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ABSTRACT 

Precision medicine informatics is a field of research that incorporates 
learning systems that generate new knowledge to improve individualized 
treatments using integrated data sets and models. Given the ever-
increasing volumes of data that are relevant to patient care, artificial 
intelligence (AI) pipelines need to be a central component of such research 
to speed discovery. Applying AI methodology to complex multidisciplinary 
information retrieval can support efforts to discover bridging concepts 
within collaborating communities. This dovetails with precision medicine 
research, given the information rich multi-omic data that are used in 
precision medicine analysis pipelines. In this perspective article we define 
a prototype AI pipeline to facilitate discovering research connections 
between bioinformatics and clinical researchers. We propose building 
knowledge representations that are iteratively improved through AI and 
human-informed learning feedback loops supported through 
crowdsourcing. To illustrate this, we will explore the specific use case of 
nonalcoholic fatty liver disease, a growing health care problem. We will 
examine AI pipeline construction and utilization in relation to bench-to-
bedside bridging concepts with interconnecting knowledge 
representations applicable to bioinformatics researchers and clinicians. 
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ABBREVIATIONS 

NAFLD nonalcoholic fatty liver disease  
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LC-MALDI mass spectrometry matrix-assisted laser 
desorption/ionization with liquid chromatography  

FFPE formalin-fixed paraffin-embedded  
ALT alanine aminotransferase  
FIB4 fibrosis 4 scores  
BMI body mass index  
IPMP Intelligent Precision Medicine Pipeline  
UMLS Unified Medical Language System  

INTRODUCTION 

The following quote by Herbet A. Simon, an artificial intelligence (AI) 
visionary, clearly articulates the extant dilemma that biomedical 
researchers face with a plethora of data measured at multiple scales. 

“In an information-rich world, the wealth of information means a 
dearth of something else: a scarcity of whatever it is that information 
consumes. What information consumes is rather obvious: it consumes 
the attention of its recipients. Hence, a wealth of information creates 
a poverty of attention and a need to allocate that attention efficiently 
among the overabundance of information sources that might consume 
it.” [1] 

This new information-rich reality motivates the use of systems that 
reduce attentional overload instead of contribute to it. An example of 
increasing attentional overload is alert fatigue where clinicians stop 
devoting attention to warning messages because of the abundance of 
unnecessary alerts [2]. Translational precision medicine would benefit 
from AI systems that glean relevant and useful knowledge from multiple 
sources in both automated and semi-automated ways through 
autonomous integration or crowdsourced augmentation to address our 
attentional limitations. Some areas of precision medicine research, such 
as translational research with large and diverse research repositories, 
have an even greater need for AI supported research and collaboration. 
Using a community driven collaborative information retrieval framework, 
we will discuss discovery processes relevant to precision medicine that 
can generalize beyond precision medicine, but is particularly applicable 
given the exponential growth of multi-omic data that can be leveraged in 
constructing knowledge representations [3]. 

Translational research focuses on moving discoveries made at the 
bench to clinical care and from clinical care to the bench [4]. However, in 
practice, translational research is very hard to achieve [5]. This is in part 
because translational research is multidisciplinary [6]. Here is where an 
AI system can serve as a bridge between concept models from different 
disciplines [7]. The specifics of an AI pipeline approach include the 
integration of knowledge sources, knowledge bases, knowledge linkages, 
and knowledge extraction that can be crowdsourced by humans and/or AI 
learners to improve the performance and predictive capabilities of the 
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learned perspectives and knowledge [8]. The sources of knowledge reside 
in domain experts, research journals, guidelines, and data repositories, 
and the AI learner could be used to assist in the search for and 
organization of information to lower the attentional load on researchers. 
This could build on extant work that extracts meaningful information 
from clinical practice guidelines using question answering systems such 
as Watson [9]. Our proposed system is not intended to be a question 
answer system such as IBM Watson or solely an information retrieval 
system as described by Sparck [10]. We build on concepts from never 
ending learning systems [11,12] by combining AI learning with 
crowdsourcing to identifying bridging concepts among researchers to 
facilitate collaborations. It is not a general AI approach, but is instead 
focused on building knowledge representations specific to collaborative 
research teams. 

