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ABSTRACT 

Affective reactions to acute stressors often evoke exacerbations of 
psychotic symptoms and sometimes de novo psychotic symptoms and 
initial psychotic episodes. Across the lifespan, affective reactions to acute 
stressors are enhanced by successive adverse childhood experiences 
(ACEs), in a process called “behavioral sensitization”. The net effects of 
behavioral sensitization of acute stress responses are to alter responsivity 
to positive and negative feedback and to unexpected events, regardless of 
valence, leading to the maladaptive assignment of salience to stimuli and 
events. The assignment of “aberrant” salience to stimuli and events has 
profound consequences for learning and decision-making, which can 
influence both the positive and negative symptoms of psychosis. In this 
review, we discuss some of the psychological and neural mechanisms by 
which affective reactivity to acute stress, and its sensitization through the 
experience of stress and trauma across the lifespan, impact both the 
positive and negative symptoms of psychosis. We recount how the reward 
and salience networks of the brain, together with inputs from the 
dopamine and serotonin neurotransmitter systems, are implicated in both 
affective reactivity to stress and the symptoms of psychosis, likely mediate 
the effects of stress and trauma on the symptoms of psychosis and could 
serve as targets for interventions. 

KEYWORDS: affective reactivity; sensitization; dopamine; serotonin; 
prediction error; reinforcement learning; striatum; insula 

INTRODUCTION 

Evidence indicates that acutely stressful experiences are often followed 
by exacerbations of psychotic symptoms, in vulnerable populations, and 
sometimes by de novo psychotic symptoms [1–3]. An ability of affective 
reactivity to daily-life stressors to engender and exacerbate psychotic 
symptoms, in a variety of populations, is suggested by the results of 
numerous studies, using multiple techniques, including the ecological 
momentary assessment (EMA) method [4–9] and the induction of acute 
stress [10], using paradigms such as the Montreal Imaging Stress Task 
[11,12].  
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In the context of experimental tasks, acute stress is induced by painful 
physical stimuli, such as extreme heat or cold [13] or electric shock [14], 
psychosocial conditions, such as criticism or unsympathetic expressions 
from peers [12,15], or a combination of the two [16,17]. The severity of 
perceived stress is often operationalized according to elevated cortisol 
levels [18], electrodermal responses [19], increased heart-rate or heart-
rate variability [20], and ratings of perceived stress on self-report 
instruments [21]. Acute stress can significantly impact what the brain 
deems to be “salient” [22], and has been shown to enhance associative 
learning [23]. The “aberrant salience” hypothesis of psychosis posits that, 
in individuals with psychotic illness, the brain assigns salience to 
normally-mundane stimuli, leading to odd perceptions and experiences, 
requiring explanation [24,25]. The interpretations of these odd 
perceptions and experiences are thought to lead to the emergence of 
unusual beliefs (delusions) [25–28]. 

The term “adverse childhood events” (ACEs) encompasses a wide range 
of chronic stressors including abuse, neglect, lower socioeconomic status, 
urbanicity, family instability, and other such experiences. These chronic 
stressors are generally associated with higher levels of psychopathology, 
although the precise mechanisms by which this occurs are debated. The 
repeated or chronic experience of ACEs over time can enhance affective 
reactivity to acute stressors, in a process called “behavioral sensitization” 
[29].  

The purpose of this review is to connect several concepts related to the 
affective reactivity hypothesis of psychosis and to discuss potential 
mechanisms by which ACEs can contribute to psychosis in adulthood. In 
particular, we will discuss (1) how ACEs are thought to sensitize dopamine 
systems, thereby increasing reactivity to acute stressors and the positive 
symptoms of psychosis; and (2) how ACEs are thought to impact hedonics 
and motivation, thereby increasing the negative symptoms of psychosis. 
We will consider the question of whether effects of ACEs on positive and 
negative symptoms of SZ are connected or separate. 

NEURAL AND BEHAVIORAL CORRELATES OF AFFECTIVE REACTIVITY 
TO ACUTE STRESSORS 

Affective reactivity to acute stressors recruits numerous neural and 
endocrine systems, with widespread downstream effects [30,31]. 
Specifically, stress-induced activity of the hypothalamic-pituitary-adrenal 
(HPA) axis (Figure 1) and the release of glucocorticoids from the adrenal 
cortex are thought to evoke activation of brain dopamine (DA) [10,32–34] 
and serotonin systems (5-hydroxytryptamine, or 5HT) [35–37]. Beyond 
dopamine and serotonin circuits, affective reactivity to acute stressors 
recruits limbic circuits, as well, implicating the hippocampi, anterior 
insula (AI), anterior and posterior cingulate cortices (ACC/PCC), precuneus, 
and supramarginal gyrus (SMG) [38–40]. Many of these regions comprise 
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nodes of the “Salience Network” (Figure 2A) [41], which has also been 
closely linked to psychosis [42–44].  

