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ABSTRACT 

Background: As cloud computing continues to gain prominence in our 
daily lives and business environments, it is crucial for us to be conscious 
of and proactive in managing the environmental impact of this technology. 
Green cloud computing is an approach that aims to reduce the energy 
consumption and CO2 emissions associated with cloud computing while 
still providing the necessary functionality and performance. 

Methods: This study sought to evaluate the feasibility of reducing energy 
consumption without compromising processing time through efficient 
algorithms and intelligent strategies using simulators. 

Results: A reduction of approximately 55% in energy consumption was 
observed, leading to a decrease in equivalent CO2 emissions and a 28% 
reduction in costs associated with virtual machine allocation, ultimately 
resulting in a reduced environmental impact. 

Conclusions: To facilitate the implementation of green cloud computing, a 
scoring framework was proposed for evaluating the algorithm results, 
along with an energy efficiency classification framework utilizing 
artificial intelligence. 

KEYWORDS: green cloud computing; energy efficiency; environmental 
impact; energy optimization strategies; energy consumption reduction 
technologies 

INTRODUCTION 

The transition to cloud computing has a multitude of advantages, 
spanning various areas, including computational aspects. One notable 
benefit is the decrease in energy and cooling expenses for businesses. 
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However, it is important to recognize that this decrease should not be 
interpreted as a commitment to environmental sustainability, as the costs 
and impacts are simply transferred. Those who utilize cloud computing 
services also share, directly or indirectly, the responsibility for 
environmental impact. 

According to Khan and Khan [1], approximately 10% of the global 
energy consumption is allocated to electronic and computational devices. 
Specifically, 50% of this energy goes towards computing activities, with 
data centers accounting for 29 GW, network equipment consuming 25 GW, 
and computers utilizing an additional 30 GW. 

The remaining 50% was distributed between televisions (44 GW) and 
other devices (40 GW). Furthermore, Masdari and Zangakani [2] indicated 
that half of the energy consumed in a datacenter is allocated to heat 
dissipation, specifically for cooling. 

In other words, the responsibility for an efficient and environment-
friendly computing system is shared by all. Understanding these 
differences is crucial to achieving green computing. Green computing 
focuses on reducing energy consumption, utilizing renewable resources, 
and maximizing resource efficiency. 

To achieve this objective, it is crucial to have knowledge of the 
techniques, frameworks, methodologies, and classifications of green 
computing. Such knowledge provides a foundation for analysis, 
development, and implementation in this specific area. Notably, various 
approaches in terms of software, hardware, and virtualization aim to 
optimize resource usage and reduce CO2 emissions and environmental 
impact [3]. 

As stated by Saha [4], the criteria for selecting a cloud infrastructure 
are evolving. In addition to the computational and financial aspects, it is 
becoming increasingly important to consider the energy efficiency of data 
centers and the use of renewable resources when making this decision. 

The approach to green computing extends beyond energy consumption, 
encompassing the efficient management of water resources, utilization of 
renewable sources, and minimization of computational waste by utilizing 
only the necessary resources. 

This study explores studies related to green cloud computing and 
energy sustainability. The next section examines the primary categories 
and strategies for reducing the energy consumption in green cloud 
computing. Subsequently, the methods employed in this research are 
discussed, along with the most frequently used computational metrics for 
evaluating data center energy efficiency and ensuring the quality of 
service. 

Through a quantitative methodological approach, the objective was to 
demonstrate that it is feasible to reduce energy consumption without 
causing significant losses in the service quality indicators. This requires 
maintaining accurate response times and processing volumes by adopting 
more efficient algorithms for virtual machine (VM) allocations. In this 
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specific case, round-robin (RR), Particle Swarm Optimization (PSO), 
Dynamic Voltage and Frequency Scaling (DVFS), and Ant Colony System 
(ACS) algorithms were considered, with the latter being included as a 
potential solution among the various options discussed in previous studies. 

For the simulation experiments, various configuration scenarios were 
executed over 800 iterations. The processing of these simulations required 
approximately 51,000 h. In the following section, the results obtained are 
presented, along with their corresponding academic conclusions. 

After analyzing and discussing the simulation steps, two proposals are 
presented in detail. The first involves calculating a performance index 
based on the simulation results of the algorithms, allowing for comparison 
and evaluation of their efficiency. The second proposal involves 
developing an energy-efficiency scale using calculated indices combined 
with artificial intelligence techniques to classify and predict the energy 
performance of algorithms in different green cloud computing scenarios. 

In conclusion, it can be stated that sustainable cloud computing and the 
minimization of computational waste are relevant areas in the pursuit of 
greater energy efficiency and sustainability. This can be achieved using 
effective and intelligent algorithms. 

RELATED WORKS 

Given the wide range of physical and logical approaches, and their 
potential for various applications, the field of green cloud computing is an 
area ripe for research. This has driven the development of computational 
methods to efficiently utilize computational resources and reduce costs, 
thereby benefiting both service providers and users. 

Regarding the analysis and estimation of resource usage, cloud 
computing simulators have gained prominence owing to their inability to 
create a complex cloud environment for conducting experiments. The 
following studies presented the use of approaches and simulators for this 
purpose in cloud environments. 

Experiments were conducted by Meyer et al. [5], Makaratzis et al. [6], 
and Jena et al. [7] using multiple cloud simulators and algorithms such as 
the first-fit approach and round robin. The objective of these studies was 
to analyze and compare the results obtained using different simulators 
with one another. 

Numerous researchers have employed CloudSim as a simulation tool to 
conduct experiments with algorithms such as DPSO, DENS, round robin, 
green scheduler, and genetic algorithms [8–11]. The purpose of the 
analysis is to compare these algorithms in terms of their execution time 
and energy consumption. 

The study conducted by Silva et al. [11] provides a comparison between 
CloudSim and iSPD simulators, demonstrating the effectiveness of the 
latter and thus offering a new option for researchers to explore. 

By contrast, Stergiou et al. [12] examined green cloud computing in the 
context of Big Data. Through experiments, they compared various 
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algorithms using the DCIE metric, and observed a significant energy 
reduction of at least 47%. Saboor et al. [13] utilized distribution-based 
classification algorithms and compared their results with those of CO2 
emission metrics. 

Regarding approaches to renewable energy generation, the study 
conducted by França et al. [14] examined the application of neural 
network algorithms to wind-power forecasting. This study aimed to assess 
the feasibility of using this type of model in large-scale data centers. 

Araujo [15] provided a global overview of renewable energy utilization 
in the field of alternative methodologies for green cloud computing. Cloud 
providers have the opportunity to not only benefit from these technologies 
but also invest in and encourage research in this area. 

