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ABSTRACT 

Background: The second, third, and fourth cases of lethal cause upon 
cancer are lung cancer, colorectal cancer, and pancreatic cancer, 
respectively. This trend is not limited to some countries, but is a global 
problem. To further decrease cancer-related death, early prediction, 
diagnosis and prognosis of cancer by noninvasive liquid biopsy is an 
urgent issue for us. It is related with saving lives at a low medical cost and 
cutting-edged ideas of a neo-medical tool for risk hedge. One of the 
biomarkers is circulating microRNA (miRNA). miRNA can control gene 
expression of protein and it is a common factor of tumorigenesis and 
tumor suppression. Although it has recently been cleared that miRNA 
panel as a biomarker could be measured and evaluated as an indicator of 
human diseases, it is remained unclear whether the miRNA biomarker 
could be evaluated as biological and pathogenic processes, or 
pharmacologic responses to a therapeutic intervention or not. 

Methods: To elucidate the implication between miRNA biomarkers and 
pathogenic processes, time-dependent processes of tumorigenesis in 
pancreatic, colorectal and lung cancers were investigated through 
network analysis from minus one stage (or stage zero) of cancer to various 
cancer stages by algorithm of miRNA entangling target sorting (METS) in 
silico simulation using quantum miRNA language. 

Results: We found three different miRNA memory package (MMP) hubs for 
pathogenic processes among three cancer cases. 

Conclusions: These computer simulation data suggested that quantum 
miRNA language would be essential for clinical miRNA biomarker panel 
to understand its biological, pathological and pharmaceutical characters 
in cancer. 

KEYWORDS: biomarker; microRNA; colorectal cancer; lung cancer; 
pancreatic cancer; network; healthcare; quantum language; circRNA; 
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INTRODUCTION 

In USA, breast cancer (30%) in female and prostate cancer in male 
(19%) were estimated as the top new cases in 2017. The second and third 
new cases were lung cancer (12% in female and 14% in male) and 
colorectal cancer, respectively [1]. Pancreatic cancers were implicated in 
fourth estimated death (7% in both sexes) of female and male. In Japan in 
2017, male lung cancer and female colorectal cancer were mentioned as 
the first cause of cancer-related death. Pancreatic cancer has increased in 
both male and female (https://ganjoho.jp/reg_stat/summary.html). These 
cancers have high mortality rates even when tumor cell growth is slow in 
general. The reason is the lack of precise and noninvasive diagnostic 
biomarkers before late stages of cancer. For example, pancreatic cancer is 
the most lethal one because most patients are diagnosed on the high stage 
of cancer with metastasis; however, there are some prediction tools for 
early detection [2]. By statistical data, the 5-year survival rate of pancreatic 
cancer was very low in the GLOBOCAN series (http://globocan.iarc.fr) of 
the International Agency for Research on Cancer in 2012 [3]. Although 
CA19-9 has been used as a biomarker of pancreatic cancer, combinations 
with markers of other cancer, such as CA19-9 plus CEA, CA125, CA242, or 
K-Ras mutation have increased sensitivity, specificity or accuracy of 
diagnostic screening [2,4]. It means that there would be no tumor-specific 
protein biomarkers, no one on one fit for quite early diagnosis. While we 
intend to complete precision medicine, we should challenge cancer 
diagnosis on minus one stage under less invasive protocols, such as a 
liquid biopsy. Furthermore, we should prepare treatment of regimen on 
the minus one stage or stage zero of cancers. 

Many reports have indicated that microRNAs (miRNAs) could become 
promising biomarkers for quite early prediction and diagnosis of 
pancreatic cancer through liquid biopsy [5]. The meta-analysis from many 
studies showed that multiple miRNAs diagnosis has a higher sensitivity 
and specificity in pancreatic cancer compared with single miRNA 
diagnosis [6,7], as we have previously predicted in the microRNA memory 
package (MMP) [8,9]. Then, another meta-analysis evaluated using plasma- 
or serum-based miRNAs as biomarkers to diagnose pancreatic cancer [10]. 
They selected 27 studies from 468 papers in electric databases. It was also 
found that two miRNAs, miR-17-5p and miR-21 from serum exosome can 
distinguish pancreatic cancer from non-pancreatic cancer cases with high 
sensitivity of 0.73 and 0.93, and specificity of 0.96 and 0.82, respectively 
[11]. However, in plasma, Ganepola et al. [12] have showed that a panel of 
three miRNAs (miR-642b-3p, miR-22-3p and miR-885-5p) has higher 
sensitivity (0.91) and specificity (0.91) for diagnosis of early pancreatic 
cancer. But false-positive percentage was lowered in four miRNAs’ panel 
(miR-1246, miR-4644, miR-3976 and miR-4306) upon exosome because the 
panel of miRNAs in exosome was not in healthy donors’ serum exosome 
at all [13]. Besides exosome, to predict progression of cancer from pre-
cancer state, intraductal papillary mucinous neoplasm (IPMN) is 
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important for early diagnosis. IPMN was pre-pancreatic cancer lesion and 
may develop into pancreatic cancer [14]. Three miRNAs (miR-191, miR-21 
and miR-451a) in serum exosome can serve as early diagnostic and 
progression markers of IPMN and pancreatic cancer [15]. Furthermore, by 
machine learning diagnosis using two miRNA panels in plasma, pancreatic 
cancer could have been distinguished from chronic pancreatitis [16]. 

These data suggest that quantum MMP could have potential for early 
detection of cancer on minus one stage diagnosis. For the liquid biopsy 
technique, data mining and simulation would be required in silico as time 
advances, therefore, we have continued to elucidate the relation between 
the quantum miRNA language and the pathophysiology of human diseases. 
We have previously documented human breast cancer drug resistance 
simulation in three oncogenic subtypes by miRNA entangling target 
sorting (METS), in this paper, networks of pancreatic cancer, colorectal 
cancer and lung cancer were simulated from minus one stage or stage zero 
to tumor progressing stages, and their etiologies were discussed. 

