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ABSTRACT 

Astrocytes, despite some shared features as glial cells supporting neuronal 
function in gray and white matter, participate and adapt their morphology 
and neurochemistry in a plethora of distinct regulatory tasks in specific 
neural environments. In the white matter, a large proportion of the 
processes branching from the astrocytes’ cell bodies establish contacts 
with oligodendrocytes and the myelin they form, while the tips of many 
astrocyte branches closely associate with nodes of Ranvier. Stability of 
myelin has been shown to greatly depend on astrocyte-to-oligodendrocyte 
communication, while the integrity of action potentials that regenerate at 
nodes of Ranvier has been shown to depend on extracellular matrix 
components heavily contributed by astrocytes. Several lines of evidence 
are starting to show that in human subjects with affective disorders and 
in animal models of chronic stress there are significant changes in myelin 
components, white matter astrocytes and nodes of Ranvier that have 
direct relevance to connectivity alterations in those disorders. Some of 
these changes involve the expression of connexins supporting astrocyte-
to-oligodendrocyte gap junctions, extracellular matrix components 
produced by astrocytes around nodes of Ranvier, specific types of 
astrocyte glutamate transporters, and neurotrophic factors secreted by 
astrocytes that are involved in the development and plasticity of myelin. 
Future studies should further examine the mechanisms responsible for 
those changes in white matter astrocytes, their putative contribution to 
pathological connectivity in affective disorders, and the possibility of 
leveraging that knowledge to design new therapies for psychiatric 
disorders. 
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INTRODUCTION 

There is a solid body of experimental and human postmortem brain 
evidence demonstrating that astrocytes play fundamental roles in 
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supporting neuronal metabolism, survival and communication at 
synapses, and in the development and maintenance of the white matter. 
These essential roles and the ability of astrocytes to become reactive when 
confronted with injury or disease are reflected in their crucial 
involvement in the neuropathological mechanisms of most neurological 
and neurodegenerative disorders [1–3]. The recent decades have also 
witnessed increasing research attention towards the role of white matter 
pathology in brain connectivity changes associated with depression and 
other affective psychiatric disorders [4–7]. Connectivity involves the 
exchange of information between brain regions that is reflected in 
correlated functional changes [8,9] and also in structural alterations in the 
bundles of axons that actually propagate the signals to connect distant 
brain regions [10–12]. Part of the connectivity alterations in 
psychopathology can be accounted by local changes in synaptic 
transmission and cell metabolism in the gray matter (GM) [13–15]. These 
alterations will eventually result in undesired or maladaptive signal 
patterns that could simply be conveyed by axons in the WM to other brain 
destinations, so spreading dysfunction. In addition, regardless of 
neuronal, synaptic and glial [16] disturbances in the GM, the propagation 
of signals within the WM could be altered by pathology of the intrinsic WM 
components affecting the myelin insulation of axons or the structure and 
molecular composition of the axons themselves [17–20]. In fact, alterations 
intrinsic to the WM are now considered to be part of plastic processes 
occurring during learning and other normal non-pathological plastic 
processes in the brain [21]. Even in non-diseased brain structures, many 
studies have shown that the myelin that wraps many axons in the WM can 
undergo substantial morphological and neurochemical plastic changes 
that contribute to connectivity modifications leading to actual behavioral 
and cognitive adaptations, including significant changes in learning and 
memory [22,23]. Human postmortem studies in depression-diagnosed 
subjects and in animal models of potent risk factors for depression, such 
as stress, have also identified striking effects on the abundance and 
morphology of oligodendrocytes and myelin or their markers in some 
relevant brain regions [17,18,24–29]. Both in the gray and white matter 
several lines of research have shown that astrocytes appear to be seminal 
to basic cellular processes in neurons and myelin-forming 
oligodendrocytes that support connectivity [16,18,20,30,31]. In the 
following, there is a review of some major aspects of astrocyte 
neurochemistry and function that support those processes, with particular 
emphasis on astrocyte involvement in ensuring adequate conduction of 
nervous signals in the white matter.   

