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ABSTRACT 

In light of contemporary challenges in the realm of energy, the 
management of energy has emerged as a critical concern, particularly 
within the construction sector, an eminent contributor to global energy 
consumption. With the growing urgency to optimize energy utilization, the 
ability to forecast energy consumption patterns takes on paramount 
importance in devising sustainable energy management protocols. 
Consequently, the present paper seeks to present a comprehensive review 
concerning the application of artificial neural networks (ANNs) in the 
prediction of building energy consumption. The subject of the review is 
explored in depth, with a thorough analysis conducted on how various 
ANN architectures are commonly used across different situations. 
Furthermore, the examination expands to include a variety of training 
algorithms that are employed, shedding light on how each of them 
contributes to making predictions more accurate. Additionally, the study 
evaluates the different training functions that are used within ANN 
models, highlighting their role in improving the accuracy of predictions. 
By bringing together these different aspects, this paper aims to provide 
insights that help us understand how ANNs are used to predict building 
energy usage, showing us how they have evolved, the trends they follow, 
and the challenges they face. This effort ultimately leads to a better grasp 
of the important role ANNs play in shaping effective energy management 
approaches. 
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NOMENCLATURE 

ANN, artificial neural netwoks; NARNN, nonlinear autoregressive neural 
network; ANR, artificial neural regression; NSEC, nash-sutcliffe efficiency 
coefficient; CBR, case-based reasoning; PCA, principal component analysis; 
CV-RMSE, coefficient of variation of root-mean-square error; R, correlation 
coefficient; FFN, feed forward networks; RBF, radial basis functions; GRBF, 
gaussian radial basis function; RBFNN, radial basis function neural 
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network; GRNN, general regression neural network; RBNN, radial basis 
neural networks; HVAC, heating—ventilation and air conditioning; RMSE, 
root mean square error; MAPE, mean absolute percentage error; RNN, 
recurrent neural networks 

INTRODUCTION 

The importance of building energy efficiency is underscored as a 
cornerstone of sustainable development, necessitating the mitigation of 
escalating energy demands in the modern world. Given the substantial 
energy consumption attributed to the construction sector, the 
enhancement of building efficiency assumes a critical role in curbing 
energy wastage and carbon emissions. Central to achieving optimal 
energy efficiency is the accurate prediction of energy consumption 
patterns within buildings. Building energy prediction, therefore, emerges 
as an indispensable tool. By anticipating trends in energy usage, strategic 
interventions can be devised and implemented to optimize performance, 
minimize inefficiencies, and reduce operational expenditures. Within this 
complex framework, the application of artificial neural networks (ANNs) 
becomes transformative. Drawing inspiration from the human brain, 
these neural networks demonstrate remarkable proficiency in 
deciphering intricate patterns within vast datasets. In the context of 
building energy prediction, ANNs offer the capacity to harness historical 
and real-time data, enabling precise forecasts of energy consumption 
behaviors. The utilization of ANNs unlocks the potential for achieving 
unparalleled levels of accuracy, adaptability, and forward-looking 
insights. This, in turn, paves a path toward an energy-efficient future, 
where buildings function as intelligent, sustainable, and efficient 
contributors to the global energy landscape. The main idea of artificial 
neural networks (ANNs) is derived from the neurobiological domain. 
Several types of ANNs have been proposed for various applications, 
including feed forward networks (FFNs), radial basis function networks 
(RBFNs), and recurrent neural networks (RNNs). Each ANN consists of 
multiple layers (minimum two layers) of neurons and an activation 
function that forms connections between the neurons, with the most 
commonly used being linear, sigmoid, and threshold functions [1]. The 
FFN is the first and simplest model used. There are no cycles between 
input and output neurons; information moves in only one direction within 
the network. On the other hand, RNNs use their internal memory to learn 
from past experiences by allowing loops from output to input. RNNs have 
been proposed in various architectures, including fully connected 
memory, recursive structures, etc. This type of neural network is generally 
used to solve very deep learning tasks (i.e., tasks that require more than 
1000 layers) [2,3]. 

In the case of RBFNs, a radial basis function serves as an activation 
function, providing a linear combination between the inputs and neuron 
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parameters as outputs. This type of network is highly effective for the 
estimation and prediction of time series data [4,5]. 

In the building sector, ANN models have been applied for the rapid 
estimation of heating and cooling loads [6,7], energy consumption [8,9], 
energy efficiency [10], as well as building management systems to ensure 
automatic energy consumption control [11]. 

This study aims to analyze a range of studies employing artificial neural 
network (ANN) predictive models for building energy prediction in 
diverse cases. The investigation focuses on the ANN types utilized, the 
training algorithms applied, and the training functions employed. By 
examining these elements, the research intends to provide insights into 
the suitability of different ANN architectures, the effectiveness of training 
algorithms in enhancing prediction accuracy, and the impact of training 
functions on model learning. This analysis contributes to understanding 
optimal configurations for accurate building energy prediction using ANN 
models, aiding researchers and practitioners in making informed choices 
for energy-efficient building systems. 

OVERVIEW ARTIFICIAL NEURAL NETWORK 

ANN Architecture Presentation 

Machine learning, a subset of artificial intelligence (AI), encompasses 
various methodologies. Among these, the artificial neural network (ANN) 
stands out as a prominent technique. ANNs are information processing 
systems inspired by the interconnected neurons found in biological 
systems. McCulloch and Pitts [12] authored a paper in which they put forth 
a hypothesis on the functioning of neurons and constructed rudimentary 
neural networks using electrical circuits as a means of modeling their 
hypotheses. 