METHODS 

Data Base Usage, Data Mining, Simulation and Statistics Tools 

The physicochemical interaction has been simulated between miRNAs 
and human cancer diagnostic processes by dynamic computer simulation 
with METS algorithm using the quantum miRNA language [17]. For data 
mining, biomarker miRNAs were selected by following criteria: (1) data 
from serum or plasma, (2) statistically significant in meta-analysis, (3) 
showed in two or more references, (4) clear expression levels of up- and 
down-regulation, (5) as many between two stages in a cancer (See Table 1). 
Data of the multi-targets of the microRNA memory package (MMP) were 
extracted from miRTarBase Ver. 7.0 (http://mirtarbase.mbc.nctu.edu.tw/ 
php/index.php) and TargetScan 7.2 (http://www.targetscan.org/vert_72/). 
In TargetScan analysis, negative correlations were observed between 
Context Score (CS) of miRNA/target and Double Nexus Score (DNS) as 
quantum energy levels of two miRNAs in all studies as described 
previously [8,17]. For example, a correlation (R) between CS and DNS was 
−0.7613 (p < 0.01), R2 = 0.5795 in pancreatic cancer study. Target 
protein/protein interaction and cluster were searched by String Ver. 11.0 
(https://string-db.org/cgi/input.pl). The gene function of protein was 
detected by GeneCards (https://www.genecards.org) and GO enrichment 
analysis powered by PANTHER in Geneontology (http://geneontology.org). 
To review the validated data for miRNAs, long noncoding RNAs (lncRNAs), 
circular RNAs (circRNAs) and cancers, PubMed (https://www.ncbi. 
nlm.nih.gov/pubmed/) and Google Scholar (https://scholar.google.co.jp) 
were used. Total information content was 944, 3076 and 6073 in pancreatic, 
colorectal and lung cancer, respectively. The retrieved data was narrowed 
down for the usage of data mining as the open accessing sub-data of 75, 
208 and 314 in pancreatic, colorectal and lung cancer, respectively. 
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Table 1. miRNA biomarkers related with the three tumors. 

 Minus-one stage 
(Stage 0) 

Level SNS * Cancer Level SNS 

Pancreatic cancer miR-30c-5p up 2 miR-409-3p down 6 
 miR-212-5p up 4 miR-1246 up 2 
 miR-21-5p up 5 miR-128-3p up 4 
 miR-21-3p down 6 miR-21-5p up 5 
 miR-10a-5p up 5 miR-17-5p up 7 
 miR-155-5p up 7 miR-155-5p down 7 
 miR-106b-5p up 6 miR-196a-5p down 8 
  miR-10b-5p up 5 miR-744-5p up 9 
Colorectal cancer miR-29a-5p up 5 miR-29b-1-5p down 8 
 miR-92a-1-5p up 9 miR-17-3p up 7 
 miR-122-5p up 9 miR-92a-1-5p up 9 
 miR-192-5p up 4 miR-21-5p up 5 
 miR-374a-5p up 3 miR-221-5p up 4 
 miR-29c-5p up 5 miR-96-5p up 4 
  miR-601 up 10 miR-601 down 10 
Lung cancer miR-124-5p up 6 miR-324-3p up 7 
 miR-154-5p down 6 miR-1285-5p down 5 
 miR-129-2-3p down 2 miR-21-5p up 5 
 miR-196a-3p down 6 miR-126-5p down 4 
 miR-1180-5p down 7 let-7a-5p down 8 
 miR-181a-2-3p down 4 miR-145-5p up 4 
 miR-423-5p down 10 miR-20a-5p up 7 
  miR-25-5p down 9 miR-223-5p up 6 

Colored grids; the miRNA memory package (MMP) hub in the core of the quantum code region (QCR). * Single nexus 

score as quantum energy levels of a miRNA. 

The calculation of statistical significance for cancer in the METS 
simulation was performed by the area under the curve (AUC) in receiver 
operating characteristic (ROC) or the χ2-based Cochran’s Q-test using 
BellCurve for Excel (Social Survey Research Information Co. Ltd., Tokyo, 
Japan). When searching lncRNA, LncCeRBase Database (http://insect-
genome.com/LncCeRBase/front/) was used. Accuracy and precision to 
develop cancer from stage minus one (or zero) were computed by machine 
learning using Prediction One (Sony Network Communications Inc., Tokyo, 
Japan). 

RESULTS AND DISCUSSION 

Simulation of Pancreatic Cancer 

Primary extraction of miRNA set and MMP in pancreatic cancer 

Duell et al. [18] have reported that a panel of miRNA biomarkers in pre-
diagnostic plasma showed statistically significant association with 
subsequent risk of pancreatic ductal adenocarcinoma (PDAC) in less than 
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5 years. Therefore, data mining based on this report was performed for 
METS computation by quantum miRNA language. Eight miRNAs (miR-21-
5p, miR-10b-5p, miR-106b-5p, miR-212-5p, miR-30c-5p, miR-10a-5p, miR-
21-3p and miR-155) were selected as minus one stage biomarker at first 
(Table 1). As post-minus one stage PDAC biomarker (stage I–II: 9.2%; stage 
III–IV: 75%), eight miRNAs (miR-21-5p, miR-17-5p, miR-155-5p, miR-196a-
5p, miR-1246, miR-744-5p, miR-409-3p and miR-128-3p) in plasma exosome 
were used for analysis (Table 1) [11,13]. 

The common miRNAs in both stages were miR-21-5p and miR-155-5p, 
therefore, most of the target protein gene for them were overlapped 
between these two miRNAs on both stages. For METS analysis, miR-106b-
5p was a miRNA of miR-17/93 family, and miR-106b-5p and miR-744-5p 
have less target data in databases with strong evidences of protein/protein 
connection. Targets of miR-10b-5p was not distinguished from those of 
miR-10a-5p. The MMP by eight miRNA each clearly showed difference 
between minus-one stage and PDAC stages of pancreatic cancer (Figure 1). 

 

Figure 1. MMPs related with human pancreatic, colorectal and lung cancers. Three MMPs of minus one (or 
stage zero) stage and three MMPs of cancer stage were computed in human pancreatic, colorectal and lung 
cancers, and represented as radar chart. The core of the quantum code region (QCR) is shown as dotted line. 

The quantum code region (QCR) in minus one stage was restricted from 
the energy level of 0 to 60 by DNS frequency numbers and QCR in post-
minus one stage was 0 to 80 (Figure 2). To contextually elucidate difference 
of MMP in pancreatic cancer and quantum energy distribution of QCR 
between minus one and PDAC stage, etiologic causes in pancreatic cancer 
were dynamically computed by METS with quantum miRNA language [19]. 
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After three layers (QCR: 0–20, 21–40 and 41–60) were learned by METS, the 
data on each layer were integrated into the network processing. 

