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ABSTRACT 

In this article, a 3-step neuro-fuzzy expert decision support system is 
constructed in order to investigate the multifaceted performance 
interdependencies among 17 SDG performance scores across 162 UN 
Member States. The direct influence matrix among 17 SDGs, which would 
be filled by policy experts in interpretive structural modeling, is instead 
populated by computational intelligence. Results indicate that, the most 
influential performance drivers are SDG12 (Sustainable Production and 
Consumption), SDG 9 (Industry, Innovation and Infrastructure) and SDG 
11 (Sustainable Cities and Communities) at global level. Yet these findings 
highlight the importance of establishing and enhancing local 
infrastructures and communities, innovative and sustainable supply and 
demand content to increase overall SDGs performance globally. 
Performance linkages SDG 5 (Gender Equality) and SDG 13 (Climate 
Action) are global common denominators across localities for positive 
evolution of overall SDGs performance. Local policy mixes between 
performance driver and linkage SDGs are recommended by taking eight 
dependent SDG performances (SDG 10, 16, 15, 8, 6, 17, 7, 2) into account as 
action contexts. Four autonomous (less influential) SDG performances 
(SDG 1, 3, 4, 14) remain to be integrated. Conclusions call for a global 
unity in diversity, local policy mixes by all cities and communities around 
the globe. 
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MICMAC, The Impact Matrix Cross-Reference Multiplication Applied to a 
Classification 

INTRODUCTION 

In 2014, UN Member States proposed a set of SDGs succeeding the 
MDGs as a new reference set of targets and goals to be achieved until the 
year 2030. After being unanimously adopted at the UN Sustainable 
Development Summit in September 2015, these 17 SDGs came into force 
on 1 January 2016. The overarching aim of the SDGs, as agreed by the 193 
Member States, can be summarized as reaching economic, social and 
environmental targets, which e.g., will enable poverty elimination in its 
all forms, sustainable work and lifestyles for all, and a stable resilient 
planetary life-support system [1].  

However, both academic and grey literature argue that it is indeed 
challenging to define, design, and implement policy mechanisms that 
would meet these overarching aims without resolving potential conflicts 
among the targets of sectorial SDGs [2,3]. Authors argue that, for instance, 
interventions to increase food security (SDG 2) may come at significant 
costs to the global climate system (SDG 13), in turn; this situation can put 
food security itself at risk in the long term [1]. On the other hand, 
“harmony with nature” (e.g., SDGs 6, 12, 13, 14, and 15) do not easily mix 
with the calls for and the targets of continued global economic growth 
(SDG 8) [3]. Thus, interactions among SDGs also draw increasing attention 
of scholars and practitioners and are studied by various scholars and 
institutions [4–20].  

David Le Blanc, in 2015, studied these interactions by using text and 
network analysis where he processed the SDGs and targets as a term 
network, in which the links among SDGs exist through the targets that 
refer to multiple SDGs at the same time [11]. This is a conceptual level 
interaction analysis using co-occurrences by (text) network analysis. The 
article contributed to reveal that some thematic areas covered by the 
SDGs by design are well connected compared to others such as the parts 
of this term network have weaker connections with the rest of the system. 
However, according to their analysis, the SDGs as a whole, form a more 
integrated system than the MDGs, thus, may facilitate policy integration 
across sectors [8,9].  

Institutions have also initiated analyzing SDGs interactions, yet 
considerable gaps remain, particularly in terms of comprehensiveness 
(covering all SDGs), quantification of the SDG interlinkages and practical 
case studies at the national level [13]. One of such projects is run by the 
Institute for Global Environmental Strategies (IGES), titled “Sustainable 
Development Goals Interlinkages and Indicators” [13]. Initiated by IGES, 
the project focuses on SDG indicators and the analysis of the 
interlinkages among SDG targets since 2015. In IGES analysis, SDGs 
targets interact with each other in an indivisible way. Achieving one SDG 
or target may contribute to achieving other SDGs or targets (e.g., 
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enhancing food security (SDG 2), decent work (SDG 8), reducing 
inequalities (SDG 10) would create co-benefits for poverty eradication 
(SDG 1)). Yet it is also deemed possible that, the pursuit of one target or 
SDG can create conflict with the achievement of another SDG. Such as, 
increase in agricultural production to tackle hunger (SDG2) may result in 
increase in water use for irrigation, which, in turn, may compete with the 
water demand for achieving universal access to drinkable water 
(SDG 6) [13–16].  

These aforementioned valuable contributions are performed either at 
concept level or rely on the identification of causal relations among 
targets and/or SDGs extracted from comprehensive literature reviews 
and/or qualitative argumentation [17]. Comprehensive quantitative 
studies also exist. Pradhan et al. conducted a systematic study of SDG 
interactions by correlation analysis [18]. Türkeli et al. 2019 analyzed the 
calculated performances on SDGs with hierarchical cluster analysis on 17 
SDGs and k-means clustering for all countries in Sub-Saharan Africa [19] 
using the SDSN and Bertelsmann Stiftung SDG Index data. Dörgő et al. 
studied interactions among SDGs with a causality analysis of 
sustainability indicators [20]. Ospina-Forero et al. uses correlation 
thresholding, chordal information filtering graphs, statistical structure 
learning and physics-inspired approaches to estimate networks using 
data from four countries Egypt, Indonesia, Mexico and Turkey [10]. 