In 1958, Rosenblatt [13] introduced a simplistic single-layer perceptron 
designed to categorize a continuous set of inputs into one of two possible 
classifications. Since that time, artificial neural networks (ANNs) have 
undergone significant evolution and advancements, contributing to their 
increasing prominence. Notably, ANNs find widespread utility in 
applications such as pattern recognition and prediction/forecasting. ANNs 
acquire the ability to perform tasks without the need for explicit, task-
specific programming. Instead, they learn from data by adjusting their 
internal parameters to minimize errors. A neural network is composed of 
numerous interconnected neurons, each node independently executing 
computations (as illustrated in Figure 1), connected through typically 
weighted connections. During the training phase, these connection 
weights undergo adjustments and fine-tuning based on the presented 
data. 
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Figure 1. Neuron model. 

Figure 1 depicts the input values, x1, x2, ..., xm; the connection weights, 
w1, w2, ..., wm; the activation function, f; and the specific neuron’s output, 
Y. Common activation functions encompass the identity function, binary 
step, logistic, hyperbolic tan, rectified linear unit, and Gaussian. However, 
a comprehensive analysis of these activation functions in this paper’s 
context is beyond the scope. It is essential to acknowledge the existence of 
various activation functions tailored to specific data and applications. 

 

Figure 2. Atypical ANN topology. 

Figure 2 presents a typical ANN architecture, where the output, y, 
represents the estimated value at a future time. This particular ANN is 
denoted as a feedforward neural network, wherein computations 
exclusively progress in the forward direction. ANNs typically comprise 
three primary layer types: an input layer, hidden layer(s), and an output 
layer. Multiple levels of hidden layers can be incorporated into an ANN. 
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The input layer utilizes regressor variable(s) to estimate the target 
variable. The connections between these layers are weighted, with the 
weights determined during the neural network’s training phase. A variety 
of training methods, such as backpropagation and genetic algorithms, are 
at one’s disposal. The ultimate training objective is the minimization of 
error between the ANN’s output and the target output, utilizing a set of 
known inputs and target values. 

Diverse Types of Artificial Neural Networks 

This section provides a concise overview of the primary categories of 
standard ANNs commonly employed in building energy prediction. 

A feedforward neural network (FFNN), is characterized by the 
unidirectional flow of information through its layers, including an input 
layer, one or more hidden layers, and an output layer (Figure 2). Each 
neuron in FFNN is connected to every neuron in the subsequent layer, 
making it suitable for complex tasks like pattern recognition and 
classification. 

Radial basis neural networks (RBNN) are unique in their structure. 
They typically consist of an input layer, a single hidden layer with radial 
basis functions (RBFs), and an output layer. The key difference is that 
RBNNs use RBFs in the hidden layer, making them particularly effective 
for approximation tasks and function approximation. 

Generalized regression neural networks (GRNN) are another variant 
with distinct characteristics. They consist of only two layers, the input 
layer, and a single gaussian radial basis function (GRBF) layer. Unlike 
FFNNs, GRNNs are primarily used for regression tasks and offer a simple 
yet efficient means of mapping input data to continuous output values. 

NARNN, or nonlinear autoregressive neural network, is another 
variant of artificial neural networks tailored for time-series forecasting 
and prediction tasks. Unlike feedforward neural networks (FFNN), NARNN 
is a recurrent neural network (RNN) architecture. It features a feedback 
loop that allows information to flow not only from the input layer to the 
output layer but also in a cyclic manner through one or more hidden 
layers. This cyclic feedback enables NARNN to capture temporal 
dependencies and sequential patterns in time-series data effectively. 

To sum up, artificial neural networks (ANNs) can be classified into 
distinct models. Feedforward neural networks (FFNN) offer a versatile tool 
for a wide range of applications, while radial basis neural networks 
(RBNN) excel in approximating complex functions. Generalized regression 
neural networks (GRNN) provide a straightforward approach for 
regression tasks. In contrast, nonlinear autoregressive neural networks 
(NARNN) specialize in modeling sequential patterns within time-series 
data. The selection of the most suitable ANN model hinges upon the 
specific demands and characteristics of the research problem at hand. 
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The following table provides a concise comparison of the mentioned 
ANN models based on their architectures, primary uses, and key 
characteristics. 

Table 1. Concise comparison of the mentioned ANN models. 

ANN Model Architecture Primary use Key characteristics 

Feedforward 
neural network 
(FFNN) 

Input layer, one or 
more hidden layers, 
output layer 

Pattern 
recognition, 
classification 

Unidirectional flow of information; 
suitable for complex tasks; each neuron 
connected to every neuron in the 
subsequent layer. 

Radial basis neural 
networks (RBNN) 

Input layer, single 
hidden layer with 
RBFs, output layer 

Approximation 
tasks, function 
approximation 

Unique structure with RBFs in the 
hidden layer; effective for 
approximation tasks; typically consists 
of an input layer, a single hidden layer, 
and an output layer. 

Generalized 
regression neural 
networks (GRNN) 

Input layer, single 
GRBF layer 

Regression tasks 

Two-layer architecture; primarily used 
for regression tasks; offers a simple yet 
efficient means of mapping input data 
to continuous output values. 