Acute stress has a particular influence on activity in reward circuits 
(Figure 2B), by virtue of its effects on brain dopamine systems (VS) [45,46]. 
These alterations of reward system function have important consequences 
for learning and behavior. For example, acute stress has been associated 
with attenuated reward responsiveness [47–49]. Specifically, dopamine 
neurons and their targets in reward circuits have been shown to play an 
essential role in attribution of salience to stimuli and events [50,51], and, 
in particular, in the signaling of reward prediction errors (RPEs)—a kind 
of salient event critical to reinforcement learning (RL) [52,53]. Acute stress 
has been shown to increase sensitivity to negative prediction errors, 
relative to positive prediction errors [47,54]. The blunting of positive RPEs 
and enhancement of negative RPEs would have profound consequences for 
learning and the subsequent ability of the same stimuli to motivate behavior. 
Because RPE signaling influences the attribution of incentive value to 
stimuli [55], altered RPE signaling could result in a reduced ability to 
adaptively attribute motivational salience to biologically-important stimuli. 

 

Figure 1. The hypothalamic-pituitary-adrenal (HPA) axis. The release of corticotrophin-releasing factor 
(CRF) by the hypothalamus promotes release of adrenocorticotrophic hormone (ACTH) by the pituitary 
gland, which, in turn, signals the adrenal glands to begin releasing glucocorticoids into the blood. 
Glucocorticoids (such as cortisol) travel via the bloodstream and attach to glucocorticoid receptors in the 
brain. The hippocampus and amygdala can, in turn, influence the activity of the hypothalamus. Adapted 
from Hyman [56], with permission copyright ©2009 Springer Nature. 
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Figure 2. Nodes of the Salience and Reward Networks. (A) Salience network: anterior insula, dorsal 
pregenual anterior cingulate cortex (dorsal pgACC), anterior mid cingulate cortex (aMCC). Reward network: 
hypothalamus, orbitofrontal cortex (OFC), the ventral striatum (VS), including the nucleus accumbens and 
ventral putamen, ventral tegmental area (VTA), substantia nigra, midbrain regions (caudate, pallidum). As 
Haber and Knutson (2010) have noted, other structures including the amygdala, hippocampus, lateral 
habenular (LHb) nucleus, and brainstem structures, such as the pedunculopontine nucleus and the raphe 
nuclei, play key roles in regulating the reward network. (B) Adapted from Gupta et al. [57], with permission 
copyright © 2015 Elsevier. 

NEURAL CONSEQUENCES OF ACES 

When stress accumulates during development, there are profound 
effects on neural systems [58]. After repeated exposure to highly stressful 
events, many studies show sensitization of the HPA axis, with the body 
releasing more cortisol in response to acute stress [59,60]. The chronic 
activation of the HPA axis is known to lead to increased production of 
corticotropin releasing factor (CRF) [61], with clear effects on dopamine 
and serotonin systems [29,62], often, but not always, leading to greater 
synthesis and release of DA (and 5HT) [10,33–37,62–66]. These effects on 
neurotransmitter systems are known to have important downstream 
effects in nodes of the salience [67–71] and reward networks [72–77]. For 
example, alterations in dopamine signaling may lead to excess noise in 
frontostriatal circuits [27,78]. Accumulated stress may have the ability to 
disrupt phasic dopamine/reward signals by virtue of their effects on 
dopamine tone. Importantly, chronic stress may have opposite effects on 
dopamine concentrations and receptor function in the striatum and PFC 
[79]. That is, findings indicate that stress-induced elevations in DA release 
are often associated with decreased responses to rewards in the PFC 
[80,81]. While the direction of causality is not clear, there is evidence that 
hypofrontality may dysregulate DA transmission in the striatum [82]. 
Finally, recent findings point to disrupted connectivity between PFC and 
striatum consequent to acute and accumulated stress [83–85].  