In this article, other than conceptually or theoretically hypothesized 
or assessed interactions, the actualized SDG performance interactions are 
at the focus. Therefore, the research question is: To what extent are 
actualized performances on SDGs interdependent at global level? This 
research question comes with three consecutive sub research questions: 
If actualized performances on SDGs are interdependent, how to reveal these 
interdependencies? What are the differentiating and common quantitative 
and qualitative features of these interdependencies? Moreover, if such 
features can be revealed, how to make the best use of this novel information 
for international development planning and policies?  

As an implication of potentially positive co-benefits or negative 
trade-off interactions among SDGs [1–20], policy integration and 
especially policy mixes as a solution approach arises as an important 
research area. Revealing these interactions among SDGs with innovative 
measures and sound applied research can help ex-ante minimize 
potential conflicts and setup trade-offs, find further synergies and 
alternative policy mix instruments for interacting the targets and SDGs in 
order to realize effective and efficient achievements across all 17 SDG 
areas. In this article, SDG level interactions will be studied. In order to 
reveal interdependencies among actualized performances on SDGs, and 
policy integration and mixes across these SDG areas, analyses have to be 
based on sound data and methods. This article is organized as follows: in 
the next section the information on data, materials and methods used 
and generated are provided. The results of the analysis are provided 
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before the following section dedicated to discussions. Discussions section 
is followed by concluding remarks, recommendations and future 
research directions towards analyzing the interactions at targets level. 

MATERIALS AND METHODS 

The database used in this article, 2019 SDG Index, is compiled by the 
SDSN and the Bertelsmann Stiftung. The 2019 SDG Index provides a 
report card for national level performance on the Agenda 2030 and the 
SDGs. The dataset comes with normalized scores across countries for 
each SDG, as well as regionally adjusted normalized SDG performance 
scores (Table 1). Each SDG performance score is calculated by using the 
same sub-indicator set across SDGs and across countries. In this article, 
regionally adjusted normalized SDG performance scores of 162 countries 
are used since data for 31 countries were not available and/or missing.  

Table 1. 2019 SDG Index descriptive statistics. 

Descriptive Statistics N Range Min Max Mean Std. Error Std. Deviation 

SDG 1 162 66.175 32.667 98.841 75.262 2.101 26.738 

SDG 2 162 18.474 44.580 63.054 53.556 0.472 6.003 

SDG 3 162 48.033 44.502 92.536 70.039 1.364 17.356 

SDG 4 162 45.805 49.365 95.169 76.903 1.381 17.576 

SDG 5 162 32.448 43.348 75.796 60.165 0.850 10.819 

SDG 6 162 36.861 50.751 87.612 67.639 1.076 13.690 

SDG 7 162 57.301 34.936 92.237 71.128 1.854 23.594 

SDG 8 162 18.171 63.252 81.423 71.627 0.540 6.877 

SDG 9 162 54.450 14.561 69.011 35.060 1.554 19.783 

SDG 10 162 37.550 37.109 74.658 58.999 1.086 13.818 

SDG 11 162 25.967 58.917 84.884 71.812 0.815 10.376 

SDG 12 162 39.065 53.031 92.096 77.432 1.124 14.304 

SDG 13 162 14.956 76.130 91.086 86.611 0.325 4.131 

SDG 14 162 13.785 40.725 54.511 50.305 0.365 4.647 

SDG 15 162 23.391 48.856 72.248 64.807 0.488 6.211 

SDG 16 162 28.066 54.204 82.271 66.012 0.824 10.486 

SDG 17 162 20.759 53.184 73.943 64.458 0.476 6.060 

Note: 2019 SDG Index codebook, normalized regional scores, indicators and 114 sub-indicators for 17 SDG scores are available from: 

https://github.com/sdsna/2019GlobalIndex/raw/master/2019GlobalIndexResults.xlsx. Data Source: Sachs et al. [21]. 

“The SDG Index score and normalized scores by goal can be interpreted 
as the percentage of achievement… The difference between 100 and 
countries’ scores is therefore the distance in percentage that needs to be 
completed to achieving the SDGs and goals... The same basket of indicators 
is used for all countries to generate comparable scores and rankings...” [21]. 
Data, sub-indicators, indicators for each SDG and the methodology 
behind the SDG performance scores are independently audited by the 
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European Commission Joint Research Center Competence Center on 
Composite Indicators and Scoreboards in 2019 [22]. Please see [23] for 
methodological paper. Due to changes in the sub-indicator set and 
refinements in the methodology after this audit, SDG performance scores 
cannot be compared across the 2016, 2017 and 2018 datasets, therefore; 
time dimension cannot be included in this analysis. For the descriptive 
statistics of the data used in this article, see supplementary file.  