Nonlinear 
autoregressive 
neural network 
(NARNN) 

Recurrent neural 
network (RNN) 
architecture 

Time-series 
forecasting, 
prediction tasks 

Recurrent architecture with a feedback 
loop; cyclic flow of information through 
hidden layers; effective in capturing 
temporal dependencies and sequential 
patterns. 

METHODOLOGY OF THE LITERATURE REVIEW 

The literature review includes a selection of pertinent papers published 
between 2001 and 2023. These papers were sourced from various 
academic databases such as Science Direct, Taylor and Francis, IEEE 
Xplore, and Google Scholar. 

The process of gathering data began with keyword-based searches, 
incorporating terms like “forecasting”, “prediction”, “neural networks”, 
“buildings”, “energy”, “data-driven”, “electricity”, “heating”, “cooling”, and 
“artificial intelligence”. This involved creating keyword combinations 
such as “neural network building energy prediction”, “energy predicting 
building”, and “data-driven building energy”. 

Papers were considered for inclusion if they met the following criteria: 
(i) they provided sufficient details regarding artificial neural network 
(ANN) prediction methods; (ii) they contained one or more target variables 
associated with building energy use and/or demand prediction; and (iii) 
they presented sufficient information about location and performance 
indicators. 

The subsequent phase involved the analysis of collected data. Relevant 
information from each paper was systematically organized into a 
consolidated table (Table 1). This information includes the paper’s 
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references, the year of publication, the study location the ANN used model, 
The training algorithm, the used activation function, and performance 
metrics. 

Finally, the concluding phase of the review discusses the limitations 
inherent in ANN models and identifies prospective areas for future 
research in the field. Figure 3 illustrates the research methodology as 
follow. 

 

Figure 3. Literature review methodology. 
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THE ROLE OF ARTIFICIAL NEURAL NETWORKS IN BUILDING 
ENERGY MANAGEMENT 

Artificial neural networks (ANNs) play a crucial role in addressing key 
challenges in building energy management. One of the primary issues in 
this domain is the dynamic and nonlinear nature of energy consumption 
patterns within buildings. Traditional modeling approaches often struggle 
to capture the intricate relationships between various influencing factors. 
ANNs, with their ability to model complex and nonlinear relationships, 
provide an effective solution. By training on historical energy 
consumption data, ANNs can learn and adapt to the diverse factors 
influencing energy usage, allowing for accurate predictions of future 
consumption. 

The versatility of ANNs, such as feedforward neural networks (FFNN), 
radial basis neural networks (RBNN), and nonlinear autoregressive neural 
networks (NARNN), enables them to handle diverse tasks in building 
energy management. For instance, FFNNs are adept at pattern recognition 
and classification, making them suitable for identifying energy 
consumption patterns. RBNNs, with their radial basis functions, excel in 
approximating complex functions, providing an effective tool for 
modeling energy consumption dynamics. NARNNs, as recurrent neural 
networks (RNNs), are specifically designed for time-series forecasting, 
allowing them to capture temporal dependencies and sequential patterns 
in energy data. 

The predictive capabilities of ANNs contribute significantly to 
optimizing energy consumption in buildings. By utilizing these models, 
building operators and managers can make informed decisions regarding 
energy efficiency measures, resource allocation, and system optimization. 
ANNs, through continuous learning and adaptation, offer a dynamic and 
responsive approach to building energy management, allowing for real-
time adjustments based on evolving conditions. In essence, the integration 
of ANNs into building energy management systems provides a powerful 
tool for accurately predicting, optimizing, and managing energy 
consumption in the built environment. 

ANN APPLICATIONS REVIEW 

In 1995, an initial investigation was conducted to explore the utilization 
of artificial neural networks (ANN) in predicting energy usage. The study 
focused on employing the feedforward neural network (FFN) model to 
predict the electricity consumption of a building situated in a tropical 
climate. The predictions were based on occupancy and temperature data. 
Mena et al. [14] used the ANN method to estimate short-term electricity 
demand for the CIESOL bioclimatic building, located in south-eastern 
Spain. The experiments carried out show fast prediction with acceptable 
final results for real data, with a short-term prediction horizon equal to 60 
minutes and an average error of 11.48%. Mihalakakou et al. [15] applied 
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both feedforward neural networks (FFN) and recurrent neural networks 
(RNN) to predict the hourly electricity consumption of a residential 
building in Athens. Their models considered meteorological variables 
such as air temperature and solar radiation, utilizing six years’ worth of 
time series data. The results show that the relative error values range from 
8% to 15%. 

Gonzales & Zamarreno [16] employed a feedback neural network to 
estimate short-term electrical energy consumption. Their investigation 
focused on analyzing the impact of the number of neurons in the hidden 
layers and the size of the data used for the artificial neural network (ANN) 
on the model’s accuracy. The mean absolute percentage error (MAPE) is 
estimated to be 1.945. Li et al. [17] introduced an optimized artificial 
neural network (ANN) designed for predicting hourly electricity 
consumption, utilizing a partial optimization algorithm. They employed 
principal component analysis (PCA) to eliminate unnecessary input 
variables derived from two datasets, namely ASHRAE Shootout I and 
Hanzou library building. 

Platon et al. [18] applied principal component analysis (PCA) to 
investigate the input variables of the NAS in predicting the hourly 
electricity consumption of an institutional building in Canada. The results 
of the comparison of ANR (artificial neural regression) and case-based 
reasoning (CBR) show that ANR is superior in terms of accuracy. In fact, 
the error of the CBR is around 13%, while that of the ANN model is around 
7%. Nevertheless, due to the enhanced transparency offered by case-based 
reasoning (CBR) compared to artificial neural networks (ANN), coupled 
with its capability to learn effectively from limited datasets, CBR stands 
out as a potential alternative approach for intricate systems relying on a 
multitude of variables. 