 

Figure 2. Alteration of DNS frequencies of human pancreatic, colorectal and lung cancers. The quantum 
energy level (DNS frequency) of five layers (QCR; 0–20, 21–40, 41–60, 61–80 and 81–100) was visualized in 
human pancreatic, colorectal and lung cancers on stages of minus one (or zero) and cancer. Arrows, the 
core QCR. 

Minus one stage simulation of pancreatic cancer 

Although a miRNA set of the minus one stage in the core stage was 
reduced from a panel of 7 miRNAs to MMP hub of 3 miRNAs, a main 
scheme of protein/protein interaction did not alter between all layers and 
the core (Figure 3A,B). 

On minus one stage, two core miRNAs, miR-30c-5p and miR-21-5p were 
upregulated (Figure 3B). The upregulation of miR-30c-5p contributes to 
TP53 suppression together with miR-30d-5p, miR-25c-3p, miR-151a-5p, 
miR-612, or miR-1285-3p. BCL2 would be reduced by miR-21-5p 
upregulation together with miR-34a-5p, miR-34c-5p and miR-449a. The 
precursor of pancreatic neoplasm would be balanced in pre-tumor state 
between downregulation of tumor suppressor (oncogenic) and blocking of 
anti-apoptosis (tumor suppressive). On the contrary, miR-21-3p and miR-
499a-5p are downregulated in precursor of pancreatic cancer and 
pancreatic cancer, respectively [18,20] and the downregulation would 
increase Ras-related GTP-binding protein B, RRAGB (Figure 3A,B). RRAGB 
activates mTOR and metabolically increases amino acids-dependent cell 
proliferation [21,22]. 
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Figure 3. METS simulation of pancreatic cancer. After data mining, miRNAs of biomarker panels were 
selected and METS simulation was performed in pancreatic cancer on minus one stage and cancer stages. 
(A) Network by METS simulation and protein string clusters was represented in all layers in minus one stage 
of pancreatic cancer. (B) The core QCR (0–19) with MMP hub in minus one stage of pancreatic cancer. (C) All 
layers of PDAC. (D) The core QCR (0–39) with MMP hub of PDAC. miRNAs: upregulation—red; 
downregulation—blue. Proteins: augmentation—red; suppression—blue. 
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Figure 3. Cont. 

mTOR/PI3K inhibitor, NVP-LED-225 inhibited pancreatic cancer stem 
cell [23] and everolimus showed anti-tumor effects in Panc-1 human 
pancreatic cancer cells by inhibition of mTOR activity through its binding 
[24]. Although it is known whether miR-21-3p has a role in PDAC, it is 
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predicted from our simulation that oncogenicity from minus one stage 
would be initiated by mTOR activation via miR-21-3p downregulation. 
While AUC in 3 MMP hub/target prediction was 0.73–0.79 (P < 0.01) for 
shorter follow up (<5 years) [18], other 4 miRNA panels would affect as 
tumor suppressor, such as spliceosome inhibition (target of SRSF7), cell 
cycle suppression (target of CDC25A), and inflammatory response 
inhibition (target of CEBPB). Accuracy and precision of PDAC prediction 
from stage minus one were 0.7813 and 0.7742, respectively. It was shown 
that the core QCR of minus-one stage in PDAC would be 0–19 in Figures 1, 
2 and 3B. 

PDAC simulation 

In the case of PDAC stages in pancreatic cancer, four layers (QCR: 0–20, 
21–40, 41–60, 61–80) were integrated into the network processing. 
Although a miRNA set of the pancreatic cancer stages in the core stage was 
reduced from a panel of 7 miRNAs to MMP hub of 3 miRNAs, a dominant 
scheme of protein/protein interaction did not alter between all layers and 
the core (Figure 3C,D). miR-21-5p upregulation has still inhibited BCL2, 
CDC25A since minus one stage (Figure 3C) and simultaneously 
upregulation of miR-17-5p would block CCND1, therefore, cell cycling from 
G1 to S would be reduced (Figure 3C). On the other hand, miR-155-5p was 
downregulated and E2F2 would increase. Subsequently, cell cycling would 
be balanced between down and up, that is shown in minus one stage 
because pancreatic cancer would be metastatic rather than proliferative 
by miR-409-3p downregulation [25,26]. miR-409-3p targeted serine-
threonine kinase, AKT1 and RDX (Figure 3C,D). Upon downstream of 
phosphatidylinositol 3-kinase (PI3K), AKT is frequently hyperactivated in 
human cancer [27]. In Figure 3C,D, downregulation of miR-409-3p 
increased AKT with downregulation of miR-149-3p. With activation of 
AKT1 and its downstream of mammalian target of rapamycin, mTOR 
pathway enhancement is implicated in pancreatic cancer formation 
[28,29]. PI3K signaling affects KRAS activity in PDAC [30,31] and 
PI3K/AKT/mTOR has recently been targeted in therapeutic treatment of 
PDAC [32]. Rapamycin cotreated with cisplatin suppressed the expression 
of PI3K, AKT and phosphorylated mTOR in pancreatic cancer [33].  

Dioscin inhibited pancreatic cancer by upregulation of miR-149-3p via 
suppression of AKT1 pathway [34]. In the context of human breast cancer 
cells, miR-409-3p was a tumor suppressor via downregulating of AKT 
activity [35]. For human gastric cancer, miR-409-3p was downregulated, 
and miR-409-3p suppressed the expression of the pro-metastatic gene 
radixin (RDX) [36], which was targeted by miR-409-3p with miR-196a-5p, 
miR-196b-5p and miR-31-5p in our simulation (Figure 3D). Further, the 
LncRNA, metastasis-associated lung adenocarcinoma transcript 1 
(MALAT-1) expression levels were upregulated in pancreatic cancer 
tissues [37] and zinc finger homeodomain enhancer binding protein 
(ZEB1) was also upregulated [38]. PI3K promotes the metastasis of 
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pancreatic cancer by facilitating ZEB1 [39]. High MALAT-1 plus low miR-
200c-3p expression in Figure 3C,D would promote tumor metastasis via 
target ZEB1, on high expression [40]. The data showed that the core QCR 
of PDAC was 0–39 (Figures 1, 2 and 3D).  