In this article, three methods of analysis are utilized sequentially to 
construct a computational intelligence approach in order to support 
policy (mix) designs at SDGs level. These methods of analysis are 
(1) artificial neural network analysis (multilayer perceptron with a 
backpropagation learning algorithm), (2) four-value fuzzy set calibration 
for classification, and finally, (3) the impact matrix cross-reference 
multiplication applied to this classification (MICMAC). By doing so, a 
neuro-fuzzy expert decision support system is methodologically 
constructed to support policy (mix) decisions and designs among SDGs 
aiming at achieving the targets of these SDGs (Figure 1). Figure 1 depicts 
how this computational intelligence system and analysis operate at a 
higher level of abstraction.  

 

Figure 1. A computational intelligence approach: A neuro-fuzzy expert decision support system. 

Assuming 17 SDGs form a complex yet a complete set of a latent 
system, and since MLPs are fully connected ANNs, in the first step, the 
computational operation starts with feeding 16 regionally adjusted SDG 
performance scores of 162 countries into an ANN MLP to approximate 
each left out SDG performance score. On a rotating basis, this 
computational operation continues until the least training, testing, 
holdout errors and their ANN structures are achieved for each SDG. 
Other than analyzing the synaptic weights, the quantified normalized 
importance values and percentages of each 16 approximator SDG 
performance score on each left out and approximated SDG performance 
score are retrieved from each ANN structure that comes with the least 
training, testing, holdout errors. These values and percentages, which are 
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computed via sensitivity analysis, are used to be able to fill the 17 × 17 
direct influence matrix after a fixed four-value fuzzy set calibration. For 
the internal structure of these ANN MLPs, the next section explains the 
model assumptions, structure, and parameters.  

In the second step, by applying four-value fuzzy set calibration to 
these quantified normalized importance values percentages, a 
qualitatively transformative classification for interpretability purposes is 
achieved (e.g., fuzzy inference). In this step, fuzzy calibration is set to 
fixed four-value calibration in line with the knowledge base of the 
methodology of 2019 SDG Index. The index considers four bands while 
assessing a country’s progress on a particular indicator [21]. 

As a result, in the third step, a 17 × 17 direct asymmetric influence 
matrix can be populated by this neuro-fuzzy expert decision support 
system using these qualitatively transformed classification values of the 
quantified normalized importance percentages. This matrix defines all 
impacts among all SDG performance scores, thus, impact matrix 
cross-reference multiplication revealed the performance drivers, 
linkages, autonomous and dependent SDG performance scores of this 
latent system in 4-quandrant. Policy mixes among these SDGs 
recommended to human policy experts in relation to the dependent and 
autonomous SDGs by this computational intelligence system and analysis. 
Such possible policy mixes are substantiated by the literature and 
practitioners’ cases (cognitive filter).  

A neuro-fuzzy expert decision support system in this sense refers to 
the combination of ANN, fuzzy logic, which is introduced by [24], and 
providing input to direct influence matrix of MICMAC analysis. This is 
performed to support policy mix decisions and designs of human policy 
experts. This combination synthesizes ANN, fuzzy logic and populating a 
structural analysis matrix that combines the constituent indicators of a 
system. Resulting neuro-fuzzy expert system constrains the individual 
weaknesses of ANNs, fuzzy logic, unknown nonlinearities by regression 
analyses, which would come with multi-collinearity issues and/or 
multi-way interaction effects, and by human policy experts. Thus, it 
makes use of their best advantages in a computational intelligence 
approach. The neuro-fuzzy expert decision support system in this sense is 
a first attempt to construct a multi-step learning machine (if ANN uses a 
learning algorithm, e.g., backpropagation, as in this article). It finds the 
parameters of a fuzzy system (e.g., according to fuzzy set rules) by 
exploiting the approximation techniques, coefficients and parameter 
estimates from ANN analysis [25–28], and populates the final direct 
influence matrix among the constituent indicators of the system by 
computational intelligence to support policy experts. Moreover, negative 
synaptic weights and positive synaptic weights can suggest tradeoffs and 
co-benefits, synergies, yet this is out of the scope of this article and part of 
future research directions. 
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First Step: Artificial Neural Networks: Multilayer Perceptron 

In recent years, increasing attention has been given to the 
development of sophisticated techniques for exploring patterns, 
regularities, and even rules in datasets. One class of such techniques is 
artificial neural networks (ANNs). ANNs are utilized in the quest for 
realizing artificial intelligence (AI) and computational intelligence (CI). 
Although ANNs are not very near solving complex problems [29], they are 
versatile, flexible and can be used for modeling (e.g., estimation, 
regression, and prediction) as well as classification. In the latter case, 
ANNs are known as universal approximators meaning that they are 
claimed to be capable of approximating any measurable function to any 
set degree of accuracy with no ex-ante theoretical constraints [30] in 
producing a predictive model for one or more dependent variables based 
on the values of the predictor variables. Comparisons of the performance 
of various ANN models show that MLP models can be superior to other 
neural networks models and regression models, as they were able to 
achieve a relatively lower prediction error in some contexts [31,32]. MLPs 
can also be competitive with multiple regression models even for 
relatively small datasets [33–35]. ANNs have theoretical properties, in 
particular, the ability to detect non-predefined relations such as 
nonlinear effects and/or interactions, via activation functions. This ability 
allows researchers to process nonlinear, multidimensional dependencies 
in data when they want to observe and learn from the data. MLPs are 
fully connected ANNS in a way that each node in one layer is connected 
with a certain weight to every node in the following layer. Via sensitivity 
analysis, the importance of each approximator on an approximated 
indicator can be computed on a rotating basis while determining the 
structure of the neural network that comes with the least training, testing 
and holdout errors. 