Hong et al. [19] utilized both artificial neural networks (ANN) and 
statistical analysis to evaluate the energy efficiency of primary and 
secondary schools in the UK, specifically estimating electricity and heating 
consumption. The comparison of results with benchmarks revealed the 
superior accuracy of ANN in achieving energy balance. The study 
concluded that statistical benchmarks could be enhanced by incorporating 
additional parameters, such as the number of pupils and school density, 
to yield more precise assessments in this sector. Nonetheless, it was 
observed that non-artificial intelligence system (NAS) prediction accuracy 
falls short when compared to simulation and engineering calculations. 
Wong et al. [20] used ANN to assess the dynamic energy performance of a 
commercial building in Hong Kong. EnergyPlus software and interior 
reflection calculation algorithms are applied to generate the daily energy 
consumption of the building. The nash-sutcliffe efficiency coefficient 
(NSEC) is used as the primary measure to investigate the accuracy of the 
neural network in predicting cooling, heating, electric lighting and total 
electricity consumption. The NSEC results are 0.994, 0.940, 0.993 and 0.996 
respectively. The error analysis showed that electricity consumption for 
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lighting had the smallest errors, ranging from 0.2% to 3.6%, with a 
coefficient of variation of the root mean square error ranging from 3% to 
5.6%. 

Artificial neural networks can also be used to determine the 
parameters for assessing the energy performance of buildings. Lundin et 
al. [21] proposed a method for predicting the total heat loss coefficient, 
total heat capacity and gain factor, which are key elements in estimating 
energy efficiency. The method was validated using a test cell and the 
results showed good performance with RMSE values ranging from 2.5% to 
9.4%. 

Khayatian et al. [22] predicted energy performance certificates for 
residential buildings using an ANN model and the Italian CENED database. 
A combined set of direct and calculated characteristics are used as model 
inputs, and heating demand indicators (derived using the CENED 
software) are used as network outputs. The results of the study show that 
the estimation of the heating demand indicator can be performed using 
only 12 variables from an energy certificate. To ensure maximum 
accuracy, 100 neural network models are trained using stochastic 
initialization to obtain a frequency distribution and confidence interval. 
The final results indicate that nearly 95% of the data are within ±3 
confidence intervals. Ascione et al. [10] presented an artificial neural 
network (ANN) designed to assess both energy consumption and thermal 
comfort of occupants, with a focus on predicting the energy performance 
of buildings constructed in southern Italy between 1920 and 1970. The 
energy evaluation of these buildings utilized the EnergyPlus software, and 
an enhancement to the network parameters was proposed through a 
simulation-based sensitivity/uncertainty analysis. The study considered 
new buildings and renovated stock separately, utilizing the ANN to 
optimize upgrade parameters in the case of the latter. For the former, 
three distinct single-output ANNs were developed. These ANNs aimed to 
predict the primary energy consumption related to space heating and 
cooling, as well as the ratio of annual discomfort hours. The input 
parameters for these networks encompassed overall building features 
such as geometry, envelope, heating, ventilation, and air conditioning. The 
models performed well, with a correlation coefficient ranging from 0.96 to 
0.995 and a relative error between 2% and 11%. Kalogirou et al. [23] 
utilized TRNSYS to predict the daily heat loads of prototype residential 
structures featuring diverse wall types (single and double) and roof 
configurations (varied insulation) based on typical meteorological data 
specific to Cyprus. The TRNSYS software served as the energy evaluation 
tool for all scenarios, and the accuracy of the data was verified by 
validating the building energy consumption through a comparison with 
actual measurements. The performance of the model was evaluated by the 
coefficient of determination R², which varied between 0.9896 and 0.9918. 
Karatasou et al. [8] created a feedforward neural network (FFN) model to 
predict hourly energy loads in residential buildings located in Athens. The 
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study delves into exploring the influence of different parameters on the 
accuracy of the trained model, revealing that factors like humidity and 
wind speed have less significance and can be excluded from the training 
parameters. Additionally, the research demonstrates the impact of 
statistical analysis on enhancing the artificial neural network (ANN) 
model and achieving a 24-hour-ahead prediction of energy consumption. 
These statistical methods involve hypothesis testing, information criteria, 
and cross-validation during the pre-processing and development stages of 
the model. Later, Dombayci [24] used the ANN method to predict the 
hourly energy consumption of a simple model house whose construction 
is based on Turkish standards. The degree-hour method is applied to 
derive the hourly energy consumption to be used in training neural 
networks. The models are suitable for energy management of a single 
simple residential building as they do not take into account many features. 
The best prediction is obtained by the artificial neural network (ANN) 
model with 29 neurons. According to the results obtained, the respective 
values of RMSE, R² and MAPE for training are 1.2575, 0.9907 and 0.2091; 
however, for the test phase, these values are 1.2125, 0.9880 and 0.2081, 
respectively. Kialashaki & Reilsel [25] compared the artificial neural 
network method with multilinear regression for estimating the energy 
demand of domestic buildings in the United States. Seven independent 
variables (population, gross domestic product, house size, median 
household income, residential electricity costs, natural gas and oil) were 
selected from different data sources (1984–2010) to represent building 
characteristics. The performance of the two forecasting models is similar 
in terms of accuracy over the test period, although they show different 
trends. This difference could be explained by the greater sensitivity of the 
NAS models to recent economic fluctuations, whereas the regression 
models simply predict overall trends in individual parameters. 
Antanasijevic et al. [26] compared ANR with linear and polynomial 
regression models to predict energy consumption using building data 
from 26 European countries over the period 2004 to 2012. The results 
showed a 4.5% improvement of the ANR in terms of accuracy (mean 
absolute percentage error). 