This research contributes to the field by expanding the range of 
algorithms utilized in these models, specifically particle swarm 
optimization, dynamic voltage and frequency scaling, and ant colony 
systems. These additions are in line with similar studies that evaluated 
these algorithms for big-data workloads. 

ENERGY EFFICIENCY AND GREEN CLOUD COMPUTING 

Approaches to Energy Efficiency 

A wide range of approaches can be implemented to optimize energy 
efficiency, potentially increasing profitability and reducing 
environmental impact. These approaches have been recommended to 
ensure optimal benefits in various ways [1,2,15–19]. 

More effective management of virtual machines can be achieved 
through techniques such as VM consolidation on physical servers, 
processor speed reduction, task reallocation, use of specialized distributed 
software engineering, and allocation in energy-efficient data centers. 

Hardware-based approaches are also viable, including reducing heat 
dissipation, energy-aware planning of boards and processors that enable 
independent power transmission, and utilization of more efficient storage 
options. Other strategies include the utilization of renewable sources and 
the reuse of energy resources such as wind, solar, and hydroelectric 
energy. 

For the scope of this study, we adopted an approach focused on 
managing virtual machines on physical servers through VM consolidation 
and the shutdown of unused machines. This strategy does not require 
modifications to the physical equipment or investment in infrastructure, 
making it applicable to policies that can be implemented in any cloud 
environment. 

As a result of this study, two significant outcomes arise: (1) the 
establishment of an energy efficiency scoring calculation based on the 
various metrics and strategies examined and (2) the proposal of a 
classification system for these calculated scores, leading to an energy 
consumption seal (similar to those found in household appliances) that 
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determines the data center’s category and its potential for achieving high 
levels of energy efficiency. 

METHODOLOGY 

This study proposes an innovative approach to investigate and classify 
energy efficiency in green computing data centers with a focus on 
calculating energy efficiency scores and introducing a system of energy 
levels using neural networks for classification. 

Energy Efficiency Model Diagram 

The conceptual map shown in Figure 1, detailed in Table 1, delineates 
each stage of the research process from the initial setup of the simulation 
environment to the final analysis of the results. This model provides a 
comprehensive overview of the workflow and interactions among the 
different components of the study, offering a detailed description of each 
stage, which allows a clear understanding of the methodology employed. 
Moreover, it highlights the systematic integration between the different 
phases of energy efficiency analysis in green cloud computing, allowing 
for a deeper understanding of the research process and the data collected, 
processed, and analyzed. 

 

Figure 1. Energy efficiency model. Source: Created by the authors (2024). 

The process begins with the (1) selection of scheduling algorithms and 
the (2) definition of the datacenter infrastructure. This choice may be 
based on its representation in specialized literature, its potential 
contribution to energy efficiency, or the actual architecture of the 
datacenter. At this stage, it is also necessary to establish the baseline 
configuration or initial parameter for comparison, which is essential for 
the subsequent efficiency calculations. 
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The third stage is (3) simulator configuration, which utilized CloudSim 
Plus in this study, incorporating the aforementioned definitions, 
structures, and algorithms. 

In this study, the steps of (4) conducting detailed simulations and (5) 
closely monitoring the performance of the data centers are crucial for 
gathering essential data such as energy consumption, application runtime, 
operational costs, and CO2 equivalent emissions (CO2eq). The analysis of 
these data is essential for quantifying and evaluating the energy efficiency 
of algorithms under various operating conditions. 

The (6) scoring calculation stage played a central role in the second 
phase of the model. This involved normalizing the collected data, followed 
by the application of a preselected algorithm. The result is a score that 
reflects the energy efficiency of each analyzed configuration, with weights 
assigned to criteria such as execution time, energy consumption, CO2 

emissions, and costs. This approach provides a quantitative performance 
evaluation of the energy efficiency of the configurations. 

Based on the proposed model flow, (7) involves the classification of 
different energy levels through artificial intelligence classifiers, 
specifically artificial neural. This approach is an innovative and predictive 
method for classifying the energy performances of algorithms under 
various operating conditions. This classification allows for efficient 
categorization of energy levels. 

Finally, the model enables the (8) identification of the current energy 
level of the data center. This result provides crucial insights into the 
implementation of effective interventions that facilitate decision-making 
for optimized and sustainable operations. 

Table 1. Energy efficiency model. 

Stage Description 

1. Algorithm Selection Selection of scheduling algorithms based on literature, potential for energy 

efficiency, or actual architecture. 

2. Infrastructure Definition Definition of datacenter infrastructure and baseline configuration for 

subsequent efficiency calculations. 

3. Simulator Configuration Use of CloudSim Plus to incorporate definitions, structures, and algorithms. 

4. Simulation Execution Detailed simulations and monitoring to gather data on energy consumption, 

runtime, costs, and CO2eq emissions. 

5. Data Collection Gathering of data from 800 simulations on various performance metrics. 

6. Scoring Calculation Normalization of data and application of an algorithm to calculate energy 

efficiency scores. 

7. Energy Level Classification Classification of energy levels using artificial neural networks. 

8. Current Energy Level Identification Identification of the data center’s current energy level for decision-making. 
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Simulation Environment 

CloudSim Plus, an advanced and enhanced version of CloudSim 
[10,11,20–22], was selected as the simulation tool for this study. This 
simulation framework is widely recognized for its flexibility and ability to 
model complex cloud-computing environments. This allowed for detailed 
simulations of various scenarios, including the allocation and 
management of virtual machines, thereby providing a realistic and robust 
foundation for our analyses. Furthermore, as a widely disseminated tool, 
it enables comparisons among similar studies. 

Four primary algorithms were selected for this study, each of which 
embodies a distinct methodology for virtual machine scheduling 
methodology in cloud environments. 

Round Robin (RR): This is one of the simplest and most widely used 
algorithms for load balancing. It allocates tasks sequentially, thereby 
ensuring an equitable distribution of work among servers [23]. 

Dynamic Voltage and Frequency Scaling (DVFS): This algorithm 
dynamically adjusts the tension and frequency of processors according to 
workload demand, thereby reducing energy consumption when the load 
is light [17]. 

Particle Swarm Optimization (PSO): Inspired by nature, the PSO 
algorithm mimics the social behavior of bee colonies. Optimal solutions 
are sought by determining efficient resource allocation configurations in 
terms of energy [19]. 

Ant Colony System (ACS): This algorithm imitates the behavior of ants 
in their search for optimal paths, demonstrating an efficient approach to 
solving optimization problems [24]. 

These algorithms embody a balance between proven methods and 
emerging innovations, enabling extensive analysis of various strategies 
within the context of sustainability and energy efficiency. 