ANN network architecture 

The ANN network architecture used in this article has these following 
features:  

ANN MLP in this article uses an activation function that connects the 
weighted sums of neuron in a layer to the values of neurons in the 
succeeding layer. Hyperbolic tangent activation function is used at the 
hidden layers. This function receives real-valued items and transforms 
them to the range (−1, 1). The functional form is:  

γ(c) = tanh(c) = (ec − e–c) / (ec + e−c) 

To enable deeper learning, two hidden layers are used. Hidden layers 
contain unobservable network neurons, the number of which is not 
pre-determined. The ANN architecture contains a second hidden layer; 
and each hidden neuron in this second layer is a function of the weighted 
sum of the neurons in the first hidden layer. The same hyperbolic tangent 
activation function is used in both layers.  
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Between the hidden layer and output layer, a sigmoid activation 
function is used. This function receives real-valued items and transforms 
them to the range (0, 1). The functional form is:  

y(c) = 1/(1 + e−c) 

Inputs are normalized. Thus, normalized rescaling of dependent 
variables is also performed which is the required rescaling method for 
dependent variables if the output layer uses the sigmoid activation 
function, as it is the case in this article. To ensure that all rescaled 
dependent variable values fall within the range of the activation function, 
a correction parameter applied to the rescaling formula with a default 
value of 0.02, thus, final values fall between the range of the utilized 
sigmoid activation function, 0 and 1. The formula is: 

[x − (min − ε)]/[(max + ε) − (min − ε)] 

Partition dataset and training 

The dataset is partitioned into training sample (the data used to train 
the ANN and to obtain a model), testing sample (an independent set of 
data used to trace errors during training to prevent overtraining), and 
holdout sample (independent set of data used to assess the ability of the 
final neural network considering the error estimates for the holdout 
sample). This error provides an estimate of the predictive ability of the 
model because the holdout sample is not used to build the model. Cases 
are randomly assigned to each sample as training sample (~60%), testing 
sample (~20%) and holdout sample (~20%). Batch training, which is most 
useful for smaller datasets, is used to update the synaptic weights, with 
the condition that after processing all training data in the training dataset. 
As the optimization algorithm, the scaled conjugate gradient method is 
used to estimate these synaptic weights, the assumptions of which apply 
only to batch training. Training options for the scaled conjugate gradient 
algorithm are initial lambda 0.0000005 (which should be less than 
0.000001), initial sigma, 0.00005 (which should be less than 0.0001), 
interval center 0, interval offset ±0.5. These values define the interval in 
which the weight vectors are randomly generated by simulated 
annealing in finding the global minimum and moving away from local 
minimums during the optimization algorithm [36].  

These theoretical and parametrical settings introduce a cost of 
reduced interpretability of the model output [30]. ANNs in this sense are 
black boxes and the difficulty in interpreting the possible relationships 
between indicators emerge. In this article, this interpretability cost is 
handled by two other quantitative and qualitative approaches, explained 
in the next subsections.  
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Second Step: Four-Value Fuzzy Set Calibration for Qualitatively 
Transformative Classification  

Constructing a neuro-fuzzy expert decision support system in this 
article continues with applying fuzzy “if – then” rules to the outputs of 
ANN MLP. The four-value fuzzy set scheme is used. This scheme uses 
fixed numerical membership values 0, 0.33, 0.67, and 1.0 to indicate “fully 
out”, “more out than in”, “more in than out”, and “fully in”, respectively 
[37]. Such a scheme is especially useful for the situations where 
researchers have a considerable amount of information about cases (e.g., 
well documented codebook from data provider) yet the nature of the 
evidence may not be identical across cases. In this sense, the integrated 
application of computational intelligence and soft computing prior to 
structural analysis contributes to constraining the impact of 
interpretability issues by providing more interpretable models and/or 
outputs. ANNs with fuzzy logic are example of such soft computing since 
they provide solutions to problems, which are difficult to be solved with 
complete logical certainty. Soft computing approaches to AI, such as fuzzy 
systems, grey system theories, evolutionary computation, complements 
the interpretability. Thus, the fuzzy expert systems (FES) and ANNs share 
common origin and purposes, and can be integrated or sequentially 
implemented. In this way, they support carrying out a logical reasoning 
by combining the quantitative and qualitative information and 
meta‐knowledge in simulating AI [38]. 