Neto & Fiorelli [27] compared the prediction of the energy requirement 
of a building in Brazil provided by a ANN model and the EnergyPlus 
simulation software. It was found that outdoor temperature was more 
important than humidity and solar radiation in estimating energy 
consumption in the case studied. The authors showed that the ANN is more 
accurate than the detailed simulation model, particularly in short-term 
prediction (relative error of 10%). They conclude that poor assessment of 
lighting and occupancy is the main reason for uncertainty in engineering 
models. Popescu et al. [28] developed an original simulation and models 
based on ANN to predict the hourly heating energy demand of buildings 
connected to the district heating system, located in Romania. Climatic and 
mass flow variables for the previous 24 hours are used as input data. The 
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comparison between the results obtained with the proposed models and 
conventional methods highlights the possibility of implementing, using 
the proposed methodology, management policies for a district that offer 
significant and profitable energy saving opportunities. Deb et al. [29] also 
used the previous five days’ data as inputs to the ANN model to forecast 
the daily cooling demand of three institutional buildings in Singapore. The 
results show that the ANN model can predict the next day’s energy use 
with good accuracy based on the data from the previous five days. The 
details of the model’s development and architecture are discussed in 
depth. In addition, the predicted output is fed back as an input to predict 
the next day’s output, with an R² accuracy greater than 0.94 for predicting 
energy use over the next 20 days. It is also noted that this methodology can 
be successfully applied to other institutional buildings. Olofsson & 
Anderson [30] predicted the daily heating consumption of six building 
families in Sweden constructed in the 1970s, with renovations carried out 
in the early 1990s. Measurements were taken both before and after the 
renovation process. The artificial neural network (ANN) demonstrated 
effective and accurate long-term energy requirement predictions based on 
short-term measured data, achieving a strong correlation (R between 0.90 
and 0.95). Principal component analysis (PCA) was also employed to 
condense the input elements, including year of construction, number of 
floors, frame, floor area, number of inhabitants, and ventilation system, 
down to four significant factors. Ekici & Aksoy [31] used an ANR model to 
predict the heating loads of three different buildings taking into account 
climatic information. The heating energy demand of the buildings studied 
is calculated using a finite-difference approach to the one-dimensional 
transient heat conduction problem. When comparing the results obtained 
by the ANN model in this study with the numerical results, an average 
accuracy ranging from 94.8% to 98.5% was observed. Paudel et al. [32] 
used a pseudo-dynamic ANN to predict heating energy consumption by 
focusing on the building occupancy profile and short-term operational 
heating power level characteristics. The pseudo-dynamic model is applied 
to a case study of a French Institution building and its results are 
compared with those of static neural network models. The results show 
correlation coefficients of 0.82 and 0.89 (with an energy consumption 
error of 0.02%) during the learning phase for the static and pseudo-
dynamic neural network models, respectively, and of 0.61 and 0.85 during 
the prediction phase. 

Ben-Nakhi [33] used a general RNN to predict the next day’s energy 
profile of public buildings using hourly energy consumption data, with the 
aim of optimising HVAC (heating—ventilation and air conditioning) 
thermal energy storage. Data from a public office building in Kuwait built 
between 1997 and 2001 is used to train and test the ANN model. The value 
of building energy consumption is calculated using ESP-r simulation 
software, taking into account climatic information, different occupancy 
loads and orientation characteristics. The results showed that the ANR 
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only needs the external temperature to accurately predict cooling loads, 
whereas simulation software requires complex climatic details. 

Hou et al. [34] studied the prediction of hourly cooling loads in an air-
conditioned building in China by integrating a ANN model and 
approximate set theory. The input characteristics of the ANN are 
determined and optimised by analysing the relevant parameters for the 
cooling load using rough set theory. The proposed model with different 
combinations of input sets is compared with the ARIMA model, all showing 
better accuracy. Yan & Yao [35] established a survey on the effect of 
climate information on energy consumption in various climate zones in 
China. Backpropagation ANR is used to predict the heating and cooling 
load to assist in the design of new buildings. The results show the 
performance of the chosen model, with CV-RMSE values ranging from 
1.71% to 2.86%. 

Later, Biswas et al. [36] applied a similar approach to the residential 
sector and demonstration houses in the USA using the Matlab toolbox. 
Aydinalp et al. [37] modelled appliances, lighting and space cooling (ALC) 
in residential buildings in Canada. The ANR used for energy consumption 
prediction showed better accuracy compared to engineering calculation 
methods. Later, they used ANR to predict space heating and domestic hot 
water for the same buildings [38]. Azadeh et al. (Azadeh and Sohrabkhani 
[39]; Azadeh et al. [40]) proved the usefulness of the ANN model for 
predicting electricity consumption in manufacturing industry. The model 
is used to predict the long-term annual consumption of industries in Iran 
using a multi-layer perception model. The results are comparable or even 
better than traditional regression models using ANOVA. Later, Kialashaki 
[41] predicted the energy demand of the industrial sector in the United 
States by taking into account gross domestic and national products and 
population. The ANR model used predicts a 16% increase in energy 
demand by 2030. This result suggests the need to develop new affordable 
energy sources. The ANN model is considered a reliable technique for 
input/output mapping. The results are compared with US Department of 
Energy projections to validate the model’s performance. 