LIFETIME STRESS AND BEHAVIORAL SENSITIZATION  

High numbers of ACEs have been associated with the emergence of 
diagnosable clinical disorders of anxiety and mood [86,87]. According to 
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the “behavioral sensitization” hypothesis, the accumulation of chronic 
stressful experiences during childhood and adolescence can eventually 
lead to the emergence or exacerbation of psychotic symptoms, as well [29], 
especially in the case of those with, or at risk for, psychotic disorders [88–
90]. In the “behavioral sensitization” framework, the repeated experience 
of ACEs can make acute stressors more salient, leading to a more 
pronounced response to acute stressors. This is largely in contrast to the 
effects of typical stressors during early life, which in some cases is linked 
to beneficial effects on mental health, including through positive impacts 
on cognitive performance, motivation, and resilience. These stressors are 
often more manageable and temporary in nature and can include 
experiences such as exercise or studying for a test [91]. 

 

Figure 3. Tract tracing studies have shown that striatocortical connections run in three parallel pathways. 
Motor areas project to the caudal putamen; dorsolateral prefrontal cortex to caudate and rostral putamen; 
and limbic areas to the ventral (limbic) striatum. These subdivisions have been termed the sensorimotor, 
associative, and ventral (limbic) striatum. The ventral tegmental area and medial substantia nigra (SN) 
project primarily to limbic striatum, while central/ventrolateral parts of the SN project to the associative 
and sensorimotor striatum. Striatal efferents projecting back to the midbrain. In addition to these reciprocal 
connections, feedforward striato-nigro-striatal connections allow information to pass along the striatum 
from limbic to motor regions via the associative striatum. Adapted from McCutcheon et al. [27], an open 
access article distributed under the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/). 

Due to their involvement in both stress reactivity and the positive 
symptoms of psychosis, brain DA systems, and their targets in the reward 
network have long been thought to mediate the relationship between acute 
stress reactivity and the symptoms of psychosis [5,29,90,92,93]. In recent 
years, there has been an additional focus on the associative striatum (AS), 
located lateral to the limbic and sensorimotor striatum (Figure 3). There is 
evidence that, in individuals along the psychosis spectrum, the associative 
striatum is the striatal region where chronic stress has its greatest impact 
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on psychosis severity, by virtue of sensitizing dopamine systems [10,94]. 
While there is evidence that the AS may show responses to acute stressors 
reflective of behavioral sensitization in people along the psychosis 
spectrum [10], the relationship between elevated DA activity in the AS and 
attenuated reward signals in the ventral striatum (VS) is not clear. These 
phenomena may even occur relatively independently, with elevated 
dopamine synthesis capacity linked primarily to positive symptoms, and 
blunted reward signaling most closely tied to negative symptoms [95].  

BEHAVIORAL CONSEQUENCES OF DOPAMINE SYSTEM 
SENSITIZATION: ABERRANT SALIENCE SIGNALING 

What are the exact neural mechanisms by which accumulated stress 
could exacerbate psychotic symptoms? As noted above, elevated reactivity 
to acute stress is thought to be accompanied by increased noise (reduced 
reliability) in frontostriatal circuits [27,78], which may lead to the 
assignment of both too much and too little salience to stimuli and events, 
depending on the particular situation. That is, behavioral sensitization 
may result in an elevated baseline, against which reward-related phasic 
dopamine signals may be difficult to interpret.  

Beyond enhancing reactivity to acute stressors, dopamine system 
alterations resulting from accumulated stress may bring about a more 
general disruption of the ability to adaptively assign salience to external 
stimuli and events, leading to, for example, alterations in the signaling of 
negative and positive prediction errors and one’s sensitivity to rewards 
and punishments. They may also lead to an increased tendency to 
associate mundane stimuli with negative valence. Of note, unmedicated 
psychotic illness is associated with both elevated dopamine tone [96,97] 
and attenuated RPE signaling [95,98]. Specific associations between ACEs 
and reward-related responses in the VS have been observed in multiple 
studies [77,99]. Associations between ACEs and nonrewarding salience 
signals have been observed in insula and amygdala [100–102]. These 
alterations in reward and salience signals have been specifically linked to 
psychopathology in individuals with depression [74,76] and in adolescents 
and young adults at clinical high-risk for psychosis [103]. 