Third Step: Impact Matrix Cross-Reference Multiplication Applied to 
a Neuro-Fuzzy Classification  

The Impact Matrix Cross-Reference Multiplication Applied to a 
Classification (MICMAC) [41,42] is a type of interpretive structural 
analysis, which aims to determine the most important variables of a 
system. Analysis uses a matrix which establishes the relations among 
these variables (e.g., procedure is to first defining the relevant variables 
by experts (in this article, SDGs), specifying the relations between the 
variables by experts (in this article by ANN plus fuzzy set analysis and 
output); identifying the key variables among all the variables proposed 
by the expert(s) by MICMAC method. This analysis is used in decision 
making to achieve desired objectives. Identification of key variables 
which could influence the system is necessary in order to develop 
appropriate policies and strategies [41,42]. The methodology for 
identification of key variables based on direct as well as indirect 
inter‐relationships may be difficult for experts, and not be clearly or 
immediately visible. Classification of the variables with respect to 
different types of significance by each one (cross-reference) helps 
observing these relationships. The relationships are also presented by 
using the influence (driving power)—dependence matrix. MICMAC has 
been increasingly used in a number of applications in various domains 
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since the middle 1980s by businesses as well as on society related topics 
(e.g., in measuring the key guidelines of third party logistics services 
providers; in environmental trend analysis, for the effectiveness of 
information system; waste management [43,44]. In this article, the 
computational inputs to this impact matrix are intended as expert 
decision support.  

RESULTS 

ANN MLP: Normalized Importance Values 

The ANN MLP analysis in this article is based on the combined 
training and testing samples leading to normalized importance values 
and percentages for each approximator SDG score for each approximated 
SDG score as a system on a rotating basis for each SDG (Table 2). Table 2 
below demonstrates the model specifications and the relative errors 
(0.001) as the average overall relative error (relative to the mean model).  

Table 2. Model summaries, Training (~60%), Testing (~20%) and Holdout (~20%) and relative errors. 

Predicted 

SDG 

Sample 

Size 

Training Testing Holdout Training 

Sum of 

Squares 

Error 

Training 

Relative 

Error 

Testing 

Sum of 

Squares 

Error 

Testing 

Relative 

Error 

Holdout 

Relative 

Error 
N & N & N & 

SDG1 N (162) 100 61.70% 27 16.70% 35 21.60% 0.006 0.001 0.002 0.001 0.001 

SDG2 N (162) 90 55.6% 39 24.1% 33 20.4% 0.003 0.001 0.001 0.001 0.001 

SDG3 N (162) 99 61.10% 32 19.80% 31 19.10% 0.003 0.001 0.001 0 0.001 

SDG4 N (162) 95 58.60% 33 20.40% 34 21.00% 0.006 0.001 0.002 0.001 0.001 

SDG5 N (162) 97 59.90% 37 28.80% 28 17.30% 0.004 0.001 0.002 0.001 0.001 

SDG6 N (162) 90 55.60% 30 18.50% 42 25.90% 0.005 0.001 0.002 0.001 0.001 

SDG7 N (162) 95 58.60% 33 20.40% 34 21.00% 0.006 0.001 0.002 0.001 0.001 

SDG8 N (162) 104 64.20% 30 18.50% 28 17.30% 0.005 0.001 0.002 0.001 0.001 

SDG9 N (162) 99 61.10% 32 19.80% 31 19.10% 0.004 0.001 0.001 0.001 0.001 

SDG10 N (162) 98 60.50% 35 21.60% 29 17.90% 0.004 0.001 0.002 0.001 0.001 

SDG11 N (162) 86 53.10% 29 17.90% 47 29.00% 0.005 0.001 0.002 0.001 0.001 

SDG12 N (162) 106 65.40% 21 13.00% 35 21.60% 0.005 0.001 0.001 0.001 0.001 

SDG13 N (162) 96 59.30% 33 20.40% 33 20.40% 0.003 0.001 0.001 0.001 0.001 

SDG14 N (162) 104 64.20% 29 17.90% 29 17.90% 0.005 0.001 0.001 0.001 0.001 

SDG15 N (162) 87 53.70% 29 17.90% 46 28.40% 0.003 0.001 0.001 0.001 0.001 

SDG16 N (162) 94 58.00% 35 21.60% 33 20.40% 0.004 0.001 0.001 0.001 0.001 

SDG17 N (162) 91 56.20% 38 23.50% 33 20.40% 0.002 0.001 0.001 0.001 0.001 

For demonstration purposes in Figure 2 and Table 3 only the results 
for SDG 9 are provided (Figure 2 and Table 3). Please see supplementary 
file for all 17 ANNS, model specifications, visual diagrams, parameter 
estimates, and computational logs. 
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Figure 2. ANN MLP network architecture for SDG 9. 
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Table 3. Normalized importance values and percentages of other SDGs for approximating SDG 9 
performance score. 

Independent Variable Importance by Sensitivity Analysis 

SDG Importance Normalized Importance 

SDG 1  0.011 5.3% 

SDG 2  0.117 57.7% 

SDG 3  0.087 42.9% 

SDG 4  0.029 14.1% 

SDG 5  0.017 8.4% 

SDG 6  0.098 48.5% 

SDG 7  0.056 27.8% 

SDG 8  0.064 31.4% 

SDG 10  0.040 19.7% 

SDG 11  0.031 15.4% 

SDG 12  0.202 100.0% 

SDG 13  0.081 40.3% 

SDG 14  0.023 11.3% 

SDG 15  0.053 26.2% 

SDG 16  0.013 6.3% 

SDG 17  0.080 39.4% 

Four-Value Fuzzy Set Calibration: Qualitatively Transformative 
Classification 

Table 4 below represents the normalized importance percentages of 
each SDG performance score for other SDG performance scores. This is 
the compilation of normalized importance percentage outputs from ANN 
MLP and sensitivity analyses in the first step (Table 4).  