Infrastructure Definition 

The purpose of this experiment was to validate the potential for 
reducing energy consumption without compromising the computational 
capacity of the cloud environment. Four virtual machine scheduling 
algorithms were used: Round Robin (RR), Dynamic Voltage and Frequency 
Scaling (DVFS), Particle Swarm Optimization (PSO), and Ant Colony System 
(ACS). The same parameters as those used in the study by Stergiou et al. 
[12] were used, with the number of hosts ranging from 50 to 250. Each host 
had configurations consisting of two cores at a clock speed of 2.2 GHz per 
core and 4 GB of memory, as illustrated in Figure 2. 

Utilization of the proposed model [12] in this study is necessary because 
of the use of Big Data. In contrast to previous studies, we focused on a 
single datacenter, which is a common scenario in various situations. We 
designed all experimental scenarios using a complete factorial design 
approach based on a systematic performance evaluation of computational 
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systems [25], with 10 runs per scenario. The obtained values were reported 
with a 95% confidence interval, according to the student’s t-test. 

 

Figure 2. Experimental model. Source: Created by the authors (2023). 

In addition to virtual machines, the number of cloudlets or applications 
executed in the environment was parameterized to evaluate the model 
under different workloads. 

• Number of cloudlets: 10, 100, 1000 and 2000; 
• All cloudlets had a processing power of 150,000 MIPS. 

All other configurations, including storage and bandwidth, remained 
identical in all scenarios. In addition, it has been established that energy 
consumption is 150 W when idle (0% utilization) and 300 W when 
operating at full capacity (100% utilization) [12,26]. 

Finally, allocation policies were established for the simulations to 
evaluate response times, energy consumption, and execution costs. It is 
important to note that monetary values are expressed in US dollars and 
extracted from the bases and configurations of the American AWS [26] as 
well as processor energy consumption. 

For each execution, data regarding the application processing time, cost, 
energy consumption, and other relevant information were collected. The 
total simulated processing time was 51,909 h (approximately 2163 d) and 
800 simulations were performed. 

Data Collection Process 

This study meticulously gathered data from 800 simulations to assess 
various scheduling algorithms across different setups and loads, focusing 
on key performance indicators, such as execution time, cost, and energy 
usage. Although CloudSim provided direct cost data from simulations [26] 
and insights into energy consumption, it lacked data on CO2 emissions. 
Nevertheless, this gap was filled using parameters from the 
Environmental Protection Agency [27], which facilitated emissions 
calculations under American standards. The collated data, which are 
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crucial for evaluating operational efficiency and environmental 
sustainability, are thoroughly detailed in the subsequent tables. 

Analysis of Results 

The analysis phase evaluated the machine virtualization algorithms for 
energy efficiency in datacenters across various workloads. Employing 
statistical analysis with a 95% confidence interval via Student’s t-
distribution, suitable for small samples and unknown population standard 
deviation, we determined the true mean of the key performance metrics 
within a specified range. These metrics include the runtime, energy usage, 
costs, and CO2 equivalent emissions. Efficiency gains were quantified, 
highlighting algorithms that optimize energy and operational efficiency. 
Furthermore, trends and patterns are discerned from the data-informed 
future algorithm and scheduling strategy selection for sustainable cloud 
computing datacenters. 

Table 2. Infrastructure environment. 

Algorithms Used Description 

Round Robin (RR) Simple load balancing by sequentially allocating tasks. 

Dynamic Voltage and Frequency 

Scaling (DVFS) 

Adjusts processor tension and frequency based on workload 

demand to save energy. 

Particle Swarm Optimization (PSO) Mimics social behavior of bee colonies to find optimal resource 

allocation. 

Ant Colony System (ACS) Imitates ant behavior to find optimal paths for complex resource-

allocation tasks. 

Infrastructure Parameters Description 
Hosts 50 to 250 hosts with 2 cores at 2.2 GHz and 4 GB memory each. 

Virtual Machines Configurations of 50, 100, 150, 200, 250 VMs with 2 GB RAM and 

single processing core. 

Cloudlets 10, 100, 1000, 2000 cloudlets with 150,000 MIPS processing power. 

Energy Consumption 150 W idle and 300 W at full capacity. 

Data Collection Metrics Description 
Execution Time Processing speed of tasks by algorithms. 

Execution Cost Costs generated directly from simulation. 

Energy Consumption Insights into sustainability and efficiency. 

CO2 Emissions Calculated based on EPA information. 

Analysis of Results Description 
Statistical Analysis Mean results with a 95% confidence interval using Student’s t-test. 

Efficiency Gains Calculation of percentage gains in energy and operational 

efficiency. 

Trend Identification Identification of trends and patterns for future algorithm selection. 

Table 2 systematically encapsulates the aggregated data from this study, 
detailing the performance and evaluation metrics of various machine 
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virtualization algorithms. This includes algorithm descriptions, 
infrastructure parameters, data collection metrics, and analytical results 
pertaining to the execution time, cost, energy consumption, and CO2 
emissions. The table further illustrates the statistical methods applied and 
the results obtained, including the confidence interval and efficiency gains. 
Additionally, it provides a summary of the algorithmic trends and patterns 
discerned from the study, which are critical for formulating strategies to 
boost the sustainability and operational efficiency of cloud-computing 
datacenters. 

Energy Efficiency Scores 

This study outlines a methodology for calculating energy efficiency 
scores, which are crucial for evaluating green cloud computing 
datacenters. Initially, data dictionaries were defined and initialized using 
metrics relevant to energy efficiency, including energy consumption, CO2 
emissions, execution time, and operational costs. These metrics were 
weighted based on their relative importance, reflecting the complex 
nature of energy efficiency in datacenters. Data normalization was 
essential to ensure fair comparisons across different scales of metrics, 
enabling a uniform analysis. A standard baseline for comparison was 
established, allowing the assessment of the scheduling algorithm 
performance against a benchmark. Following normalization, the energy 
efficiency scores for each configuration and algorithm were calculated 
using a mathematical formula that incorporated weighted metrics, 
yielding a score reflecting the energy efficiency of each algorithm 
configuration compared to the baseline. The algorithms were then ranked 
based on their scores, providing a hierarchical view of their energy 
efficiency and environmental sustainability performance. 