GM ASTROCYTES INVOLVED IN PROCESSES AFFECTING 
CONNECTIVITY IN DEPRESSION AND STRESS 

Each astrocyte and its highly branched processes occupy a region of the 
gray matter that is adjacent to neighboring astrocytes territories with very 
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little overlap [32] (Figure 1), each astrocyte extending up to 200 µm in 
diameter in humans [33]. The linear reach of the processes is thus small 
relative to the reach of axons, although the influence of astrocyte 
cytoplasmic changes is somewhat extended by the gap junctions between 
astrocytes that permit cytoplasm to cytoplasm communications through 
shared transient intracellular calcium increases and the exchange of 
molecules no larger than 1.5 kdalton. Nevertheless, the reach and speed of 
these astrocyte-to-astrocyte communication channels are respectively 
limited and slow, so that long range connectivity is rather based in the long 
processes of neurons and their ability to speedily send action potentials 
that spearhead synaptic communication between widely separated brain 
regions. The contribution of astrocytes to long range communication does 
not depend thus on their individual reach within and among networks, 
but rather on the ability of astrocyte processes to regulate connectivity at 
the sites of neurotransmitter release, or locally support the metabolism of 
neurons through their ability to generate processes that branch out and 
produce leaflets closely apposed to other neural elements such as synapses 
or capillaries [34]. Even when glial cell communication may affect glial 
and neuronal activity in small local circuits, the main influence of 
astrocytes on longer range connections most likely depends on the 
function of astrocytes in reuptake of neurotransmitters glutamate and 
GABA, although other aspects of astrocyte function such as providing 
metabolic and neurotrophic substrates to neurons may also have an 
indirect permissive role for connectivity by sustaining ATP production and 
allowing dendritic and spine plasticity that are critical to maintenance and 
recovery of membrane potential and to synaptic release adaptations in 
neurons. The tips of the highly branched processes of astrocytes in the GM 
enwrap or are closely associated with presynaptic and their 
corresponding postsynaptic neuronal elements [34]. The pervasive 
presence of these trios of cellular elements (presynaptic-postsynaptic-
astrocytic) in the gray matter, tightly undergirding synaptic 
communication, has given place to the concept of tripartite synapse. This 
arrangement of astrocyte processes allows singular astrocytes to affect as 
many as 100,000 synapses through the tips of their highly-branched 
processes [35,36]. In addition to influencing connectivity at the synaptic 
level, tips of astrocyte processes in the gray matter also closely appose 
nodes of Ranvier and the adjacent paranodal regions (Figure 1D) along 
myelinated portions of afferent and efferent axons that respectively come 
from or enter the white matter, so that part of the influence of gray matter 
astrocytes on connectivity may depend on their role at nodes of Ranvier 
in segments of axons residing in GM. However, the majority of astrocytes 
subserving NRs are expectedly located in the white matter [37], where they 
would exert critical permissive and regulatory roles for the propagation 
of action potentials [38], which are the signals carrying most of the 
information allowing for efficient mid- and long-range connectivity. Thus, 
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the involvement of WM astrocytes in processes influencing normal 
connectivity will be described and discussed in the next section.      

 

Figure 1. Immunolabeled astrocytes in histological sections from the prefrontal cortical regions of rats (A, 
C, D) and from mixed-cell (astrocyte-neurons-oligodendrocytes) primary cultures from rat frontal cortex (B). 
Arrows in A, B and C point to the cell bodies of astrocytes. Red immunofluorescent label in A and B 
corresponds to astrocyte cytoskeletal marker GFAP. Cell nuclei in B are stained blue with nuclear marker 
DAPI. (C) GFAP labeling of astrocytes (blue) coexists with green label for glutamate transporter EAAT1 in 
cell bodies (arrow) and processes of astrocytes. D) White matter astrocytes display significant amounts of 
EAAT1, which was immunolabeled here to display blue fluorescence together with markers that identify 
nodes of Ranvier (beige arrows). Nodes of Ranvier are identified by using antibodies to neurofascin 
(red/pink) and to paranodal protein CASPR (green/yellow). Note that NRs are in close proximity to EAAT1-
positive processes (blue immunofluorescence). “AS” denotes the nucleus of an EAAT1-positive astrocyte cell 
body in the white matter. Calibration bars at bottom left of each micrograph: (A) 50 µm, (B) 100 µm, (C) 15 
µm, (D) 5 µm. 
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WM ASTROCYTES INVOLVED IN PROCESSES AFFECTING 
CONNECTIVITY IN DEPRESSION AND STRESS 