Since the aberrant salience framework first emerged, numerous 
studies have been conducted to investigate how the aberrant signaling of 
salience might mediate the relationship between dopamine system 
sensitization and psychotic symptoms [104–108]. In a neuroimaging study, 
McCutcheon and colleagues [109] established a direct link between 
corticostriatal connectivity and multiple behavioral measures of salience 
perception. Specifically, these researchers found that, in a sample with a 
high degree of exposure to chronic psychosocial stressors, the strength of 
connectivity between the VS and brain regions implicated in salience 
processing negatively correlated with explicit adaptive salience and 
positively correlated with aberrant salience measures [109]. 
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Several other factors are likely to determine the impact of accumulated 
stress on the severity of psychotic symptoms. First, the behavioral 
consequences of ACEs are likely to differ as a function of which 
frontostriatal loops are most affected [27]. For example, ACEs impacting 
the limbic/ventral striatum might be more likely to affect reward 
processing and value-based decision-making also involving ventromedial 
prefrontal cortex (vmPFC), whereas ACEs impacting dorsolateral striatum 
might be more likely to affect cognitive control processes involving 
dorsolateral prefrontal cortex (dlPFC). Second, it is conceivable that 
disrupted connectivity between PFC and striatum consequent to 
accumulated stress [83–85] results in a reduced ability to use striatal 
salience/PE signals to update value representations in vmPFC and/or use 
volatility in the environment to modulate attention to feedback. In this 
way, the neural effects of ACEs could lead to both impairments in RL and 
an increased tendency to signal salience in an aberrant manner. Third, 
excessive salience attribution might also result in a general 
disengagement from some reward and salience processes as resources are 
diverted to regions and networks related to stress and negative affect [85]. 
In the case of psychotic illness, it is essential to remember that the effects 
of accumulated stress occur against a background of genetic 
vulnerabilities and/or disease processes, and thus may interact with and 
accentuate elevations of dopamine tone consequent to these 
vulnerabilities and/or processes. 

DIMENSIONS OF TRAUMA, DIMENSIONS OF SYMPTOMS 

It is also important to note that, although early life experiences of 
chronic stress in all forms can be detrimental to mental health, research 
shows that not all types of traumatic experiences are equally involved in 
the development of behavioral sensitization and exacerbations in 
psychotic symptoms. Measures of childhood trauma, such as the Adverse 
Childhood Events Scale [110] and the Childhood Trauma Questionnaire 
(CTQ) [111], are often separated into various domains based on the type of 
stress experienced. Most of these domains can be further separated into 
two main dimensions—one involving direct experiences of threat or 
violence (e.g., sexual, physical, and emotional abuse), and another 
involving a deficit in basic necessities for healthy development (e.g., 
physical and emotional neglect, poverty) [112–114]. This separation is 
notable because these two groups of ACEs seem to differentially impact the 
development of cognitive, emotional, and neural processes, with 
experiences of threat and violence having a more substantial impact on 
emotional regulation, while depravation through neglect and poverty has 
a greater impact on mechanisms of cognitive control [114]. 

These data suggest that, while the number of ACEs experienced can be 
informative, it is important to also account for type of adverse event 
experienced when evaluating risk for the development or worsening of 
psychotic symptoms. It appears that experiences of threat, in particular, 
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may be more instrumental in the development of affective reactivity and 
behavioral sensitization than other forms traumatic events through 
deficits in emotional regulation, suggesting a greater impact on positive 
psychotic symptoms [115,116].  

EFFECTS OF ACUTE AND LIFETIME STRESS ON NEGATIVE 
SYMPTOMS.  

While much work has focused on the contributions of stress to the 
positive symptoms of psychosis [5,29,90,92,93], as well as depression 
[86,87], considerably less work has devoted to the investigation of the 
potential contributions of stress to negative symptoms in psychotic illness, 
like anhedonia and motivational deficits (avolition). Nonetheless, it is well-
established that the profound neurobiological alterations associated with 
cumulative stress lead not only to increased psychotic reactivity to stress, 
but also play a role in the development and exacerbation of negative 
symptoms [117,118].  

There are several potential mechanisms by which adverse childhood 
experiences could contribute to anhedonia, avolition, and other negative 
symptoms of psychotic illness. First, as noted above, there is evidence that 
different kinds of ACEs might impact dopamine and serotonin systems 
differently, and, consequently, future sensitivity to stressors, punishments, 
and rewards. It is important to note that the chronic activation of the HPA 
axis doesn’t always lead to greater synthesis and release of DA; under 
some conditions, chronic stress engenders the suppression of DA activity 
[66,119–121]. Studies in rodents have demonstrated increased anhedonic 
behaviors after maternal neglect [61], and ACEs have been shown to 
suppress reward system activity in the human brain, thereby altering the 
assignment of incentive salience to stimuli, in some studies with human 
subjects [74,75,77,122]. In addition to being associated with reduced 
reward sensitivity, the accumulation of ACEs has been shown to have an 
effect similar to individual acute stressors in heightening punishment 
sensitivity [123,124]. There is clear evidence that negative symptoms like 
anhedonia and avolition have been associated with both blunted reward 
responsiveness/RL [125–127] and reduced activity in the same 
frontostriatal circuits impacted by stressful and traumatic events across 
the lifespan [128–134].  