Energy Level Model 

In this study, we introduced an energy-level model integral to our 
methodology for assessing energy efficiency in green computing. The 
model comprises a five-tiered energy-efficiency scale, labeled A to E, to 
quantitatively classify datacenters, where A indicates top efficiency. A 
round-robin algorithm with 50 virtual machines exemplifies Level E, 
which has the lowest efficiency, whereas Level A denotes the 
configurations with the highest scores. The energy level scale operates on 
both the vertical and horizontal axes; the vertical axis delineates a 
descending order of energy efficiency, and the horizontal axis adds a 
sustainability measure focusing on renewable energy use. Furthermore, 
we leverage artificial intelligence, specifically neural networks, to 
categorize energy efficiency scores, showcasing the capability of our 
method to handle complex, multidimensional energy efficiency data. 

The comprehensive methodology described in the preceding steps is 
summarized in Table 3, which presents a structured approach for the 
evaluation of energy efficiency in green computing datacenters. This 
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approach encapsulates both the calculation of Energy Efficiency Scores 
and formulation of an energy-level model, which is pivotal to our analysis. 

Table 3. Approach for energy efficiency. 

Energy Efficiency Scores Description 

Initialization Definition of data dictionaries and metrics for energy efficiency. 

Data Normalization Normalizing data for fair comparison. 

Baseline for Comparison Establishing a baseline for performance evaluation. 

Score Calculation Calculating efficiency scores using a mathematical formula. 

Algorithm Classification Classifying algorithms based on calculated scores. 

Energy Level Model Description 
Scale Development Creating a scale from A to E for energy efficiency classification. 

Classification Criteria Criteria based on the performance of algorithms and configurations. 

Vertical and Horizontal Scales Hierarchical organization and emphasis on sustainability. 

AI Classifiers Use of neural networks to categorize energy efficiency scores. 

RESULTS AND DISCUSSION 

The simulation results are presented in this section. The defined input 
data satisfied the requirements for both the light- and heavy-workload 
conditions. The simulation results obtained were compiled and analyzed 
to evaluate the criteria discussed in the previous sections. The outcomes 
consolidated for this study demonstrate the configurations used, the 
results achieved for each algorithm, and their relationship to illustrate the 
percentage of improvement achieved. 

Statistical Validation 

In this study, a rigorous statistical validation method was employed to 
analyze the performance of the algorithms, including the Round Robin, 
which served as the benchmark, and all other algorithms and scenarios. 
This made it possible to comprehensively assess different configurations, 
identify significant patterns, and compare them. This deepened our 
understanding of the potential and limitations of the different energy-
saving approaches and reinforced our confidence in the results obtained. 

Utilizing statistical measures such as mean, standard deviation, and 
confidence intervals, our analysis of the collected data revealed the 
behavior of Round Robin under different virtual machine configurations, 
as presented in Table 4. Our results indicated that the minimum execution 
time remained constant at (0.30 s). As the number of virtual machines 
increases, we observe a decrease in the maximum execution time, from 
69.12 s with 50 VMs to 4.51 s with 250 VMs. This suggests an improvement 
in task distribution, although this improvement diminishes in larger VM 
configurations, revealing the inherent limitations of the round-robin 
algorithm in more complex scenarios. 

 

J Sustain Res. 2024;6(1):e240004. https://doi.org/10.20900/jsr20240004  

https://doi.org/10.20900/jsr20240004


 
Journal of Sustainability Research 12 of 29 

Table 4. Statistical validation of execution times (s). 

Qty of VMs MIN MAX MEAN Standard Deviation Confidence Interval 

50 0.30 69.12 32.52 22.32 32.27–32.77 

100 0.30 19.51 9.91 6.13 9.84–9.98 

150 0.30 10.82 5.31 2.98 5.28–5.34 

200 0.30 6.00 3.52 1.82 3.50–3.54 

250 0.30 4.51 2.65 1.25 2.64–2.66 

The analysis of the mean and standard deviation of the execution times 
supports these observations. The average time followed the trend of the 
maximum time, decreasing as the number of VMs increased, whereas the 
standard deviation notably decreased, indicating a lower variability in the 
execution times. This latter aspect suggests a growing stability in the 
execution time as the distribution of virtual machines increases. The 95% 
confidence interval for the execution times provides additional insight 
into performance predictability, reinforcing the reliability of the obtained 
results. 

The consistency in CO2 emissions displayed in Table 5, with minimal 
variations between VM configurations from 116 for 50 VMs to 102 for 250 
VMs, indicates that the algorithm does not offer significant advantages in 
terms of environmental sustainability. The standard deviation, which is 
relatively constant in all configurations, reinforces the fact that the 
algorithm maintains a relatively uniform emission profile, independent of 
the scale of the distributed computing environment or workload. This 
observation suggests the need to explore more energy-efficient and 
sustainable alternatives in information and communication technologies. 

Table 5. Statistical validation CO2eq emissions (Tons). 

Qty of VMs MIN MAX MEAN Standard Deviation Confidence Interval 

50 65 130 116 26.11 114.85–117.15 

100 65 130 110 27.14 109.16–110.84 

150 65 130 103 27.67 102.30–103.70 

200 65 130 103 27.67 102.39–103.61 

250 65 130 102 31.15 101.39–102.61 

All results for the following scenarios were validated according to the 
confidence interval approach described in this section. 

Scenario 1: Processing time of applications 

When analyzing the literature on computational performance, it is 
important to consider application processing times as a measure of 
effectiveness in a given scenario. Upon reviewing the data presented in 
Table 6, it can be observed that there were no significant reductions in the 
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processing time. This indicated that the adoption of the scheduling 
algorithm for this particular scenario did not hinder the processing 
capacity of the model or violate the SLA, with only a slight increase 
observed for the DVFS algorithm. 

It is crucial to emphasize that the utilization of a more distributed 
computational model resulted in significant improvements, with an 
average processing time reduction of 70% when transitioning from 50 to 
100 virtual machines and an 83% reduction when moving from 50 to 150 
virtual machines while maintaining the same workload. The findings are 
summarized in Table 6. 

Table 6. Execution time (s). 

Qty of VMs 

Average Execution Time 

RR DVFS PSO ACS 
Relation 

RR/DVFS 

Relation 

RR/PSO 

Relation 

RR/ACS 

50 32.52 33.96 32.52 32.52 4.44% 0.00% 0.00% 

100 9.91 9.93 9.91 9.91 0.16% 0.00% 0.00% 

150 5.31 5.38 5.31 5.31 1.26% 0.00% 0.00% 

200 3.52 3.12 3.52 3.52 −11.31% 0.00% 0.00% 

250 2.65 2.66 2.65 2.64 0.38% −0.21% −0.21% 

The increase in virtual machine scaling beyond this quantity did not 
result in a significant performance improvement, with only a 7% 
increment between 150 and 200 virtual machines and an 8% increment 
between 200 and 250 VMs. The effectiveness of this performance 
enhancement is contingent on the design of the distributed models, as 
presented in Table 7. 