WM astrocytes are morphologically different from the large population 
of protoplasmic astrocytes in the GM, and are termed fibrous astrocytes 
[33,39]. Processes stemming from WM astrocytes are in overall thicker, 
fewer and less branched than those in the GM, although recent studies 
have shown and recognized the possibility of distinct morphological 
variation in WM astrocytes, particularly in response to WM injury [40]. In 
addition, unlike in GM, processes of WM astrocytes tend to intermingle in 
the WM without forming mutually exclusive territories [33]. Some of their 
branches abut the basal lamina around blood vessels to support the blood 
brain barrier and allow for regulated exchanges of water and metabolites 
with the blood circulation. In addition, many of the astrocytes’ branches 
directly establish gap junctions with neighboring astrocytes and, 
importantly, with the cell membranes of oligodendrocytes. These gap 
junctions are formed by various types of connexins that are different in 
those between astrocytes as compared to those contacting astrocytes with 
oligodendrocytes. Various functions have been proposed for these 
cytoplasm-to-cytoplasm contacts, such as siphoning released extracellular 
potassium from axons to astrocytes, and eventually to the blood 
circulation, with the mediation of oligodendrocytes [41,42]. The critical 
role of gap junctions between astrocytes and oligodendrocytes to myelin 
maintenance is demonstrated in significant myelin disruptions observable 
in animal models deficient in one or more of the gap junction-forming 
connexins in astrocytes or oligodendrocytes [43–47]. Comparable 
alterations of astrocyte-oligodendrocyte gap junction-based 
communication may also contribute to the pathology of depression, since 
it has been found that gap junction coupling between astrocytes and 
oligodendrocytes may be reduced in the anterior cingulate cortex of 
subject with depression dying by suicide [48].  

Altered structure and function of astrocytes and oligodendrocytes, and 
disturbed interactions between them have been proposed to play a major 
role in the pathophysiology of mood disorders, particularly MDD [49,50], 
while astrocyte atrophy is also being recently recognized to significantly 
occur during aging and neurodegeneration [51,52]. Low density of those 
cell types and reduced expression of astrocyte- and oligodendrocyte-
specific gene transcripts were reported in postmortem human brains in 
MDD [17,19,20,53,54]. Similar features are observed in rodent models of 
depressive-like phenotypes caused by prolonged stress exposure such as 
chronic unpredictable stress [55–58]. However, most of these studies first 
focused on cortical gray matter and only later started to turn their 
attention to an involvement of white matter (WM) glial pathology as major 
contributor to functional and connectivity disturbances in MDD and 
models of stress-induced psychiatric disorders. Recently, prominent 
reductions in astrocyte density and astrocyte-specific protein and mRNA 
in ventral prefrontal WM in MDD [20,59] have been reported. In the same 
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brain region, oligodendrocyte size decreases and low myelin-specific gene 
expression was detected in WM of human subjects [17,19]. These findings 
align with reports of reduced fractional anisotropy (measure of axon 
bundles’ integrity) in prefrontal WM [60] and corpus callosum [61] in 
MDD. 

ASTROCYTES AT NODES OF RANVIER  

In addition to gap junction-mediated interactions with myelinated 
axons, the tips of a considerable proportion of WM astrocytic processes 
end in close apposition with nodes of Ranvier [38] (NRs), which are 
stretches of bare axon carrying ion channels for action potential 
regeneration and propagation. This closeness to NRs (Figure 1D) appears 
to be of great importance since more than 95% of NRs in WM are 
intimately associated with the ends of astrocytic processes (processes from 
another glial cell, NG2 cells, are also associated with NRs often in 
conjunction with astrocytes’ processes) [37]. Astrocyte processes and 
partially unpacked portions of the oligodendrocyte-generated myelin coat 
around the axon (dubbed paranodes) are the main glial structures around 
NRs [37,62]. To stabilize the structure of NRs, and allow for focused 
aggregation of voltage gated at nodes of Ranvier, there are specialized cell-
adhesion components of the oligodendrocyte membrane. These 
components face other adhesion components in the axonal membrane at 
each of the paranodes delimiting both ends of the NR [62,63]. Astrocytes 
have been proposed to regulate the speed of action potential propagation 
by influencing the separation between the paranodes surrounding the NR 
[38,63,64]. In addition, there is a distinct set of axonal membrane proteins 
anchored at the node itself, including neurofascin and contactin, that form 
a cell adhesion apparatus directly interacting with voltage-gated sodium 
channels [65,66]. At NRs, neurofascin 186, one of the cell adhesion 
proteins, in turn serves also as docking point for various extracellular 
matrix components such as proteoglycans and Tenascin-R, the precise 
functions of which are starting to be elucidated. Astrocytes provide a 
major contribution to these extracellular components, although 
oligodendrocytes, NG2 cells and the axons themselves contribute to the 
release of some of the particular proteoglycans or cell adhesion factors 
[67]. In fact, some of the extracellular proteoglycans such as proteoglycan 
BRAL-1 are heavily produced by astrocytes, and significant quantities of 
phosphacan, versican, brevican, neurocan and tenascin R are contributed 
by astrocytes as well [67–70]. 