Network analysis of PDAC 

Although there is no miRNA–mRNA network computing analysis from 
a big database showing that aetiology of PDAC would be a disorder of 
AKT/mTOR pathway [41–49], these data strongly support our quantum 
network simulation by METS in Figure 3 that pancreatic neoplasia would 
progress from downstream of RRAGB/mTOR via downregulation of  
miR-21-3p/miR-499a-5p hub to upstream of AKT/RDX/mTOR via 
downregulation of miR-409-3p/miR-149-3p hub upon PDAC stages, and 
from low quantum levels (DNS: 30) in oncogenic state to high ones (DNS: 
78) in invasion and metastatic state (Figure 3B,D). Total miRNA/PDCA 
prediction data of PDCA stages by METS showed AUC of 0.91 (P < 0.01). 
Therefore, PDAC simulation by quantum miRNA language was statistically 
confirmed (Figure 3C). 

Simulation of Colorectal Cancer 

A definition of stage zero in colorectal cancer 

The second leading causes of cancer death is colorectal cancer (CRC) in 
USA [1]. Approximately over one million new cases in the global area were 
estimated and over half a million deaths occurred in 2012 by CRC [50]. As 
described above, this trend has continued in 2017. It means that the 
mortality of CRC has remained constant even though more screening 
methods of CRC have been developed, such as colonoscopy, the fecal occult 
blood test (FOBT), stool DNA test and double contrast barium enema 
(DCBE) [51]. FOBT, stool DNA test and DCBE have insufficient sensitivity 
with high false positive and high cost, and then colonoscopy is a semi-
noninvasive test with the risk of bowel perforation because about 75% of 
CRC risk patients are over 60 years old (http://gco.iarc.fr/today/home). 
Further, computed tomographic (CT) colonography resulted in similar 
detection rate of advanced adenoma to colonoscopy [52]. CRC is classified 
into five stages, 0–IV. Stage I of CRC is characterized by submucosal 
invasion, therefore, the morphological changes and mutations of TP53 are 
involved in the formation of the advanced adenomas on stage 0. Before 
that stage, small polyps, whose sizes are less than 6 mm or histologically 
low dysplasia or less villous components, would be the stage minus one. 
The CT colonography test effectively identified diminutive polyps [53]. 
Because the 5-year survival rate depends on the pathological stage of CRC 
according to the Surveillance, Epidemiology, and End Results (SEER) data 
(1975–2016) of the National Cancer Institute (NCI) (https://seer.cancer.gov/ 
data/) [54,55], a completely noninvasive screening methods with high 
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sensitivity and specificity would be required for precision medicine of CRC 
on early stage, minus one stage in precancerous lesions. 

Primary extraction of miRNA set and MMP in CRC 

Dysregulated miRNAs were identified as stage 0 of CRC in the training 
cohort. After data mining for METS analysis, seven miRNAs (miR-29a-5p, 
miR-92a-1-5p, miR-122-5p, miR-192-5p, miR-374a-5p, miR-29c-5p and miR-
601) were selected as stage zero biomarker of CRC according to previous 
studies [56–58] (see Table 1). Seven miRNAs (miR-29b-1-5p, miR-17-3p, 
miR-92a-1-5p, miR-21-5p, miR-221-5p, miR-96-5p and miR-601) of the CRC 
stage of biomarkers from serum or plasma were also extracted from meta-
analysis by Carter et al. [59] (see Table 1). The common miRNAs in both 
stages were miR-92a-1-5p and miR-601. The MMPs showed unique 
quantum energy levels in each stage (Figure 1) and QCRs of both stages 
were broad from 0 to 100 layers (Figure 2). When the data of stage zero 
(polyp stage) and post stage zero (CRC stages) on each layer were 
integrated into the network processing with METS (Figure 4A,C), the core 
layers were identified in QCR 10–39 of the polyp stage and QCR 20–39 of 
CRC stages, respectively, and interactions of protein/protein were also 
illustrated (Figure 4B,D). 

Stage zero simulation of colorectal cancer 

Although a miRNA set of the polyp stage in the core stage was reduced 
from a panel of 7 miRNAs to MMP hub of 3 miRNAs, a dominant scheme 
of protein/protein interaction did not alter between all layers and the core 
(Figure 4A,B). miR-192-5p plus let-7a-5p, and miR-374a-5p are upregulated 
and target DICER, and miR-122-5p also suppresses protein activator of 
interferon induced protein kinase EIF2AK2 (PRKRA) in the polyp stage 
(Figure 4A,B). PRKRA has similar sequences and structure to TARBP2, and 
TRBP2 with PACT binds PKR [60]. Both TARBP2 and PRKRA interact with 
Dicer and these two proteins act as cofactors of Dicer to process pre-
miRNA, or could independently function as a processor distinct from Dicer 
pathway in mouse [61]. About implication between Dicer expression and 
CRC, single-nucleotide polymorphisms (SNPs) of miRNA processing gene, 
such as Dicer, statistically displayed a great trend of low Dicer gene 
expression and it would be genetically associated with CRC risk [62]. 
Subsequently, the SNP of rs3742330 in the human Dicer gene AA allele 
exhibited a significant risk of CRC, of which odds ratio is 2.11 and 95% 
confidence interval is from 1.33 to 3.34 (P = 0.001). Further, Dicer 
impairment induced the capacity of colorectal cancer initiation [63]. It is 
suggested that in stage 0, miRNA processing impairment could induce 
tumorigenesis of colorectal epithelial cells. Although enforced complete 
deletion of Dicer gene led to inhibition of tumorigenesis, partial loss of 
Dicer is pro-tumorigenic as described in a mouse model [64,65].  
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Figure 4. METS simulation of colorectal cancer. Data mining was performed from references about 
colorectal cancer in databases and miRNAs were selected from biomarker panels. METS analysis was done 
in stage zero (polyps) and CRC stages. (A) Network communications by MET and String were shown in all 
layers in polyp stage. (B) The core QCR (10–39) with MMP hub in polyp stage. (C) All layers of CRC. (D) The 
core QCR (20–39) with MMP hub of CRC. miRNAs: upregulation—red; downregulation—blue. Proteins: 
augmentation—red; suppression—blue. 
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Figure 4. Cont.  