Table 4. Four-value fuzzy set calibration and classification input in percentages. 

NI/P > V SDG

1 

SDG

2 

SDG

3 

SDG

4 

SDG

5 

SDG

6 

SDG

7 

SDG

8 

SDG

9 

SDG

10 

SDG

11 

SDG

12 

SDG

13 

SDG

14 

SDG

15 

SDG

16 

SDG

17 

SDG1  50.6 59.3 97.6 12.3 69.5 89.2 16.5 5.30 100 33.7 22.9 24.6 23.1 75.1 21.4 66.7 

SDG2 25.6  63.5 6.80 4.70 60.7 41.2 23.2 57.7 32.0 7.30 26.6 64.8 28.3 61.3 73.1 71.0 

SDG3 16.0 24.8  52.1 35.0 30.1 39.9 21.9 42.9 84.3 46.1 45.5 44.6 21.4 17.1 83.4 40.2 

SDG4 100 5.60 31.0  51.1 57.1 71.9 4.80 14.1 82.1 9.90 5.20 23.0 2.90 37.5 60.8 39.0 

SDG5 20.9 70.2 49.3 61.9  37.8 43.3 72.1 8.40 74.7 93.7 12.0 85.2 7.90 85.5 57.2 52.0 

SDG6 5.50 52.0 39.2 33.2 83.3  36.2 100 48.5 1.80 80.9 18.0 34.7 11.2 33.3 33.5 25.7 

SDG7 80.2 79.8 7.00 50.5 24.0 6.80  37.6 27.8 18.1 9.50 22.8 8.40 14.4 36.7 6.80 60.8 

SDG8 12.9 19.1 20.9 30.4 73.2 48.1 25.0  31.4 57.9 100 11.1 38.1 63.8 85.5 96.8 70.3 

SDG9 27.2 34.3 21.4 47.1 27.3 56.2 57.9 80.0  74.4 64.8 38.8 8.20 72.7 90.4 94.2 49.3 

SDG10 7.20 40.8 14.5 25.3 57.1 53.2 37.4 13.6 19.7  4.20 13.0 11.1 100 16.7 67.0 54.2 

SDG11 34.5 41.9 4.10 55.6 85.8 100 47.7 87.1 15.4 10.7  12.4 73.0 47.6 61.3 77.1 17.4 
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Table 4. Cont. 

NI/P > V SDG

1 

SDG

2 

SDG

3 

SDG

4 

SDG

5 

SDG

6 

SDG

7 

SDG

8 

SDG

9 

SDG

10 

SDG

11 

SDG

12 

SDG

13 

SDG

14 

SDG

15 

SDG

16 

SDG

17 

SDG12 48.4 100 100 100 100 78.8 100 70.3 100 62.9 49.8  77.9 39.7 86.6 100 22.7 

SDG13 16.5 26.9 54.3 26.8 64.6 41.5 19.3 18.3 40.3 74.1 37.9 100  64.2 100. 84.2 100 

SDG14 33.0 60.5 22.1 25.2 30.7 6.20 28.6 28.5 11.3 83.6 31.9 3.50 22.3  27.5 3.40 32.3 

SDG15 19.6 16.0 58.1 48.0 98.6 30.7 30.2 86.6 26.2 72.7 38.3 40.1 100 8.30  5.40 79.8 

SDG16 35.9 13.6 7.80 25.1 37.2 51.3 55.7 42.7 6.30 93.3 60.5 16.6 32.6 54.2 50.9  20.0 

SDG17 18.5 57.0 16.3 42.0 61.1 40.1 25.6 42.3 39.4 39.8 8.90 25.2 85.0 46.5 64.2 33.4  

Four-value fuzzy sets calibration is applied on these percentages 
following the IF-THEN rule: IF (Value > 66.7%, 3, IF (Value > 33.3%, 2, 
ELSE 1)) for a qualitatively transformative classification.  

Impact Matrix Cross-Reference Multiplication Applied to 
Neuro-Fuzzy Classification  

The matrix of direct influence (MDI)  

MDI describes the relations of direct influences between the indicators 
defining the system, here SDGs. The input to this matrix is equivalent to 
the output of four-value fuzzy set calibration classifier in the second step. 
Please note that qualitative transformation of “no influence”, “weak”, 
“moderate” and “strong influence” is enabled by this four-value fuzzy set 
calibration as classification (Table 5). Thus, “3” denotes strong influence; 
“2”, moderate, and “1”, weak influence. The result of this qualitatively 
transformative calibration for classification is given in Table 5.  

Table 5. Four-Value Fuzzy Set Calibration as Input to Matrix of Direct Influences (MDI) *. 