The following Table 2 provides an overview of the work carried out 
between 2001 and 2023 using artificial neural network (ANN) models. It 
also summarizes the characteristics of the ANN models used in each study, 
including the training algorithm, the activation function and the type of 
ANN model. 
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Table 2. Summary of works carried out between 2001 and 2023 using ANN model. 

Year Study reference Location ANN model Training algorithm 
Activation 
function 

Model’s performance 

2023 Alaoui et al. [42] Morocco FFN 
Backpropagation with 
Levenberg-Marquardt 
algorithm 

Tansig R = 0.95 

2023 Alaoui et al. [43] Morocco FFN 
Backpropagation with 
Levenberg-Marquardt 
algorithm 

Tansig R = 0.97 

2022 Zhang et al. [44] Canada FFN 
Backpropagation with 
Levenberg-Marquardt 
algorithm 

Relu R² = 0.99 

2021 Irfan et al. [45] 
United 
States 

FFN 
Backpropagation with 
Levenberg-Marquardt 
algorithm 

Sigmoid 
MAPE between 0.46 
and 6.31 

2021 
Amasyali et al. 
[46] 

United 
States 

FFN 
Backpropagation with 
Levenberg-Marquardt 
algorithm 

Tansig R² > 0.98 

2020 
Barzola-Monteses 
et al. [47] 

Chile 
FFN and 
RNN 

Backpropagation with 
Levenberg-Marquardt 
algorithm 

Sigmoid 
Average error: 8079 
kW 

2020 Yang et al. [48] Singapore NARX ANN 
Backpropagation with 
Levenberg-Marquardt 
algorithm 

Sigmoid R² = 0.99 

2019 
Waseem et al. 
[49] 

China FFN 
Backpropagation with 
Levenberg-Marquardt 
algorithm 

Log Sigmoid MAPE = 2.9% 

2017 Ascione et al. [10] Italy FFN 
Backpropagation with 
Levenberg-Marquardt 
algorithm 

Sigmoid 

R between 0.96 and 
0.995 
Relative error: 2%–
11% 

2016 
Khayatian et al. 
[22] 

Italy FFN 
Backpropagation with 
Levenberg-Marquardt 
algorithm 

- 
Depends on case 
studies 

2016 Deb et al. [29] Singapore FFN 
Backpropagation with 
Levenberg-Marquardt 
algorithm 

Sigmoid 
R² between 0.96 and 
0.98 

2016 Biswas et al. [36] 
United 
States 

FFN 
Backpropagation with 
Levenberg-Marquardt 
algorithm 

Log Sigmoid 
R² between 0.87 and 
0.91 

2015 Li et al. [17] 
East of 
China 

FFN 
Backpropagation with 
Levenberg-Marquardt 
algorithm 

Tansig MAPE = 2.2% 

2015 Platon et al. [18] Canada FFN Non define - CV(RMSE) = 7% 
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Table 2. Cont. 

Year Study reference Location ANN model Training algorithm 
Activation 
function 

Model’s performance 

2015 
Antanasijevic et 
al. [26] 

European 
Union 

GRNN Genetic algorithm Exponential MAPE = 4.5% 

2014 Mena et al. [14] Spain FFN 
Backpropagation with 
Levenberg-Marquardt 
algorithm 

Hyperbolic 
tangent 

MAPE = 11.48% 

2014 Hong et al. [19] 
United 
Kingdoms 

FFN 
Backpropagation with 
Levenberg-Marquardt 
algorithm 

- 
CV(RMSE) = 24% 
MAPE = 21% 

2014 Paudel et al. [32] France FFN 
Backpropagation with 
Levenberg-Marquardt 
algorithm 

Hyperbolic 
Tangent-
Linear 

R between 0.82 and 
0.89 

2014 Kialashaki [41] 
United 
States 

FFN 
Backpropagation with 
Levenberg-Marquardt 
algorithm 

- 
Relative error: 0.2%–
0.98% 

2013 
Kialashaki & 
Reilsel [25] 

United 
States 

FFN 
Backpropagation with 
Levenberg-Marquardt 
algorithm 

Sigmoid R² = 098 

2010 Wong et al. [20] China FFN 
Backpropagation with 
Levenberg-Marquardt 
algorithm 

Sigmoid 
CV(RMSE) between 3% 
and 5.6% 

2010 
Dombayci et al. 
[24] 

Turkey FFN 
Backpropagation with 
Levenberg-Marquardt 
algorithm 

Tansig 
R² = 0.98 
RMSE = 1.21 kW 

2010 Yan & Yao [35] China BPNN 
Backpropagation with 
Levenberg-Marquardt 
algorithm 

Tansig 
CV(RMSE) between 
1.71% and 2.86% 

2009 
Popescu et al. 
[28] 

Romania FFN 
Backpropagation with 
Levenberg-Marquardt 
algorithm 

Tansig 
Depends on case 
studies 

2009 
Ekici & Aksoy 
[31] 

Turkey FFN 
Backpropagation with 
Levenberg-Marquardt 
algorithm 

Sigmoid 
Average error 
between 5.2% and 
1.5% 

2008 
Neto & Fiorelli 
[27] 

Brazil FFN - Linear Relative error: 10% 

2006 
Karatasou et al. 
[8] 

Greece FFN 
Backpropagation with 
Levenberg-Marquardt 
algorithm 

Hyperbolic 
Tangent 

Depends on case 
studies 

2006 Hou et al. [34] China RSAN 
Backpropagation with 
Levenberg-Marquardt 
algorithm 

- 
Average error 
between 3.6% and 
7.8% 
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Table 2. Cont. 