Second, there is strong evidence that different kinds of ACEs might 
impact various emotional and cognitive processes in disparate ways. For 
example, depravation through neglect and poverty has been shown to 
have a greater impact on mechanisms of cognitive control than on 
emotional reactivity [112–114], and child abuse and neglect have been 
associated with distinct patterns of performance on emotion 
discrimination tasks [135]. Given these observations, it is not surprising 
that depravation has been found to have similar effects on processes 
related to motivation and pleasure, in psychotic illness [115]. 
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Thus, ACEs related to abuse appear to contribute to the negative 
symptoms of psychosis by increasing sensitivity to punishments relative 
to rewards, whereas ACEs related to neglect appear to contribute to the 
negative symptoms of psychosis by having a detrimental impact on 
motivation, learning, and cognition. That is, while dopamine sensitization 
and increased affective reactivity to acute stress may contribute to both 
the positive and negative symptoms of psychosis, negative symptoms such 
as anhedonia and avolition may be influenced by additional factors 
unrelated to dopamine sensitization. We contend that understanding the 
potential links between chronic stress and negative symptoms is vital, due 
to the contributions of negative symptoms to real-world functioning in 
psychotic illness [136,137], as well as the paucity of effective treatments 
for them [138,139]. 

INTERPLAY BETWEEN REWARD AND SALIENCE NETWORKS 

Given that motivational, or incentive, salience [55,140] is an important 
form of salience, it is not surprising that most, if not all, neural systems 
implicated in salience signaling subserve motivational processes, as well. 
It is also important to note that brain networks for acute stress reactivity, 
salience signaling, and reward sensitivity are separable, but overlapping, 
with the implication that the function being performed by a region likely 
depends on the network in which it is participating. For example, VS has 
been implicated in both reward processing and in the signaling of salient 
events, regardless of valence [141–143], and thus appears to be a node 
shared by both Reward and Salience Networks. Serotonin systems also 
play a role in both feedback processing and in the signaling of salient 
events [144–146], likely due to their projections to the amygdalae and 
other Salience Network nodes [41,147,148]. Finally, there is evidence that 
both the Reward and Salience Networks figure critically in reinforcement 
learning by signaling signed and unsigned prediction errors, respectively, 
with the precision of prediction errors possibly influencing rates of 
prediction-error-driven learning [108,149,150]. Our group has shown that 
disrupted unsigned prediction error signals in prefrontal cortex relates to 
motivational deficits in schizophrenia patients [151]. 
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Figure 4. Adverse Childhood Experiences (ACEs) act through sensitization of dopamine systems to impact 
sensitivity to stressors, punishments, and rewards and the attribution of salience to events (which range 
from mundane to biologically-important). Conversion to psychotic illness and the expression of psychotic 
symptoms are influenced by affective reactivity to stimuli and events and the attribution of salience to these 
stimuli and events. Negative symptoms may emerge as a consequence of noisy dopamine signaling, if (1) 
people attribute insufficient motivational salience to biologically-important stimuli and events, or if (2) 
reductions in prefrontal cortical activity levels are associated with striatal hyperactivity, leading to deficits 
in reward sensitivity, motivation, and decision-making. Some negative symptoms in psychotic illness may 
result from mechanisms separate from sensitization of dopamine systems, as growing evidence suggests 
that negative symptoms are more closely tied to neglect and deprivation in childhood/adolescent, whereas 
positive symptoms are more closely tied to abuse. 

CONCLUSIONS 

The findings reported above highlight the importance of understanding 
the roles of frontostriatal circuits in assigning salience to stimuli and 
events, as well as the potential value of using precise behavioral and 
neural measures of salience attribution, from experimental paradigms. 
Based on the findings described above, we can now envision a model of 
the pathways by which traumatic experiences during childhood and 
adolescence sensitize susceptible individuals to the noxious effect of 
future stressors (Figure 4). While these findings suggest that dysfunction 
in salience and reward systems mediates relationships between chronic 
stress and the symptoms of psychosis, direct evidence is scant, and there 
is a clear need for future investigation into how different dimensions of 
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childhood and adolescent adversity contribute specifically to the link 
between ACEs and the development of different symptoms of 
schizophrenia. The reward and salience networks of the brain are likely 
to serve as important target for intervention, in the development of 
pharmacological treatments for psychosis, while increasing resilience, 
regarding affectivity reactivity to stress, should remain a focus for 
psychological interventions, such as cognitive behavioral therapy. 
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