The goal of the proposed system is to provide a multidisciplinary forum 
that grows with the knowledge of experts and AI learning components, 
who together collaboratively build knowledge graphs in specific research 
areas. A knowledge graph is a representation of concepts as nodes that are 
connected by edges representing relationships between concepts. 
Clinicians and bench researchers implicitly create knowledge graphs 
when they construct best practice clinical guidelines or mechanistic 
models of interacting components in cells or model systems. Knowledge 
graphs can be used to discover bridging concepts among collaborators in 
the project. Because there are data rich repositories of high-throughput 
experiments along with the papers that document them, the task of 
biomarker discovery in precision medicine is well matched to the 
challenge of finding bridging concepts using knowledge graph 
representations. Given that ontological representations converge more 
quickly for information rich knowledge spaces [13], the density of high-
throughput data in the precision medicine space, especially in cancer, 
lends itself to the task of conceptual ontology space construction. The 
collaborative information retrieval task combined with converting high 
quality data into well supported knowledge graphs will be enhanced 
through the combined efforts of experts in specific domain areas and AI 
algorithms scaling with the size of the growing data resources through the 
use of crowdsourcing. 

The use of crowdsourcing technology coupled with human and AI 
expertise supports scalable solutions, even when the AI does not have the 
complexity or subtlety to comprehend aspects of the problem space. The 
strength of crowdsourcing enables concepts of word and acronym 
ambiguity to be resolved through expertise that exists in the community. 
The idea is that a community would use the pipeline to grow a knowledge 
graph that is highly relevant to their area of expertise and interest. The 
approach is not geared to build a single knowledge graph with general 
knowledge, but instead many specific knowledge graphs that have active 
community bases that support a living repository of information.  
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Because there is a risk that the AI could overwhelm a knowledge graph 
with irrelevant and low quality data and papers, crowdsourcing with 
experts that rank and prioritize the encoding of information provides a 
check and balance to the information retrieved by the AI. Low quality data 
and information would result in a downgrade of the knowledge graph by 
experts in the field, and a reinforcement component built into the AI 
learner could support the AI learning from the domain experts’ feedback. 
The net result would be improved AI support for the collaboration, and the 
human interaction input improves the ability of the AI to integrate 
relevant information. 

In this paper we describe a roadmap for researchers to build such a 
system to reduce the attentional strain in the application area of precision 
medicine translational science research. First, we describe how 
translational scientists can represent their research questions in a 
computable knowledge representation. Second, we outline a prototype AI 
pipeline that addresses attentional overload through computational 
analysis of knowledge representations. Third, we describe how the three 
target communities (i.e., bioinformaticians, clinicians, and AI researchers) 
can be engaged and contribute to its success. As an illustration, we apply 
these concepts to the domain of nonalcoholic fatty liver disease (NAFLD) 
from both a bench as well as a clinical researcher perspective [14,15]. 
NAFLD is related to metabolic syndrome with a constellation of 
comorbidities including obesity, type 2 diabetes mellitus, hypertension, 
and dyslipidemia [16–19]. If not properly managed NAFLD can progress to 
liver fibrosis and cirrhosis with outcomes including hepatocellular 
carcinoma [20]. For bench research to attract the attention of clinicians 
and clinical researchers their questions need to align with issues that are 
associated with improving the care of patients.  

Bench Researcher Perspective 

Our NAFLD use case is a researcher studying the proteomic signature 
of extracellular matrix (ECM) interaction in fibrotic tissues. Changes in 
ECM can be observed in liver tissue disease progression that occurs in 
NAFLD and in epithelial-mesenchymal transition occurring in an 
aggressive cancer [21,22]. Bench researchers analyze measurements 
collected from biopsied tissue and, in the case of proteomics, could use 
mass spectrometry matrix-assisted laser desorption/ionization with liquid 
chromatography (LC-MALDI) to obtain collagen and peptide signatures 
from formalin-fixed paraffin-embedded (FFPE) tissue [23–25]. The 
difficulty faced by translational bench researchers is knowing how to 
frame their preclinical questions so they are clinically relevant. This often 
comes down to selecting phenotypes to examine along with which 
experimental conditions to investigate by drawing from their own and 
their collaborator’s experiences, all while prioritizing time and resources. 
Given exponentially expanding data repositories, however, the analysis 
and investigation can be done without awareness of the full set of highly 

https://doi.org/10.20900/mo20200001


 
Med One 5 of 18 

Med One. 2020;5:e200001. https://doi.org/10.20900/mo20200001 

relevant resources. Hence, there are gaps in utilizing the vast amount of 
informational resources that continue to accrue daily.  