Table 7. Relationship between execution times. 

Qty of VMs 

Average Execution Time 

RR DVFS PSO ACS 
Relation 

RR/DVFS 

Relation 

RR/PSO 

Relation 

RR/ACS 

50 - - - - −51.72% −50.00% −47.84% 
100 −69.53% −69.48% −69.53% −69.53% −50.00% −50.00% −50.23% 

150 −83.67% −83.47% −83.67% −83.67% −50.08% −49.92% −55.41% 

200 −89.18% −90.40% −89.18% −89.18% −49.88% −50.00% −52.07% 

250 −91.84% −91.82% −91.85% −91.86% −50.00% −50.00% −55.95% 

Scenario 2: Energy consumption of applications 

Considering the energy scenario, a minimum reduction of 47% in 
energy consumption for the same workload was observed based on the 
consolidated analysis presented in Table 8 and depicted in Figure 3. This 
reduction is evident when compared with the RR algorithm with a model 
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of 50 virtual machines. Additionally, there was an even greater reduction 
in the energy consumption of approximately 55.41% with the ACS 
algorithm in a model of 150 VMs. 

Table 8. Energy consumption of simulations (W). 

Qty of VMs 

Average Energy Consumption 

RR DVFS PSO ACS 
Relation 
RR/DVFS 

Relation 
RR/PSO 

Relation 
RR/ACS 

50 268.03 129.42 134.03 140.14 −51.71% −50.00% −47.71% 

100 255.39 127.90 127.76 126.95 −49.92% −49.97% −50.29% 

150 238.34 119.18 119.26 106.27 −49.99% −49.96% −55.41% 

200 237.44 118.95 118.76 113.71 −49.90% −49.99% −52.11% 

250 237.16 118.66 118.61 130.60 −49.97% −49.99% −44.93% 

 

Figure 3. Energy consumption. Source: Created by the authors (2023). 

The energy consumption of the DVFS and PSO algorithms demonstrated 
similar values, with variations of less than 3% between them, whereas the 
ACS algorithm achieved an 11% higher energy gain than the other 
algorithms. 

Scenario 3: Cost of application execution 

The simulator calculates the costs based on the virtual machine 
configurations and parameters mentioned in the Infrastructure Definition 
section. 

As shown in Table 9, significant reductions were observed in the 
simulated values, with a minimum of 8% for the simplest scenarios and 
exceeding 34% for the most complex scenario regarding virtual machine 
allocation. However, it is worth noting that the DVFS algorithm has the 
same virtual machine allocation model as a Round Robin, but manages 
processor energy more efficiently. Therefore, choosing the DVFS 
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algorithm over RR results in reduced energy consumption without cost 
savings for the machine allocation. 

When comparing the architecture models, the ACS algorithm 
demonstrated greater cost reduction owing to its improved effectiveness 
in distributed environments. This trend highlights the importance of 
constructing distributed infrastructure and developing applications that 
can benefit from this environment. 

Table 9. Cost (US$) of environments in the simulations. 

Qty of VMs 

Allocation Costs 

RR DVFS PSO ACS 
Relation 
RR/DVFS 

Relation 
RR/PSO 

Relation 
RR/ACS 

50 276.84 279.93 254.63 227.95 1.12% −8.02% −17.66% 

100 118.29 118.33 108.78 97.95 0.04% −8.04% −17.19% 

150 91.34 91.67 73.26 65.12 0.36% −19.80% −28.70% 

200 75.49 75.47 63.78 57.24 −0.02% −15.50% −24.18% 

250 70.26 70.28 59.24 46.19 0.03% −15.68% −34.26% 

Scenario 4: CO2 emissions 

The energy consumption of the datacenter is directly linked to the 
carbon dioxide emissions equivalent to energy. This study specifically 
focuses on equipment energy usage, so it was necessary to calculate and 
compare carbon dioxide emissions using the American reference from 
EPA [27], as parameters from AWS located in the United States were used. 
The energy consumption related to cooling, networks, and other electrical 
equipment was not considered in this analysis. 

A comparison of the allocation strategies, as shown in Table 10 and 
Figure 4, clearly indicates that the carbon equivalent emissions in all three 
algorithm models are significantly lower than those of the round-robin 
algorithm. This method considers the total energy consumption for each 
configuration. 

Table 10. CO2eq emissions calculations. 

Qty of VMs 

CO2eq emission (Tons) 

RR DVFS PSO ACS 
Relation 
RR/DVFS 

Relation 
RR/PSO 

Relation 
RR/ACS 

50 232 112 116 121 −51.72% −50.00% −47.84% 

100 442 221 221 220 −50.00% −50.00% −50.23% 

150 619 309 310 276 −50.08% −49.92% −55.41% 

200 822 412 411 394 −49.88% −50.00% −52.07% 

250 1026 513 513 452 −50.00% −50.00% −55.95% 
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Figure 4. CO2 emissions of the models. Source: Created by the authors (2023). 

The study highlights that employing the Ant Colony System (ACS) 
algorithm in cloud computing significantly enhances environmental 
outcomes by reducing CO2 emissions compared to other algorithms, with 
an 11% improvement over the Particle Swarm Optimization (PSO). The 
ACS algorithm shows CO2 reductions of 121–452 tons, a marked decrease 
from Round Robin’s 232–1026 tons over a 521-day simulation. The 
emission increases were notably lower with ACS, indicating superior 
energy optimization. 

When comparing all algorithms for each model and workload, a 
decrease in CO2 emissions of at least 49.88% and a maximum of 51.72% 
were observed for DVFS, and between 49.92% and 50% for PSO. In relation 
to ACS, there was a range of 47.84%–55.95% compared to the round-robin 
algorithm. 

In summary, this study emphasizes the potential to significantly 
decrease the environmental impact associated with cloud computing 
through efficient resource management techniques and strategies. As 
revealed by the simulated scenarios, a minimum reduction of 50% in 
environmental impact can be achieved without compromising the 
computational capacity. 

In relation to the four simulated models, it can be concluded that the 
model utilizing 150 virtual machines provides the most favorable cost-
effectiveness. By implementing the ACS algorithm in this model, a 
reduction of 55.41% in environmental impact and CO2 emissions, and a 
decrease of 28.70% in direct allocation costs can be achieved. Furthermore, 
compared with the model with 50 virtual machines, there was an 
approximately 84% reduction in response time. 