Interaction between astrocyte processes and axons at NRs is mediated 
by those extracellular matrix (ECM) components, which include the 
proteoglycans brevican, phosphacan, versican-2, and BRAL-1, as well as 
the glycoprotein tenascin-R, and the axonal adhesion molecules 
neurofascin-186 (NF186) and contactin [62,71]. Despite detected 
alterations in astrocyte processes in GM and WM in depression much 
remains to be known about how the ubiquitous astrocyte processes at NRs 
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and the associated ECM molecules (ECMMs) and axon proteins are 
disturbed, and the role of those disturbances in connectivity changes. In a 
preliminary study in human PFC WM in MDD we found decreased levels 
of mRNAs for versican2, tenascin-R and NF186 and some of these 
alterations were still significant after removing outliers. Density of WM 
fibrous astrocytes has been found also decreased in CUS rats and in 
humans with MDD [20]. More recently we detected dramatic reductions in 
NR length and increases in the content of proteoglycan phosphacan 
associated with MDD and with chronic unpredictable stress in a rat model 
[72]. Thus, there appears to be significant pathology associated with WM 
astrocytes processes, astrocyte-linked ECMMs and axonal proteins at NRs. 
NR proteoglycans and tenascin-R bind to NR axon membrane proteins, 
forming a complex linking the axon cytoskeleton to the ECM. The link 
supports aggregation of axonal voltage-gated sodium channels (Navs) at 
NRs during NR formation and maintenance [73,74]. As stated above, 
astrocytes variably express all of these molecules [67]. Astrocyte processes 
matter to WM function because they are a major brevican, phosphacan 
and BRAL-1 source and these molecules allow for versican-2 and tenascin-
R anchoring, which in turn bind to axonal adhesion proteins (NF186 and 
contactin) that regulate Navs’ clustering [73]. Accordingly, proteoglycan-
tenascin-R-NF186 complexes are thought crucial to support action 
potential regeneration at NRs for subsequent propagation. Thus, reduced 
or disrupted involvement of astrocytes processes in the generation of ECM 
components or in their display to support extracellular adhesion 
interactions may lead to alterations of signal propagation along 
myelinated axons and underlie a mechanism contributing to disturbed 
PFC connectivity in depression and other affective disorders.  

REGULATION OF GLUTAMATE ACTIONS IN THE WHITE MATTER 

Although neuron-to-neuron synapses supporting neurotransmitter-
based communication are mostly absent in the white matter, substantial 
glutamate release in the white matter has been detected [75]. This release 
is proposed to regulate the activity of glial cells, namely oligodendrocyte 
precursor cells (OPCs, also known as NG2 cells), since the remarkable 
discovery was made that synapses between presynaptic axons and 
postsynaptic OPC occur in the white matter [75], and that increased 
activity actually regulates the differentiations of OPC into 
oligodendrocytes to produce new myelin in a form of activity-dependent 
myelin plasticity [23]. WM astrocytes would play and important role in this 
type of plasticity because they express high levels of excitatory amino acid 
transporter 1 (EAAT1; in rodents the homologous protein is also called 
GLAST) glutamate transporters [37,76,77] (Figure 1C) that would facilitate 
reuptake of released glutamate and thus contribute to terminate the 
actions of WM extracellular glutamate, indirectly regulating the 
connectivity by controlling the activity of OPCs. Postmortem human 
research in the brains of MDD patients has detected a reduction on the 
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GFAP processes of astrocytes [20] and in size of CNPase-positive 
oligodendrocytes in the prefrontal white matter [78]. More recently low 
levels of GLAST proteins have been also measured in the ORB of human 
subjects with MDD [59] suggesting the possibility that a deficit of astrocyte 
processes or expression of EAAT1 may lead to a dysregulation of glutamate 
actions in the white matter.     

Recent findings on the molecular composition of astrocyte processes 
suggest a role for ECMMs and EAAT1 transporters in regulating 
extracellular glutamate actions in the WM [71,79,80]. Both specific and 
cooperative actions of proteoglycans and EAAT1s of astrocytes at NRs 
contribute to extracellular glutamate regulation, NR maintenance, and 
stability of Nav aggregation. These features are crucial for adequate 
propagation of action potentials. Thus, if glial processes, associated 
ECMMs and EAAT1s are altered in depression they could critically 
participate in pathophysiological mechanisms involving disturbances of 
connectivity among brain centers in MDD. 