Processing mechanism of human Dicer and quantum miRNA language 
usages in human would be different from those of mouse, therefore, 
species biases could lead to incorrect conclusion and speculation in bench 
experiments alone. However, simulation by METS could remove the 
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species biases which is computed by human data only. In Figure 4A, miR-
192-5p with miR-34a-5p and miR-34c-5p suppressed BCL2 oncogene, and 
miR-122-5p with miR-630 and miR-203a-3p blocks BCL2L2 oncoprotein 
ligand gene. It means that early polyps may still be balanced between 
oncogenesis and tumor suppression. If TP53 has unfunctional mutation by 
dysregulation of the DNA damage repair via Dicer suppression [66,67], 
advanced adenoma proliferation may be progressed. Subsequent 
accuracy and precision of CRC prediction from stage zero (polyps) were 
0.6667 and 0.7000, respectively. 

CRC simulation 

Although a miRNA set of the CRC stages in the core stage was reduced 
from a panel of 7 miRNAs to MMP hub of 2 miRNAs, a main scheme of 
protein/protein interaction did not alter between all layers and the core 
(Figure 4C,D). Core layer of CRC simulation was presented in QCR 20–39 
(Figure 4D). In CRC tissues circDDX17 was significantly downregulated 
[68]. Therefore, upregulation of miR-21-5p by decreasing of circDDX17 
suppressed PTEN tumor suppressor with miR-17-5p, miR-214-3p and miR-
20a-5p, simultaneously miR-21-5p with 373-3p blocked reversion inducing 
cysteine rich protein with Kazal motifs (RECK), a tumor suppressor 
(Figure 4C,D). miR-17-5p was upregulated in CRC higher clinical stages and 
suppressed PTEN [69]. PTEN and RECK are deeply involved in CRC cell 
invasion and metastasis, and both proteins are reduced by miR-21-5p [70–72]. 
Furthermore, the CRC stromal cells also upregulated miR-21-5p and 
blocked PTEN [73].  

Curcumol suppressed proliferation of CRC cells via downregulation of 
miR-21-5p with enhancing PTEN expression [74]. While miRNAs in 
exosome from stromal cells or CRC cells are transferred to the 
environmental cells and modulated tumorigenicity to the incorporated 
cells in vitro and in vivo [17,75–77], miR-21-5p from CRC stromal cells 
would also be incorporated into the environmental receivers and would 
transform the phenotype of cells to be oncogenic. mR-96-5p inhibited 
KRAS with let-7a-5p, miR-155-5p and miR-200c-3p. miR-21-5p suppressed 
BCL2 with miR-34a-5p, miR-34c-5p, miR-34b-5p, miR-449a, miR-17-5p, miR-
181d-5p and miR-7-5p. Therefore, CRC cells would continue to be anti-
tumor (Figure 4B). However, the concordance rate for KRAS, BRAF and 
PIK3CA gene mutations is presented in over 90% of primary tumors 
including CRC [78]. Furthermore, lncRNA ZFAS1 and circRNA circHIPK3 
were significantly upregulated in CRC and sponged miR-7 [79,80]. 
Therefore, BCL2 suppression would be strongly modulated by both ZFAS1 
and circHIPK3 as shown in Figure 4C,D. Since BCL2 expression was 
associated with a better prognosis in CRC [81], suppression of oncogenes 
KRAS and BCL2 would become negligible (Figure 4D), and KRAS and BCL2 
may outflank CRC lethality [82]. 
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Network analysis of CRC 

In the network analysis of CRC, transcriptional factor and other mRNA 
targets were identified as hub protein genes of CRC by using the cancer 
genome atlas (TCGA) database, such as MYC [83–85]. Further, integrated 
bioinformatic computing identified more CRC hub protein genes [84–88], 
such as ASPN, FGF2 and CXCR4, and CRC-linked lncRNA [89,90], such as 
ELFN1-AS1 and HULC. However, any Dicer- and PTEN-based narrative 
data have no information on CRC incidents. CRC development and 
metastasis could dominantly be progressing with mutations of oncogene 
and tumor suppressor gene from stage 0 initiated by Dicer suppression via 
miR-192-5p and miR-374a-5p MMP hub. And then in stage I–IV, cells would 
be modulated by aberration of PTEN function via circDDX17 and miR-21-
5p hub (Figure 4C,D). Total prediction data of noncoding RNA (ncRNA)/CRC 
in CRC stages by METS showed an AUC of 0.99 (P < 0.001), therefore, 
statistically, CRC simulation by quantum miRNA language was significant 
(Figure 4C). 

Simulation of Lung Cancer 

Smoking and MMP 

Lung cancer is classified into two pathological subtypes, non-small cell 
lung cancer (NSCLC) and small cell lung cancer (SCLC). The NSCLC 
accounts for over 80% of lung cancer as described in National 
Comprehensive Cancer Network (NCCN) guideline (http://nccn.org/ 
professionals/physician_gls/default.aspx). Risk factors are tobacco 
smoking, contact with radon, asbestos and other cancer-causing agents, 
family heredity of lung cancer, and pulmonary fibrosis. 5-year survival 
rate of lung cancer is only 5% in USA according to NCI 
(https://seer.cancer.gov/data/). Early diagnosis and prediction for NSCLC is 
a pressing issue. The National Institute of Health (NIH) defines a 
biomarker “a characteristic that is objectively measured and evaluated as 
an indicator of normal biological processes, pathogenic processes, or 
pharmacologic responses to a therapeutic intervention” [91]. Therefore, 
integrative computing analysis of the miRNA/mRNA network is absolutely 
required for miRNA biomarker panels for cancer diagnosis and prognosis 
because miRNA annotation is an arbitrary number. 