These findings underscore the capabilities and effectiveness of green 
cloud computing, emphasizing the importance of the broader adoption of 
sustainable practices in the IT industry. 
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SCORE CALCULATION PROPOSAL 

To conduct an analysis of the results in a more objective manner while 
avoiding subjective criteria, this study suggests implementing scores for 
different configurations and algorithms. The purpose of these scores is to 
identify the range of possible scores that can be achieved in each scenario, 
and to determine the level at which the data center operates. 

To achieve this, we utilize a model based on commonly used algorithms 
in multi-objective optimization and multi-criteria decision-making. We 
incorporated weights and normalized the results to create a ranking 
system [28–31]. 

Definition of Weights 

One of the challenges posed by using weighting is defining the weights 
for each metric, as this importance can be relative, depending on the 
objectives of each datacenter. In this study, we adopted weights for the 
metrics. However, the proposed algorithm can use these parameters to 
make the solution more flexible. 

Therefore, the goal of the proposed algorithm for calculating scores is 
to establish an efficiency rating for each configuration and algorithm 
based on their respective results while assigning weights to each factor. In 
other words, factors such as CO2 emissions, energy consumption, 
execution time, and cost were considered. 

Determining the appropriate weights for metrics in a datacenter 
scenario is influenced by various factors such as the specific nature of the 
datacenter, its operational objectives, and organizational priorities. 

CO2 Emission: The global focus on sustainability and concerns about 
climate change have led many companies to prioritize the reduction of 
their carbon emissions. If the datacenter has strict sustainability goals or 
is located in an area with stringent emission regulations and growing 
consumer demand for greener practices, this burden can be higher. 

Energy Consumption: The energy consumption of a datacenter is 
closely linked to its operational cost and efficiency. In addition to financial 
considerations, excessive energy consumption also has significant 
environmental implications. Consequently, many datacenters are striving 
to operate them in an energy efficient manner. Consequently, this metric 
has gained substantial importance because of its direct impact on CO2 
emissions. 

Considering the proportional relationship between these two metrics, 
it was feasible to treat them as a combined metric. Alternatively, they can 
be kept separate while assigning similar weights to acknowledge the 
interdependence. 

However, they must collectively account for a substantial proportion of 
the total weight. 

Execution Time: Performance is critical for most datacenters, as a 
longer execution time can negatively impact user experience and 
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operational efficiency; if clients or applications of the datacenter are 
sensitive to response time, this factor will carry greater weight. 

Therefore, it is recommended that the weight of this metric be similar 
to the combined weight of the previous two metrics to balance SLA and 
environmental impact. However, if the computational performance is not 
a critical objective, the weight can be reduced to focus on the energy 
consumption and carbon emissions. 

Cost: Most organizations are concerned about costs, but their priorities 
may vary. Cost can be indirectly reflected in metrics, such as CO2 emissions 
and energy consumption, as both have associated cost implications. 
However, direct operational expenses remain distinct and significant, 
which is why they have been emphasized. 

To ensure that the weighted combination of all metrics results in a score 
that reflects the total proportion or percentage of the evaluation criteria, 
the sum of the weights should be equal to one. When the weights add up 
to 1 (or 100%), this offers several advantages. 

Normalization: By ensuring that the total is one, the criteria are 
normalized. This allows for intuitive interpretation of the results and easy 
comparison across different scenarios or alternatives. 

Clear Interpretation: When weights add up to 1, the relative 
contribution of each metric to the total score is clearly understood. For 
instance, if a metric has a weight of 0.3, it clearly indicates that this metric 
represents 30% of the total importance in calculating the score. 

Simplified Comparison: When comparing different alternatives or 
scenarios using the same set of criteria, having weights that sum to one in 
all scenarios ensures fair and consistent comparisons. 

Consistency in Multi-criteria Methods: Many multicriteria decision 
methods, such as the Analytic Hierarchy Process (AHP), employ the 
convention that weights sum to one. This ensures consistency and 
comparability across approaches and applications. 

To achieve this, the round-robin algorithm was utilized, with a 
configuration of 50 reference VMs as baseline values. The efficiency score 
was calculated based on the difference between the results from RR and 
other algorithms and configurations, weighted by the importance of each 
metric. 

Calculation Algorithm Proposal 

The following section outlines the procedural steps of our methodology 
for evaluating energy efficiency. The computed efficiency scores are 
derived from a mathematical formula that captures the multidimensional 
nature of the energy efficiency assessment, as presented below: 

 
(1) 

In this case: 
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• n is the total of four metrics (CO2, energy consumption, execution time, 
and cost). 

• wi is the weight assigned to each metric based on priority. 
• xi,j represents the i-th metric of the j-th VM configuration for the specific 

algorithm. 
• xi,RR denotes the value of the i-th metric for the j-th VM configuration 

obtained using the round-robin algorithm. 

The result of this formula, the score, represents the efficiency rating of 
the j-th VM configuration in a specific algorithm. The higher the score, the 
better is the configuration in terms of minimizing CO2eq emissions, energy 
consumption, processing time, and cost. 

Score Results 

When executing the proposed algorithm, it is possible to assign an 
efficiency score for each virtual machine configuration and a specific 
algorithm, as previously discussed. We chose to perform 
parameterizations to identify their behavior and evaluate different 
aspects related to weight configurations. 

The parameterization of the Score Calculation algorithm considered 
the direct relationship between energy consumption and CO2 emissions to 
maintain the SLA of the initial model. The following weights were assigned: 
0.2, 0.2, 0.4, and 0.5, for energy consumption, CO2 emissions, processing 
time, and costs, respectively. 

Table 11. Result scores with different weights. 

Algoritmo VMs Score 

ACS 250 0.2923 

ACS 150 0.2788 

ACS 200 0.2564 

DVFS 200 0.2450 

PSO 150 0.2393 

ACS 100 0.2367 

PSO 200 0.2319 

PSO 250 0.2313 

ACS 50 0.2267 

PSO 100 0.2168 

PSO 50 0.2159 

DVFS 50 0.1995 

DVFS 100 0.1990 

DVFS 250 0.1984 

DVFS 150 0.1948 
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According to Table 11, assigning different weights to the metrics 
indicates that the ACS algorithm model with 250 VMs was more efficient. 
This analysis highlights the potential of determining metric priorities 
based on organizational objectives. 

This approach facilitates the transition from a subjective perception to 
an objective and balanced perspective in information analysis, 
highlighting the importance of conducting thorough and meticulous 
evaluations. It has been demonstrated that by clearly defining weights and 
priorities for the metrics used, significant insights can be gained regarding 
the identification of the most efficient virtual machine configuration in 
terms of CO2 emission reduction, energy consumption minimization, 
processing time optimization, and cost efficiency. 