NI/P > 

v 

SDG

1 

SDG

2 

SDG

3 

SDG

4 

SDG

5 

SDG

6 

SDG

7 

SDG

8 

SDG

9 

SDG

10 

SDG

11 

SDG

12 

SDG

13 

SDG

14 

SDG

15 

SDG

16 

SDG

17 

SDG1 0 2 2 3 1 3 3 1 1 3 2 1 1 1 3 1 2 

SDG2 1 0 2 1 1 2 2 1 2 1 1 1 2 1 2 3 3 

SDG3 1 1 0 2 2 1 2 1 2 3 2 2 2 1 1 3 2 

SDG4 3 1 1 0 2 2 3 1 1 3 1 1 1 1 2 2 2 

SDG5 1 3 2 2 0 2 2 3 1 3 3 1 3 1 3 2 2 

SDG6 1 2 2 1 3 0 2 3 2 1 3 1 2 1 1 2 1 

SDG7 3 3 1 2 1 1 0 2 1 1 1 1 1 1 2 1 2 

SDG8 1 1 1 1 3 2 1 0 1 2 3 1 2 2 3 3 3 

SDG9 1 2 1 2 1 2 2 3 0 3 2 2 1 3 3 3 2 

SDG10 1 2 1 1 2 2 2 1 1 0 1 1 1 3 1 3 2 

SDG11 2 2 1 2 3 3 2 3 1 1 0 1 3 2 2 3 1 

SDG12 2 3 3 3 3 3 3 3 3 2 2 0 3 2 3 3 1 

SDG13 1 1 2 1 2 2 1 1 2 3 2 3 0 2 3 3 3 

SDG14 1 2 1 1 1 1 1 1 1 3 1 1 1 0 1 1 1 

SDG15 1 1 2 2 3 1 1 3 1 3 2 2 3 1 0 1 3 

SDG16 2 1 1 1 2 2 2 2 1 3 2 1 1 2 2 0 1 

SDG17 1 2 1 2 2 2 1 2 2 2 1 1 3 2 2 2 0 

* NI: Normalized Importance; P: Predicted; 3 denotes, strong influence; 2, moderate; and 1, weak influence. 
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Direct influence/dependence map 

This map is set by the matrix of direct influences (MDI) (Figure 3). 

 

Figure 3. Direct influence/dependence map. 

Direct influence graph 

The direct influence graph below is set by the matrix of direct 
influences (MDI) (Figure 4). 

 

Figure 4. Direct influence graph. 
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DISCUSSION 

For overall system performance, the most influential drivers are 
SDG12 (Sustainable Production and Consumption), SDG 9 (Industry, 
Innovation, and Infrastructure) and SDG 11 (Sustainable Cities and 
Communities). The analysis also suggests that SDG 11 (Sustainable Cities 
and Communities) locates at the vicinity of influence-dependence 
equilibrium of the overall SDG performance system. These driver SDGs 
are more capable of influencing the performance of other SDGs. The 
performance on these driver and linkage SDGs increases the 
performance of the system as a whole. Thus, they are important SDGs for 
overall system performance. Yet, policy integration and policy mixes 
among these SDGs are recommended in relation to the dependent and 
autonomous SDG performances to create guided co-benefits and 
synergies. Similarly, SDG 5 (Gender Equality) and SDG 13 (Climate Action) 
cluster in influential yet relatively more dependent quadrant, as 
performance linkages of the SDGs performance system. These linkage 
SDGs are essential to the evolution of the system globally. If the 
performance driver and linkage SDGs can be well-addressed with 
capable policy mixes in relation to the dependent and autonomous SDGs, 
this would provide reliable and inclusive foundations for increasing the 
performance of dependent SDGs (SDG 2, 6, 7, 8, 10, 15, 16, 17) and 
autonomous SDGs (SDG 1, 3, 4, 14). Thus, the performance of overall SDGs 
system [45].  

One example relevant to this finding on drivers and linkages is the 
SDG Fund, which is an international multi-donor and multi-agency 
development mechanism created in 2014 by the UN to support 
sustainable development activities through integrated and 
multidimensional joint programmes. The programmes of SDG Fund 
embed three crosscutting issues: sustainability, gender equality and 
public-private partnerships [46]. Two of them are determined as 
performance drivers (SDG 12) and linkages (SDG 5), and the last one, as a 
dependent SDG 17 (Partnerships for the Goals) in this article. Another 
example is, according to this analysis, SDG 2 performance, which is a 
dependent one on other SDG performances, as SDG 6 and SDG 15 scores 
are. This finding suggests that the issues in these policy areas could be 
deliberately, simultaneously, and constructively addressed within a 
policy mix.  

This finding is supported by the literature: e.g., the management of 
phosphorus use to intensify food production to address SDG 2 (zero 
hunger) and minimizing ecosystem impacts (SDG 15 Life on land, SDG 6 
Water and Sanitation) is discussed, e.g., in terms of ensuring food security 
in poorer nations by redistributing phosphorus use from excess to deficit 
regions [47]. In the literature, comparable considerations are also found 
for the nitrogen cycle [48], water [49], land-use change [50] and pollution 
levels. On this finding, the SDG Fund operates in 22 countries to pilot 
integrated approaches to SDGs in sectorial areas, targets inclusive 
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economic growth (SDG 8) for poverty eradication, food security and 
nutrition and water and sanitation [46]. Leading role for such a policy 
mix design and implementation and for localization guidelines at 
international level would be on IFAD (International Fund for Agricultural 
Development), WFP (World Food Programme) and FAO (The Food and 
Agriculture Organization of the United Nations).  

SDG 16, relating to Peace, Justice and Strong Institutions and 
sustainable governance is also dependent on other SDG performances 
according to the analysis in this article. The integration of environmental 
and socio-economic policies at all levels and among all SDGs would 
necessitate interacting governance mechanisms.  