At the same time, test for blood biomarker of lung cancer needs higher 
specificity and sensitivity [92]. For example, autoantibodies panels 
performed with 93% specificity but 40% low sensitivity. Complement 
fragment C4d was 89% specificity but 44% low sensitivity. The circulating 
tumor DNA (ctDNA) was 99% sensitivity but 59% low sensitivity for lung 
cancer. About miRNA biomarkers for lung cancer, the miRNA signature 
classifier (MSC) [93] and the miR-Test [94] resulted 81% specificity 87% 
sensitivity, and 75% specificity 78% sensitivity, respectively. The two panel 
tests are undergoing prospective validation with screening trials by 16,000 
high risk subjects. Further, miRNA panels corresponding to MMP has been 
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evaluated as biological, pathological and pharmacological processes in 
most of all human diseases by computer simulation with quantum miRNA 
language [17,19]. But ctDNA cannot be used because ctDNA could not 
distinguish among each disease, such as pulmonary diseases, liver 
diseases and colorectal diseases at once. The low-dose computed 
tomography (LDCT) reduced lung cancer mortality in screening of high-
risk individuals compared with annual chest radiography [95]. However, 
in general, CT and Magnetic Resonance Imaging (MRI) imaging have some 
problems, such as high cost, X-ray exposure, high rates of false-positive for 
noninvasive disease screening and human errors. Combination of both the 
miRNA panel and LDCT resulted a five-fold reduction of LDCT false-
positive rate to 3.7% [93]. 

Thus, miRNA diagnosis biomarker would be the first choice of 
noninvasive screening tool for lung cancer. Here, at least we could show 
different pathological and etiological processes between smoking and lung 
cancer with MMP hub from miRNA biomarker panels (Figure 5). It is 
suggested that MMP hub from miRNA panel biomarker could be useful 
and smart for lung cancer prediction and diagnosis, further maybe for 
prognosis and therapy as all in one strategy as described previously in 
fundamental research of MIRAI [17]. 

 

Figure 5. METS simulation of lung cancer. Data mining, and then miRNAs were selected from miRNAs 
biomarker panels of smoking as minus one stage and NSCLC stage I–II. Quantum data was extracted from 
selected miRNAs and METS analysis was performed. (A) Network was represented in the core QCR (0–20 
and 41–90) with MMP hub of smoking. (B) All layers of NSCLC stage I–II. (C) The core QCR (31–40) with MMP 
hub of NSCLC stage I–II. miRNAs: upregulation—red; downregulation—blue. Proteins: augmentation—red; 
suppression—blue. 
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Primary data extraction of lung cancer 

Given NCCN clinical guideline for lung cancer listed smoking as a 
primary risk factor, we defined smoking as stage minus one of NSCLC. 
Since tobacco smoking is also listed a risk factor of CRC in NCCN Guidelines 
for Smoking Cessation, it would also be the stage minus one of CRC (See 
Figure 1). Data mining was performed for METS analysis by quantum 
miRNA language and then eight miRNAs (miR-124-5p, miR-154-5p, miR-
129-2-3p, miR-196a-3p, miR-1180-5p, miR-181a-2-3p, miR-423-5p and miR-
25-5p) were selected as biomarkers of cigarette smoking on stage minus 
one of lung cancer (Table 1) [96–98]. Lung cancer stage specific miRNAs 
have been shown in Table 2. 

According to the panels, eight stage I–II specific miRNAs (miR-324-3p, 
miR-1285-5p, miR-21-5p, miR-126-5p, let-7a-5p, miR-145-5p, miR-20a-5p 
and miR-223-5p) were selected as NSCLC biomarkers for METS analysis 
(Table 2) [99,100]. After quantum data were extracted from the panel 
miRNA data, the MMPs showed unique quantum energy levels in stage 
minus one (smoking) and stage I–II of NSCLC (Figure 1), and QCR spectrum 
of smoking was from 0 to 90 of layers, and that of stage I–II in NSCLC was 
from 0 to 60 (Figure 2). Therefore, the core QRC spectrum of smoking was 
also broad in 0–20 and 41–90 but that of stage I–II is quite narrow in 31–40 
(Figure 2). In smoking, miR-129-2-3p and miR-196a-3p targeted SOX4 and 
MYL12A, respectively. But protein/protein interaction by these two 
miRNAs was not significantly computed in the network simulation of all 
layers, therefore, all layer data of smoking showed quite similar results as 
described below in QCR 0–20 and 41–90 (data not shown).  

Smoking simulation 

Smoking miRNAs in QCR 0–20 and 41–90 were dominantly implicated 
in two processes, DNA repair and oncogenesis (Figure 5A).  

The results as 6 miRNA MMP hub of smoking were obtained in Figure 5A 
(See Table 1 as well). Downregulation of miR-25-5p increased RUVBL1 with 
miR-138-5p (Figure 5A). RUVBL1 and RUVBL2 complex included into 
Pontin and Reptin complex were shown to be essential for tumorigenicity 
and their expression was upregulated in several cancers including lung 
cancer [101,102]. Upregulation of miR-124-5p represses NABP1 with miR-
4465 (Figure 5A). Complex of NABP1 and NABP2 as SOSS complex 
promotes DNA repair on G2/M checkpoint [103]. Although carcinogens 
from smoking, such as nitrosamine and 4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanone (NNK) induces lung adenoma and carcinoma by DNA 
damage [104–106], in experiments using male F344 rat (species biased), the 
circulating and the tissue miRNA profile were significantly altered in NNK-
treated group compared with control group [107,108]. Our simulation by 
METS also showed in human that smoking would suppress DNA repair by 
miR-124-5p upregulation and initiate carcinogenesis by miR-25-5p 
downregulation in the lung. 
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Table 2. Stage specific miRNAs in non-small cell lung cancer. 

 Stage of NSCLC *  

miRNA I II III IV Specimen 
miR-422a         serum 
miR-22       blood 
miR-24       blood 
miR-34a       blood 
miR-125b         serum 
miR-1246        serum 
miR-1290        serum 
let-7c         plasma 
miR-152         plasma 
miR-574-5p         serum 
miR-874         serum 
miR-21       serum 
miR-126       serum 
let-7a       serum 
miR-125b         serum 
miR-200b         serum 
miR-34b         serum 
miR-203         serum 
miR-205         serum 
miR-429         serum 
miR-448         plasma 
miR-4478         plasma 
miR-506         plasma 
miR-182        serum 
miR-183        serum 
miR-210        serum 
miR-15b-5p        serum 
miR-16-5p        serum 
miR-20a-5p        serum 
miR-324-3p      plasma 
miR-1285      plasma 
miR-98-5p       plasma 
miR-302e       plasma 
miR-495-3p       plasma 
miR-613       plasma 
miR-1246        serum 
miR-1290        serum 
miR-343-3p      plasma 
miR-145-5p       plasma 
miR-223-5p         plasma 