The processes of astrocytes associated with NRs, in conjunction with the 
myelin of oligodendrocytes, regulate the speed of saltatory conduction, 
thus allowing optimal communication between neurons [64,81]. 
Alterations of astrocyte processes abutting NRs and their vicinity could 
result in abnormal signal conduction and WM pathology as revealed by 
neuroimaging in depression [7,60,82–89]. Recently, abnormal structure 
and protein expression of axonal and oligodendrocyte proteins at NRs and 
adjacent axon segments were reported in corpus callosum and frontal 
cortex of chronically stressed rodents [61], suggesting that pathology at 
NRs may occur in MDD. So far it is unknown whether pathological 
alterations in astrocyte processes and NR-associated proteins in models of 
depression or in humans are direct participants in the etiology of 
depression. However, our previous research in astrocytes in MDD and our 
mRNA studies on WM would suggest that NR-related astrocytes changes 
contribute to depression-like dysfunction [17,72]. The possible 
involvement of astrocyte processes at NRs in WM functional and structural 
changes is consistent with reduced GFAP immunoreactive area fraction of 
processes and levels that we found in relatively young MDD subjects 
[53,90] Since repeated stress is a risk factor for MDD [91] structural and 
molecular alterations associated with astrocyte processes at NRs may 
occur in prefrontal brain regions of MDD patients. Such pathology 
associated with astrocyte processes at NRs should be taken into account to 
explain the pathophysiology of depression or design innovative 
approaches for the treatment of affective and stress-related disorders. 

ASTROCYTES AND THE ROLE OF NEUROTROPHIC FACTORS  

The importance of astrocytes to the maintenance of adequate signal 
conduction along axons also includes their role as providers of 
neurotrophic factors to facilitate oligodendrogenesis and myelination 
after damage to the white matter [92,93]. Other researchers have shown 
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that expression of neurotrophins by astrocytes, and their receptors in 
oligodendrocytes, is regulated by increased exercise [94], further 
suggesting that repair and plasticity of axons and their myelin is greatly 
influenced by neurotrophin release from astrocytes [93] even in non-
pathological plastic processes. By contrast, in particular conditions 
involving inflammatory and toxic signals, and the mediation of 
neurotrophin receptors, dysfunctional astrocytes are potential enhancers 
of copper distribution and other deleterious compounds, and thus 
increase the possibility of myelin damage [93,95]. Other research has 
shown that myelination and the interaction between oligodendrocyte 
myelin membranes and axons at the paranodes lining NRs is dependent 
on astrocyte gene expression regulation by epigenetic factors such as 
Methyl-CpG-Binding Protein 2 (MeCP2), which in fact regulates the 
expression of growth factors such as BDNF and NGF by astrocytes [96]. The 
involvement of astrocyte-derived neurotrophic factors and their receptors 
in WM may be of great relevance to understand the contribution of 
neurotrophins to connectivity disturbances in depression since 
neurotrophic deficit or upregulation (depending on the brain area) have 
been found in the brains of affective disorder patients and in animal 
models of stress [97,98]. For example, significant correlation of 
neurotrophin DNA methylation and reduced WM integrity (assessed by 
neuroimaging methods) has been found in the WM of frontal bran regions 
in major depression [99]. Most importantly, the altered methylation 
patterns in depression subjects are strongly associated with astrocyte-
related dysfunction [100]. Also in prefrontal brain regions, diffusion 
tensor magnetic resonance imaging (DTI) has shown increased fractional 
anisotropy in WM fiber bundles associated with particular genotypes of 
the neurotrophic tyrosine kinase receptor type 2 (NTRK2), but only in 
subjects diagnosed with depression [101], while specific polymorphisms of 
the BDNF gene are associated with detection of WM DTI disturbances in 
subjects with high depression severity [102,103]. 

CONCLUDING REMARKS 

Morphological and neurochemical differences of WM astrocytes as 
compared to most GM astrocytes, their ubiquitous involvement in myelin 
formation and maintenance, and their crucial association with nodes of 
Ranvier to support the regeneration of action potentials, suggest a critical 
contribution of those aspects of astrocyte biology to the integrity and 
fidelity of nervous signals carried along WM axons, and thus to normal 
brain connectivity. Accordingly, disturbances in brain connectivity that 
have been described in depression and other psychiatric disorders may be 
at least partially a consequence of disturbances in astrocyte interactions 
with oligodendrocyte membranes and nodes of Ranvier in the involved 
cortical brain regions. An argument could be made that targeting 
astrocyte-related pathology in the white matter may provide new or 
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complementary approaches to better therapies that improve connectivity 
in the brain of patients with affective and other psychiatric disorders.  
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