ENERGY LEVEL PROPOSAL 

Based on the findings obtained in the previous section, it is feasible to 
propose an accurate energy-level scale that can be easily implemented in 
a specific datacenter and aligns with the need to monitor and manage the 
energy consumption in the datacenters. 

This scale was divided into five levels (A–E) and assigned scores 
obtained from the various configurations and algorithms presented. The 
round-robin algorithm with 50 virtual machines was used as a reference 
and was classified as level E. 

Level A is characterized by the best configuration score and algorithms, 
whereas the subsequent levels organize the other scores. This scale 
provides a strategic diagnosis, allowing the identification of areas with 
optimization potential and implementation of energy-efficient solutions. 

The implementation of this Energy Level Scale in specific data centers 
not only allows for accurate monitoring of energy consumption but also 
promotes more sustainable management of energy resources, thus 
meeting the growing demands for sustainability and environmental 
responsibility. In addition, the practical application of this model can 
significantly contribute to the creation of an energy management 
framework in IT environments, which may lead to advancements in 
research and development in the field of energy efficiency. 

One of the main challenges in this stage is the proper distribution of the 

scores obtained in the previous section into different proposed categories 

of clustering and classification. This task can be accomplished using 

distinct approaches depending on the characteristics of the data and the 

objective of categorization. A frequent strategy for grouping numerical 

values into five levels is to employ statistical techniques and machine-

learning algorithms [32–34]. 

The main objective of these techniques is to group the numerical values 
into clusters that share similar characteristics. Various strategies can be 
employed based on the available information and purpose of 
categorization. 
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When selecting a technique, it is crucial to consider its suitability to the 
available dataset and segmentation goals. Although percentile-based 
division may be appropriate for some applications, more advanced 
techniques can be chosen in complex contexts to uncover underlying 
patterns. 

To perform this task, one can utilize the k-means algorithm, which has 
been widely adopted in literature. This unsupervised clustering method 
groups the numerical values into k clusters, where k represents the 
desired number of groups. The algorithm procedure involves dividing the 
numerical values into groups with minimal within-cluster variance and 
maximal between-group variance. This approach reduces the total 
intracluster distance by minimizing this measure by considering all 
formed clusters. 

Despite the current simplicity and small size of the data being 
processed, the utilization of clustering and classification techniques 
remains essential for segmentation into five levels. It is crucial to consider 
both the size and nature of the data as well as the available computational 
resources. It should be noted that other simulations may generate more 
extensive and intricate data in their results. 

In this study, we adopted a non-traditional clustering approach to 
explore various solutions and assess their performance through cross-
validation or a separate test set. 

Therefore, we used neural networks to classify the scores into different 
levels. With advancements in deep learning, neural networks have 
emerged as viable options for categorizing numerical values at specific 
levels. Despite being a more complex approach than traditional machine 
learning algorithms and classification methods, it can yield good results, 
particularly when there is a large amount of data or when the relationship 
between scores and classes is intricate. 

In a simplified manner, the following steps were performed to cluster 
and classify the numerical values into five levels using neural networks. 

1. Standardize the data because neural networks are sensitive to the scale 
of input data. 

2. Construction of the Neural Network Model. 
3. Training of the Model. 
4. Prediction. 

After the prediction, numerical values were assigned to levels based on 
the pre-established categories. By submitting the collected data, as shown 
in Table 11, to the artificial intelligence model using RNN, we obtained the 
distribution of classes and intervals for the scores, as detailed in Table 12. 

Notably, the scores were negative, indicating that the results were 
lower than those of the baseline configuration, which is represented by a 
value of zero in this study. 

• Level A: 0.2788 to 0.2923 
• Level B: 0.2367 to 0.2564 
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• Level C: 0.2159 to 0.2319 
• Level D: 0.1948 to 0.1995 
• Level E: -0.8525 to 0.0305 

Building on this foundational analysis, we propose the introduction of 
up to four sublevels within each class, denoted by ‘+’. Each sublevel 
represents an additional 25% of the renewable energy usage at the 
respective level or score. This proposed enhancement of the classification 
system provides data center managers with a more nuanced spectrum of 
choices, facilitating more informed decisions regarding operational 
expenses and the integration of renewable energy sources. 

The sublevels are established based on pre-established multicriteria 
heuristic solutions that guide decisions in energy-conscious consumption 
situations without compromising datacenter operations. The methods are 
detailed in Table 12 [28–31]. 

The incorporation of artificial intelligence methods for labeling 
coupled with the inclusion of energy sublevels results in a robust and 
adaptable system. This not only streamlines operational and strategic 
decision-making processes but also promotes energy efficiency and the 
adoption of renewable energy. Consequently, this model optimizes a 
datacenter’s energy resources while guiding organizations towards more 
sustainable and environmentally responsible practices. 

Table 12. Results scores with different weights. 

Scale Level Scale 

A ACS 250; ACS 150 {++++} 

B ACS 200; DVFS 200; PSO 150; ACS 100 {++++} 

C PSO 200; PSO 250; ACS 50; PSO 100; PSO 50 {++++} 

D DVFS 50; DVFS 100; DVFS 250; DVFS 150 {++++} 

E RR 100; RR 50; RR 150; RR 200; RR 250 {++++} 

The utilization of sublevels based on renewable energy consumption is 
crucial. Even a data center that acquires all of its energy from renewable 
sources may not be energetically efficient by definition. With the 
methodologies outlined in this study, it is possible to further reduce the 
energy consumption and redirect the saved energy to other critical sectors. 

These strategies are crucial for improving the use of renewable energy 
and effectively reducing the environmental damage. They play a vital role 
not only from an economic perspective but also in meeting sustainability 
goals and fulfilling environmental responsibility requirements. 

To ensure an accurate analysis of energy efficiency, it is crucial to 
develop a customized energy-level table for each unique datacenter, 
considering the individual workload and energy demand. This scale 
enables the assessment of the datacenter’s energy optimization level, 
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providing a clear understanding of efficiency levels ranging from highest 
to lowest based on specific operational workloads. 

One of the main goals of this model is to indicate the current energy 
efficiency of the datacenter and its potential evolution in terms of energy 
management to demonstrate the real benefits of these implementations. 
This involves assessing its status and selecting algorithms that can 
increase it to a higher level of energy efficiency. It is crucial to note that 
these score values are not absolute because they vary according to each 
datacenter’s configuration and equipment as they represent the 
relationship between various energy levels. 

This means that, in practical terms, this model allows the setting of 
realistic goals for implementing energy efficiency, planning evolution, and 
reducing the environmental impact. It also allows direct and indirect cost 
reduction through the adoption of more efficient resource allocation 
algorithms, as well as the use of renewable energy. 