Year Study reference Location ANN model Training algorithm 
Activation 
function 

Model’s performance 

2005 
Gonzales & 
Zamarreno [16] 

United 
Kingdoms 

Feedback 
ANN 

Backpropagation with 
Levenberg-Marquardt 
algorithm 

Hyperbolic 
Tangent 

MAPE = 1.945 

2004 Lundin et al. [21] Undefined FFN 
Backpropagation with 
Levenberg-Marquardt 
algorithm 

- 
nRMSE between 2.5% 
and 9.4% 

2004 Ben-Nakhi [33] Kuwait GRNN Non define Sigmoid R² > 0.90 

2002 
Mihalakakou et 
al. [15] 

Greece 
FFN and 
RNN 

Backpropagation with 
Levenberg-Marquardt 
algorithm 

Tansig 
Relative error: 8%–
15% 

2002 
Aydinalp et al. 
[37] 

Canada FFN 
Backpropagation with 
Levenberg-Marquardt 
algorithm 

Hyperbolic 
tangent-
Logistics-
Identity 

R² = 0.909 

2001 
Kalogirou et al. 
[23] 

Chypre FFN 
Backpropagation with 
Levenberg-Marquardt 
algorithm 

Hyperbolic 
Tangent-
Linear and 
Gaussian 

R² between 0.98 and 
0.99 

2001 
Olofsson & 
Anderson [30] 

Suede FFN 
Backpropagation with 
Levenberg-Marquardt 
algorithm 

Hyperbolic 
Tangent 

R between 0.90 and 
0.95 

DATA ANALYSIS 

Purpose 

A variety of building energy prediction purposes are addressed by the 
selected papers, the most important are: (1) Electricity reduction, (2) 
management of energy demand, (3) prediction of parameters for assessing 
energy performance and (4) reduction of HVAC energy use. 

Case Study Locations 

The geographical locations of the case studies in each publication were 
documented, and they were categorized by the continent where the 
studies were conducted. The analysis revealed that the majority of case 
studies were conducted in Asia (36%), followed by Europe and America 
(30%), Africa (6%), and Australia (0%). These findings should be 
interpreted with consideration of the limitations inherent to this analysis. 
One significant limitation is the availability of relevant journals, which 
could have impacted the representation of case studies from different 
regions. Additionally, the requirement that all reviewed papers be in 
English may have introduced a bias, as valuable research conducted in 
other languages may not have been included in this study. These factors 
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could have contributed to the observed distribution of case studies across 
continents. Figure 4 illustrated the % distribution mentioned above. 

 

Figure 4. Percentage of study locations. 

ANN Models 

The selection of the appropriate type of neural network model is a 
crucial aspect of this study. Figure 5 offers a comprehensive view of the 
distribution of each neural network model’s usage as outlined in Table 1. 
As depicted in the Figure 5, the feedforward neural network (FFN) stands 
out as the overwhelmingly first choice, with a utilization rate of 78%. This 
high percentage suggests that the FFN model is the preferred neural 
network architecture in the context of this research, significantly 
surpassing other types of neural network models in popularity and 
application. This observation underscores the prevalence and 
effectiveness of FFN models in the field under investigation. The other 
types of ANN model such as: RNN, GRNN, BPNN and others, are used with 
a percentage that varies from 3% to 7%. 
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Figure 5. Percentage of utilization of ANN model types based on the presented state of the art. 

Training Algorithms 

The selection of the appropriate artificial neural network (ANN) 
training algorithm is critically important as it directly impacts the 
network’s learning efficacy, task suitability, and efficiency. The right 
algorithm ensures the ANN effectively learns complex patterns, aligns 
with the specific problem domain, and achieves efficient training, all of 
which are crucial factors for successful machine learning applications. 
Figure 6 provides a general overview of the percentage of usage for each 
training algorithm related to the studied papers presented in Table 1. 
According to Figure 6, backpropagation with the Levenberg-Marquardt 
algorithm is the most widely utilized. In fact, the combination of the 
backpropagation algorithm with the Levenberg-Marquardt optimization 
method holds great potential in training artificial neural networks (ANNs). 
This powerful pairing offers several advantages, including enhanced 
learning speed and effectiveness. Backpropagation enables the network to 
iteratively adjust its weights to minimize prediction errors, and when 
coupled with the Levenberg-Marquardt algorithm, it often converges 
more rapidly, significantly reducing the training time. This not only boosts 
the efficiency of model development but also makes it well-suited for real-
time or resource-constrained applications. Figure 6 represents the 
percentage distribution of the used training algorithms related to the 
present state of the art. 
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Figure 6. Percentage of utilization of ANN training algorithm based on the presented state of the art. 

Activation Functions 

The selection of the artificial neural network (ANN) activation function 
is a critical decision, as it profoundly affects the network’s capacity to 
capture complex relationships in data, its training efficiency, and 
generalization performance. Different activation functions offer unique 
characteristics that are better suited to specific tasks. A well-chosen 
activation function is pivotal in ensuring the ANN’s success in various 
machine learning applications, making it a fundamental element in model 
design and performance optimization. According to the reviewed papers 
presented in Table 1, Sigmoid and Hyperbolic Tangent are the most 
commonly used activation functions. Figure 7 provides a general overview 
of the percentage usage of different activation functions presented in 
Table 1. 