Red—upregulation, Blue—downregulation. Data was referred from [99,100]. * Non-small cell lung cancer. 
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miR-154-5p low expression with miR-200c-3p would promote tumor via 
target transcriptional factor, zinc finger E-box binding homeobox 2 (ZEB2) 
on high expression (Figure 5A). This simulation result is well supported by 
ZEB2 oncogenic character that the expression level of ZEB1 and ZEB2 was 
correlated with NSCLC [109,110] and miR-154-5p regulated epithelial-
mesenchymal transition (EMT) in NSCLC [111]. miR-25-5p targets miR-
1199-5p transcripts, and then miR-1199-5p targets ZEB2 (Figure 5A). 
Diepenbruck and Christofori [112] showed that forced expression of miR-
1199-5p in human untransformed cells was sufficient to block EMT and 
was embedded in a reciprocal regulation with ZEB1 and ZEB2 expression. 
However, they did not find any binding site of miR-1199-5p in the 3′-
untranslated region (UTR) of ZEB2 in mouse (species biased) [113]. But in 
our TargetScan Human 7.2 analysis, ZEB2 in human has miR-1199-5p 
target site in the position 2972–2979 of ZEB2 3′-UTR by stronger context ++ 
score (−0.07) than in the position 28–34 ZEB1 3′-UTR (context ++ score; 
−0.03). Therefore, tumorigenic ZEB2 would be flexibly controlled by the 
Troika system (miR-145-5p, miR-25-5p and miR-1199-5p) under smoking. 
These data suggested that the computer network simulation with quantum 
miRNA data is absolutely necessary for cutting-edged human lung cancer 
research in the precision medicine initiative, because rodent experiments 
of tumorigenesis by a carcinogen contained species biases of different 
usage in quantum miRNA language among species [9], on the other hand, 
human clinical miRNA big data related lung cancer was preciously applied 
for METS in silico simulation. 

High expression of high mobility group A2 (HMGA2) was implicated in 
transformation of lung cells, and inhibition of HMGA2 repressed the 
transformed phenotype of NSCLC in human cultured lung cells [114]. miR-
154-5p with let-7-5p family target HMGA2 (Figure 5A). miR-154-5p 
suppressed NSCLC growth in vitro and in vivo [115], and from meta-
analysis, let-7 low expression indicated a poor prognosis and HMGA2 
expression was high in NSCLC patients [116]. It shows that HMGA2 
upregulation by smoking is oncogenic for lung cells, and downregulation 
of miR-154-5p and let-7-5p family would initiate transformation of normal 
cells in the lung during long term smoking by quantum miRNA 
information summed up. 

Further, Toll-like receptor 2 (TLR2) expression was significantly higher 
in idiopathic pulmonary fibrosis (IPF) compared to healthy individuals, 
and NSCLC [117], and IPF are pathogenically linked to cancer [118]. miR-
154-5p downregulation augments the TLR2 expression with miR-146a-5p 
(Figure 5A). TLR2 are primarily expressed on the cell surface of monocytes 
and epithelial cells, and TLR2 is involved in inflammatory responses in 
mouse lung [119]. Excessive immune reaction by TLR2 high expression 
may induce uncontrolled pulmonary cell proliferation likely observed in 
IPF and would corroborate oncogenic processes of ZEB2 and HMGA2. The 
aggressive proliferation with suppressed DNA repair would also induce 
mutation of 3′ UTR in KRAS [120], which was targeted by let-7-5p family in 
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Stage I–II of NSCLC (Figure 5B). Accuracy and precision of NSCLC 
prediction from stage zero smoking were 0.8333 and 0.8649, respectively. 

Stage I–II simulation of NSCLC and network analysis 

In the case of stage I–II of NSCLC, total layers data was integrated in 
Figure 5B. And then the data of core layer QCR 31–40 was re-extracted 
from that of all layers (Figure 5C). In all layer integration, miR-1285-5p and 
miR-126-5p targeted SCP2 and SNRPN, respectively, with high score. 
However, protein/protein interaction was not clearly observed in the 
network diagram (data not shown). Although a miRNA set of the stage I–II 
in the core stage of NSCLC was reduced from a panel of 6 miRNAs to MMP 
hub of 2 miRNAs, a cluster of PFDN5 (prefoldin subunit 5)/VBP1 (Von 
Hippel-Lindau binding protein; prefoldin subunit 3) interaction was 
removed from all layers of NSCLC to be built up in the core QCR 
(Figure 5B,C). Human PFDN has two subunits, PFDN5 and 3 makes α 
subunit of PFDN, and VBP1 (PFDN3) suppresses EMT of tumor cells [121]. 
However, PFDN1, a part of β subunit, increased metastatic growth of lung 
cancer [122]. Therefore, the implication between two subunits for tumor 
metastasis remained unclear.  

Downregulation of let-7-5p family enhances expression of HMGA2 
(Figure 5C), which is similar in the stage zero of smoking. Although Lin28B 
upregulation by downregulation of let-7-5p family was simulated in Figure 
5B, Lin28B could further repress let-7-5p family expression via human 
ubiquitin ligase TRIM71 [123]. On the other hand, super-downregulation 
of let-7-5p would increase TRIM71 (Figure 5C) and TRIM71 overexpression 
opposed Lin28B-inducing transformation [124]. Since downregulation of 
miR-203a-3p and let-7-5p family would increase TRIM71 (Figure 5C), 
Lin28B could be suppressed by TRIM71. The above data showed that in 
pancreatic, colorectal and lung cancers, tumorigenic and tumor 
suppressive states are simultaneously presented in the balance. It is 
unknown whether these conditions are in one cell or cancer cells, or 
including environmental cells from this simulation by circulating miRNA 
biomarkers; however, it is certain that this event occurs in many cancer 
individuals at the same time. Thus, augmentation of tumor suppressive 
miRNA hub would be effective to reduce cancer-related death, and 
repression of tumorigenic miRNA hub could be a big tool of anti-cancer 
challenge. Given the therapeutic gadget of mixed miRNA hub has anti-
oncogenic and tumor suppressive effects, cancer may be controlled more 
effectively than single miRNA function agent. 

