinusoidal luminance modulation, naturalistic textures 
and natural scene segments). The hypothesized elevation of perceived 
contrast in naturalistic stimuli, combined with altered top- down 
constraints will provide a mechanistic explanation for hallucinations and 
visual alterations.  

Sample Size Justification 

Preliminary studies provide data from which to estimate required 
sample sizes. For behavioral tasks in Aim 1, existing data on surround 
suppression indicate a moderate mean effect size (Cohen’s d = 0.66). From 
this, we estimate that group sizes of 38 with α = 0.05 and power = 0.8 would 
be sufficient to detect effects employing 2- tailed tests. Considering 
multiple regression analyses will be extensively used, the observed 
associations in pilot data for Aim 2 (0.09 < R2 < 0.49) were used to estimate 
sample size. Given that f 2=R2/(1 − R2) [100], sample sizes between 14 and 
109 (for α =0.05 and power = 0.90) are required. Thus, a total of 150 
individuals studied across the three groups will ensure sufficient power to 
detect effects. 

SUMMARY 

The precise etiology of hallucinations and visual distortions in 
psychosis is unknown. By combining psychophysical tasks, functional 
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neuroimaging, and a computational model, this project has the potential 
to yield a mechanistic understanding of visual hallucinations and 
distortions in subjective visual experience seen across the psychosis 
spectrum. By including first-degree relatives, we can determine if more 
subtle alterations in visual experience specifically reflect genetic 
contributions. As a result, this study will allow ascertainment of how 
visual perception varies across dimensional phenotypes of psychosis 
noted in schizophrenia spectrum disorders and bipolar affective disorder. 
The knowledge derived from this research will facilitate an understanding 
of neural mechanisms that give rise to psychotic symptoms, and the 
associated functional impairments of the disorder. Our hope is that the 
results can be used to formulate novel targeted treatments for psychosis, 
develop screening tools to help predict who is likely to convert to a 
psychotic disorder, and guide attempts to mitigate the risk for conversion, 
thereby reducing the prevalence and substantial disease burden of 
psychosis on society.  
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