It is intuitive that SDG 10 (Reduced Inequalities) is highly dependent 
and SDG 14 (Life below water) is disconnected from the overall system 
performance, which is a finding also supported by the grey literature 
[21,51]. The proximity of SDG 17 (Partnerships for the Goals) to linkages 
quadrant (consisting of indicators for the evolution of system 
performance) is also a promising finding because partnerships for the 
goals are expected to bring forward potential positive performance 
spillovers. The detection of eight dependent SDGs, the number of them, 
and the thematic areas they are in also support the debates in the 
aforementioned literature on SDG interactions with respect to the 
existence of trade-offs.  

The overall simplified output of this computational intelligence 
approach can be interpreted as designing policy mixes as: (Driver SDGs) 
for (Linkage SDGs) to (also) address (Dependent SDGs). This main 
recommendation is a call for policy mixes among drivers (SDGs 12, 9, 11) 
which come with high impact on the other SDGs performances, thus, with 
a high priority for policy mixes, and linkages (SDG 5, 13), which are 
important for the evolution of the overall system performance. Yet with a 
view on increasing and/or at least not reducing, the performance of 
dependent SDGs such that policy mixes on driver and linkage SDGs need 
to consider and ensure the potential positive impacts on the performance 
of dependent SDGs. 

To exemplify this main recommendation, for instance, a policy mix 
design among SDG 9 (Industry, Innovation, and Infrastructure) guided 
towards SDG 13 (Climate Action) in order to address challenges related to 
SDG 15 (Life on Land) and/or SDG 14 (Life below Water) can be given as 
an example. This policy mix activates and increases the performance of 
so far autonomous SDG 14. Another example for a policy mix could be 
Responsible Innovation (Mix between drivers SDG 12 and 9) for Gender 
Equality (SDG 5 Linkages) to address (Dependent SDGs) e.g., decent work 
and economic growth (SDG 8), with a broader aim of reducing 
inequalities (SDG 10). These policy mixes emphasize guided positive 
synergies other than hands-off trade-offs among SDGs. Yet in all, SDG 4 
(Quality Education) should be included in these policy mixes as both 
beneficiary, recipient and supporter, enabler of innovations since 
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autonomous SDG 4 performance remains to be adapted and integrated to 
the overall system performance in order to increase it. 

Finally, the aim of this analysis is not to reveal the exact causal 
mechanisms through which the influence of one SDG is carried onto the 
other SDGs. Thus, these findings require further in-depth qualitative 
research and process tracing which can contribute to substantiate, 
support, challenge, or refute these findings. 

CONCLUSIONS 

Revealing performance influences and interdependencies among 
SDGs and indicating the policy areas that require informed policy 
interventions and mixes are deemed contributory towards the 
achievement of SDGs. The neuro-fuzzy expert decision support system 
and analysis in this article as a computational intelligence approach, uses 
data of 162 countries by 17 SDGs. Findings stress the importance of 
performance drivers and linkages, as the common denominators across 
so-called nations and localities. The importance of local policy mixes and 
actions among driver and linkage SDGs in order to create co-benefits and 
synergies in relation to dependent SDGs and autonomous SDGs is also 
emphasized such that dependent SDGs are prone to be negatively 
influenced by other SDGs, even though those other SDGS are 
performance drivers. Similarly, performance on SDG 4 (Quality 
Education) does not drive the overall system performance, which calls for 
educational rethinking and reform action, and duality of education as 
both beneficiary and user of sustainable innovations and contributor to 
developing sustainable innovations. These findings can be used to 
support collective reflection processes of working committees made up of 
human policy experts while conducting an in-depth interpretive 
qualitative structural analysis.  

For future research directions, similar analyses incorporating a 
temporal dimension can be performed at the targets and national level to 
support policy experts’ decision-making processes. It is true that 
countries may have different priorities and targets, and are likely to 
invest in different emphases on various SDGs and targets depending on 
their national geo-historical context of political and economic priorities. 
For instance, according to 2019 SDG Index scores, Denmark, which tops 
the list on the SDG Index, is in the 143rd position for SDG 12 and the 
Central African Republic, which is at the bottom of the 2019 SDG Index, 
holds the 2nd best position on SDG 13 [52]. Yet, deeper quantitative and 
qualitative analyses of underlying interactions among targets and goals 
in specific sub-national contexts which can reveal further trade-offs, 
and/or co-benefits that are important to inform local policy design, policy 
mixes, and policy instruments (at the level of targets) are needed.  

In this respect, this article is a first attempt to show how local, national, 
and international policy makers and bureaucrats can deliver on their 
promises by not only isolating the momenta and singling out some 
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selected SDGs but also by situating potential positive interactions among 
SDGs and associated targets from a perspective of policy integration and 
policy mixes. It would be equally interesting to observe and analyze 
whether direct influence matrices filled by computational intelligence 
and policy experts would converge or diverge (and if so, why). Initiation 
of local policy mix designs and implementation of wide-ranging yet 
interacting and synergetic policy mixes and accompanying actions are 
needed globally to achieve the ambitious targets of the SDGs until the 
year 2030.  
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