The KRAS 3′-UTR mutants increased risk of various cancers and 
changed target sensitivity score of let-7-5p via a complementary binding 
site (LCS6) [125]. However, the LCS6 variant appears not to be associated 
with prognosis of NSCLC, and there is marked lung cancer risk attributed 
to the LCS6 polymorphism [126]. Although CDC25A was overexpressed in 
NSCLC, this was true in 40% of tumor cells [127]. Furthermore, as 
described in colorectal cancer, KRAS, BCL2 and CDC25A may also outflank 
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etiology of NSCLC. Finally, stage I–II of NSCLC would still be balanced 
among oncogenesis and tumor suppression via let-7-5p family/Lin28/ 
HMGA2/TRIM71 (Figure 5C). 

Thus, these data suggested that DNA repair on minus one stage would 
be suppressed with smoking by NABP1 via miR-124-5p upregulation. 
Oncogenesis would be enhanced by increasing expression of 
HMGA2/ZEB2/TLR2 via downregulation of miR-154-5p plus let-7-5p family 
with miR-200c-3p or miR-446a-5p. NSCLC on stage I–II still would be 
balanced among oncogenic and tumor suppressive state through 
Lin28/HMGA2/TRIM71 via super-downregulation of let-7-5p family hub 
(Figure 5). Since total ncRNA/NSCLC prediction data of NSCLC stage I–II 
stages by METS showed an AUC of 0.98 (P < 0.001), NSCLC stage I–II 
simulation by quantum miRNA language was statistically significant 
(Figure 5B). In the integrated analysis of NSCLC, DNA replication and cell 
cycle pathways have been detected [128,129], and the WNT and the MAPK 
signaling pathways were implicated in lung cancer [130]; however, no let-
7-5p family hub has been reported on the stage I–II of NSCLC in silico [131–
133] even though lncRNA interactions were integrated [130,134]. 

CONCLUSIONS 

It has been shown that profile of the miRNA gene expression would be 
altered by environmental factors such as chemicals, antibodies, nutrients, 
miRNAs and energies such as temperature, X-ray, UV and stresses, etc. We 
have previously simulated in vivo pharmaceutic events of medical agents 
with quantum language of miRNA by METS computation through deep 
layer learning [19]. Here, we showed that algorithm of the quantum 
miRNA language based on that of the quantum computing qubit could be 
time-dependently developed in cancer prediction from minus one stage of 
cancers. Further, MMP hub was extracted by the algorithm upon cancers 
from miRNA biomarker panel. The quantum computing algorithm can see 
the past and the future in time. Although the concept of algorithm in AI is 
quite similar to that of the quantum computing algorithm, the extraction 
process of miRNA hub is seemed to be analogous to our memory formation 
and creative intention, which would be processed from MMP [17]. 
According to quantum energy levels (layers, here) of MMP, the stage and 
cancer type of individuals were distinguished by coherence under the 
MMP hub of the core QCR layer, and then miRNA/target interaction would 
be presented as the network. The AUC of the integrated miRNA/target in 
each cancer prediction was high, however, accuracy and precision rates 
were not so high in cancer predictions from minus one stage by 
multivariable processing with deep learning (Table 3). For precision 
prediction of cancer from stage minus one, much more daily and 
personalized data would be required for the deep learning on 
multivariable processing. 
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Table 3. Cancer prediction from stage minus one (zero). 

  Prediction One *   Excel ** 
  Accuracy Precision   AUC 
PDAC 0.7183 0.7742  0.91 (p < 0.01) 
CRC 0.6667 0.7000  0.99 (p < 0.001) 
NSCLC 0.8333 0.8649   0.98 (p < 0.001) 

* Multivariable processing, ** miRNA/mRNA Two variable processing. 

In summary, we found three pathogenic processes in the network: (1) 
with respect to pancreatic cancer, augmentation of RRAGB/mTOR via 
downregulation of miR-21-3p/miR-499a-5p on the stage minus one and 
then upstream of AKT/RDX/mTOR enhancement via downregulation of 
miR-409-3p/miR-149-3p on cancer stages, (2) DICER suppression via 
upregulation of miR-192-5p and miR-374a-5p on the stage zero of 
colorectal cancer and then on the stage I–IV cancer, aberration of PTEN 
function via downregulation of circDDX17 and upregulation of miR-21-5p, 
(3) suppression of DNA repair by decreasing NABP1 expression via miR-
124-5p upregulation and oncogenesis by increasing HMGA2/ZEB2/TLR2 
via downregulation of miR-154-5p plus let-7-5p family or miR-200c-3p or 
miR-446a-5p on stage minus one (smoking) of lung cancer and then on the 
stage I–II, balanced oncogenic plus tumor suppressive state through 
Lin28/HMGA2/TRIM71 upregulation via super-downregulation of let-7-5p 
family. The proof of concept was shown completely in computer 
simulations with quantum miRNA language for PDCA, CRC and NSCLC 
predictions. Although a biomarker has been defined by the NIH, a 
character of miRNA could be objectively measured and evaluated in a 
quantum as an indicator of biological processes, or pathogenic processes. 

We have recently reported that Alzheimer’s disease and human breast 
cancer would be implicated in quantum miRNA language of MMP, and the 
pharmacokinetic drug response against breast cancer was involved in 
quantum miRNA energy levels [19]. Therefore, it is strongly supported that 
miRNA would be characterized by the previous simulation as a biomarker 
in the pharmacokinetic responses. The NIH definition for a biomarker also 
suggests that miRNA would be a biomarker not only for cancer but also for 
daily health management because natural substances, foods, drugs, 
supplements and environmental conditions could affect miRNA 
biomarker profiles. Minus one stage diagnosis of cancer by miRNA would 
be essential for cancer lethality to decrease in mass population. In the next 
developmental step, smart miRNA detection tool by perspiration would 
also be necessary for complete noninvasive biomarker to further 
challenge reduction of cancer-related death. In addition, contextual 
simulation by METS with quantum multi-layer integration would be 
required for precision medication to be developed for miRNA-based drugs 
derived from plants [135], which has been described previously [17]. In 
near future, combinational optimization of human MMP hub miRNAs for 
cancer would need the algorithm MIRAI to advance therapeutic 
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application of miRNA-based agents using a quantum processor. Thus, the 
quantum miRNA language might be useful for us to understand biomarker 
panels for cancers and to predict cancers upon minus on stage. 
Simultaneously, it would be essential for verification of the hub miRNAs 
in cancers by experiments and clinical trials. 
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