A hypothetical datacenter is used to illustrate the scaling strategy, 
which consumes 155 W for a specific workload and is classified as Level C. 
The scale used in this example, represented in Table 12, is the result of this 
study and the energy consumption values are based on each level. It 
should be noted that 40 W of this consumption comes from renewable 
energy sources. 

In this context, the Hypothetical Datacenter is classified as C+ because 
40 W represents approximately 25.8% of the total consumption from 
renewable sources. The study highlights not only the importance of overall 
energy efficiency but also the proportion of renewable energy used, as 
shown in Table 13, derived from Tables 11 and 12. 

Table 13. Energy efficiency scale—hypothetical data center. 

Scale Level Scale 

A ACS 150 machines 106 

B DVFS 50 machines 149 

C PSO 50 machines 184 

D ACS 50 machines 205 

E RR 50 machines 268 

Although relying solely on renewable energy in a datacenter is not 
sufficient to ensure energy efficiency and reduce the environmental 
impact, it is essential to adopt intelligent strategies to optimize resources 
and promote rational energy usage. This necessitates the exploration of 
clean sources of energy as well as technological and organizational 
solutions that facilitate responsible and efficient resource management 
within the computational environment. 

Based on this categorization, valuable insights can be derived 
regarding energy consumption and adoption of renewable sources, 
thereby contributing to the development of more sustainable and 
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responsible practices in the IT sector. Companies can use this information 
to establish specific improvement goals, such as increasing the proportion 
of renewable energy used or reducing the total energy consumption. 

Possible proposals can involve improving energy efficiency 
optimization, either by enhancing algorithms at a vertical or horizontal 
scale, or by replacing conventional energy sources with renewable ones. 

In summary, the integration of renewable energy sources into 
datacenter infrastructure is depicted by the horizontal levels presented in 
this proposal. Each addition represents an extension at the same 
hierarchical level, allowing the flexibility to adapt to energy growth 
opportunities. However, implementation on a horizontal level requires 
financial and logistical investments, as well as careful management to 
maintain operational and energy efficiency, as power consumption 
fluctuates due to increased computational demand. 

Horizontal variation can be the outcome of a significant increase or 
decrease in the processing and storage capacity. This is because the 
operational model relies on the ratio of energy consumption to the 
production from renewable sources. This approach enables data centers 
to achieve operational excellence while maintaining optimized and 
environmentally conscious energy management for sustainability 
assurance. 

The utilization of vertical scaling results in the optimization of the 
performance of existing elements, thus promoting higher efficiency in the 
allocation of energy and other resources. As a logical model that aims to 
maximize the utilization of available resources, its implementation can 
occur quickly and with lower financial investment, which also contributes 
to reducing operational expenses. 

The strategic integration of the horizontal and vertical dimensions 
provides an innovative approach for maximizing the efficiency and 
sustainability of data centers. By harmonizing these dimensions, it is 
possible to adapt solutions that effectively respond to variable demands, 
while balancing the need for expansion with resource optimization. This 
fosters more efficient and sustainable operation of data centers. 

One advantage of this integration is the optimization of the advantages 
offered by each approach, resulting in a flexible and adaptable system that 
proactively adjusts to changes in the operational environment and market 
demands. The impact of these elements on energy efficiency and 
sustainability can be significant, providing new incentives for innovation 
and improvements in data center management. 

CONCLUSIONS

Green cloud computing has become an increasingly discussed topic in 
both business and academic sectors. Companies are gradually shifting 
towards this model as a response to the growing storage of data and 
computational needs, leading to the expansion of cloud provider 
infrastructure. This expansion has had significant economic, social, and 

J Sustain Res. 2024;6(1):e240004. https://doi.org/10.20900/jsr20240004 

https://doi.org/10.20900/jsr20240004


Journal of Sustainability Research 25 of 29 

environmental consequences, such as energy consumption, water usage, 
and CO2 emissions. In light of this increasing demand, there is a need to 
develop data centers that are more energy efficient and that utilize 
renewable resources. 

The objective of this study was to identify the main metrics used as well 
as the potential areas and categories for transformation towards 
Sustainable Cloud Computing. Furthermore, we aimed to assess the 
hypothesis that it is possible to achieve a reduction in energy consumption 
without compromising processing time. 

The results obtained in this study are significant, and demonstrate the 
potential of effective methods for resource management in cloud 
computing. Using the CloudSim Plus simulator, various strategies and 
algorithms were developed and evaluated to reduce the energy 
consumption and optimize the quality of service indicators. These findings 
highlight the importance of implementing energy-efficient approaches for 
improving sustainability and enhancing performance in cloud 
environments. 

By employing more efficient resource allocation algorithms or 
alternative approaches, substantial reductions in energy consumption of 
approximately 55% were achieved without compromising processing 
times. This decrease in energy usage not only helps mitigate the 
environmental impact, but can also lead to significant savings in 
operational and infrastructural costs. 

Additionally, the study also found a considerable decrease in expenses 
related to virtual machine distribution, potentially reaching 
approximately 28%. This highlights that implementing more energy-
efficient practices in cloud computing is not only beneficial for the 
environment, but also offers economic advantages. 

By implementing this model using ACS algorithms, it was possible to 
observe a noticeable decrease in environmental impact, reaching a 
reduction of 55.95% in carbon dioxide emissions. This led to a total 
decrease of 513 tons of CO2 being released into the environment. 

To simplify the selection of the best solution, a scoring calculation was 
proposed to evaluate the results of the algorithms. This allows for an 
objective comparison and facilitates decision making regarding the 
implementation of the most suitable strategy for green cloud computing. 

In addition, a framework for classifying energy efficiency was included 
to assess datacenters in terms of their consumption and use of renewable 
sources. This allows for the monitoring of progress in energy efficiency 
over time, and enables the implementation of appropriate measures to 
improve it. 

It is essential to emphasize that multiple approaches are crucial to 
achieve optimal results. For instance, combining the suggested 
architecture with the development of distributed software can yield 
favorable outcomes. 
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This virtual machine allocation method has a beneficial impact on the 
operational expenses of the infrastructure and reduces execution time, 
allowing researchers and data center managers to make better use of their 
technological resources in both public and private settings. 

In future research, it will be possible to conduct more advanced studies 
using simulators and algorithms to determine the most suitable 
parameters for evaluating the computational and energy efficiencies of 
datacentres. Additionally, analyzing the benefits of different approaches 
implemented within this field can further contribute to a more efficient 
adoption of Green Cloud Computing. 

Additionally, as part of future research, this model should be 
implemented in a real data center to provide a practical study and 
demonstrate its benefits more clearly and objectively. 
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