 

Figure 7. Percentage of utilization of ANN activation function based on the presented state of the art. 
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Performance Metrics 

In the papers that have been reviewed, the following performance 
metrics have been found out: (1) mean absolute percent error (MAPE); (2) 
coefficient of variation of root-mean-square error (CV-RMSE); (3) the 
coefficient of determination (R²); (4) the coefficient of correlation (R); and 
others. A summary of the observed performance metrics is shown in 
Figure 8. As can be observed, prediction studies mostly use R² (38%) as 
their primary performance indicator, followed by MAPE, R and CV-RMSE 
accounting for 17%, 14% and 11% of the performance metrics used. 

 

Figure 8. Breakdown of performance measures applied. 

DISCUSSION 

ANN Predictive Model’s Limitations 

While artificial neural network (ANN) models offer a range of merits, 
they also exhibit inherent limitations. Chief among these is their 
susceptibility to diminished performance beyond the confines of their 
training data. For example, when an ANN model is trained on a specific 
dataset representing summer conditions, it may struggle to provide 
accurate predictions when confronted with data from a different season, 
such as winter. Consequently, the applicability of ANN models is 
inherently bounded by the range of values encompassed by their training 
data. 

To ameliorate this limitation, a strategic approach involves the 
implementation of continuous retraining techniques. Methods such as 
accumulative retraining and sliding window retraining are notable in this 
context. These strategies entail the ongoing update and retraining of ANN 
models based on the most recent data, thereby enhancing their 
adaptability to novel data and evolving scenarios. 
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It is important to acknowledge that, as the volume of available data 
increases, the management of copious datasets may become a concern. 
Typically, data that is significantly dated may no longer hold relevance, 
especially as building usage patterns evolve over time. Sliding window 
retraining offers an effective solution to this issue, as it dispenses with the 
requirement for prolonged storage of obsolete data. However, it should be 
noted that this approach necessitates a continual retraining process. 

Emerging Research Directions 

The preceding sections have explored various potential research areas. 
This section will now delve into additional directions for future research. 

A potential avenue for future research involves consolidating diverse 
forecasting models and data into a unified source. This has the potential to 
yield several positive outcomes for the community. Firstly, it could 
standardize terminology and performance metrics, reducing confusion 
among different models. Secondly, it might establish a clearer roadmap 
for future research, enabling researchers to advance and avoid redundant 
efforts. Thirdly, it could facilitate the application of various models and 
methods with other data sources, assessing their effectiveness across 
different data types. These positive changes could enhance coverage of 
research gaps, methodologies, and foster further progress for researchers. 

Another future area of research is addressing the challenge of limited 
data in artificial neural networks (ANNs) which is crucial for advancing 
their capabilities. Efforts should concentrate on refining data 
augmentation techniques to artificially expand datasets, exploring 
innovative transfer learning strategies, and creating realistic synthetic 
datasets. Investigating active learning approaches tailored for ANNs, 
employing Bayesian methods for uncertainty modeling, and delving into 
meta-learning for few-shot scenarios are essential avenues. Additionally, 
developing robust domain adaptation techniques, fostering collaborative 
data sharing, and exploring inventive data collection methods can 
collectively overcome the constraints posed by a lack of data. These 
directions aim to make ANNs more adaptive, resilient, and effective across 
diverse applications, contributing significantly to the progression of 
artificial intelligence. 

The sharing of learned information among researchers is deemed 
important as new data-driven models and algorithms emerge. Lessons 
related to data processing, variable selection, model development, testing, 
and validation are considered vital for the ongoing advancement of the 
field. Papers often lack sufficient descriptions of crucial information such 
as purpose, forecast horizon, and architecture selection technique, 
contributing to a situation where terminology remains non-standardized, 
adding complexity. In instances where papers provide limited 
information, there is a scarcity of lessons learned available for acquisition 
and sharing. 
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CONCLUSION 

With growing expectations for sustainability, increased concerns about 
emissions, and buildings using a lot of energy, it is becoming more and 
more necessary to improve the buildings’ overall performance and energy 
efficiency. An essential component of many energy-saving methods is the 
need for accurate and reliable predictions. Thus, the focus of this paper is 
on the artificial neural network, a well-known machine learning approach 
used in predictions. 

The first section gives a general introduction to artificial neural 
networks, including a brief description of ANN architecture and the 
various types of ANNs. Subsequently, a comprehensive technique for the 
literature review is presented, encompassing the identification of 
pertinent articles released from 2001 to 2023. These articles were chosen 
from a variety of scholarly databases, such as Google Scholar, IEEE Xplore, 
Science Direct, and Taylor & Francis. The requirements for inclusion 
included: (i) a thorough explanation of artificial neural network (ANN) 
prediction techniques; (ii) one or more target variables linked to the 
prediction of building energy use and/or demand; and (iii) enough data 
regarding location and performance indicators. Following a thorough 
table summarizing the work done between 2001 and 2023 with the ANN 
model, data analysis was provided, covering case study locations, training 
procedures, activation functions, and performance measures in addition 
to prediction goals. The last section discusses some of the limitations of the 
ANN predictive model and new directions for research. 
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