Clinical Researcher Perspective 

Continuing our NAFLD example, a clinical researcher is interested in 
factors associated with patient outcomes that include fibrotic tissue 
growth in the liver to the point of cirrhosis and potentially liver cancer. 
The guideline for diabetes care now recommends NAFLD assessment for 
diabetic patients with elevated liver enzymes such as alanine 
aminotransferase (ALT) [26]. The data sources associated with fibrosis 
progression are liver radiology imaging reports, liver biopsy reports, non-
invasive liver fibrosis estimates (e.g., fibrosis 4 (FIB4) scores), race, 
ethnicity, and body mass index (BMI). The problem for the clinical 
researcher is how to improve their predictive risk models through non-
invasive measures. A strong incentive to move forward with a 
translational collaboration is co-developing experiments and measures 
that can be validated to improve the prediction of fibrosis progression in 
NAFLD. Below we explore this scenario using an AI pipeline approach to 
facilitate the identification of such connections using a formalized 
knowledge graph approach. 

OVERVIEW OF AI PIPELINE 

An AI pipeline can bridge collaborations among bench and clinical 
researchers by identifing concepts that connect the collaborators and seed 
the common interests among them. To achieve the adaptive knowledge 
management scenario described in this paper, we envision AI support for 
engaged research communities that create, use, and share knowledge to 
collaborate and extend knowledge in precision medicine. This support 
would combine crowdsourcing with credential and trustworthiness 
measures with AI to iteratively refine (1) collaborative information 
retrieval [10,13], (2) knowledge extraction and organization, and (3) 
concept connection identification. In this way, the AI pipeline combines 
the interpretive strength of experts and practitioners in the specific areas 
of interest while enhancing their models with data-informed AI medical 
models. 

While the use of such a tool might not be limited to precision medicine, 
we believe precision medicine exhibits a number of properties that make 
it an ideal area in which to apply AI to help initiate collaborative research: 
(1) need for translational research, (2) challenge of bridging different ways 
of thinking (patient-centric vs. bench-centric), (3) particularly high volume 
of literature, (4) presence of well-developed and organized data 
repositories, and (5) availability of well-recognized and useful 
vocabularies and ontologies that can support concept identification and 
extraction. 
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INTELLIGENT PRECISION MEDICINE PIPELINE 

Our proposed framework, which we call the Intelligent Precision 
Medicine Pipeline (IPMP), enables human researchers to collaborate with 
AI to help organize research questions at different scales of the problem. 
In our example, the scale of the research question for the clinical research 
is at the level of the patient, where the focus is identifying actionable 
predictive models to improve care decisions. For the bench researcher, the 
scale of the problem is at the cellular level examining fibrosis in the ECM.  

One of the challenging tasks that IPMP needs to perform is to identify 
bridging concepts across the different scales of the research problem. 
Figure 1 provides a high level diagram of the components involved in a 
translational human/AI collaborative pipeline. The processes for each 
researcher are represented in the boxes on the right and left side of the 
diagram. After developing their research questions, the researchers 
generate conceptual keywords and identify other sources of knowledge 
(e.g., data repositories, papers, guidelines) for extraction. There are a 
number of tools (e.g., Protege, owlready)[27,28] that support manual or 
programmatic construction and refinement of machine readable 
knowledge graphs that can be used in the initial knowledge extraction 
from the collaborating researchers [29]. Given an initial set of small 
human-generated knowledge graphs, IPMP can utilize the information as 
input to start the human/AI collaboration.  

 

Figure 1. Intelligent Precision Medicine Pipeline overview. 

Once the collaboration begins, the AI can assist in knowledge graph 
refinement to more precisely capture the relevant research interests. A 
knowledge graph can be pruned or grown as the collaboration provides 
feedback about its correctness. As the knowledge graph guides the 
retrieval of information, the researchers can provide feedback on the 
relevance of selected retrieved items. When retrieved items are marked as 
irrelevant, the aspect of the knowledge graph responsible for its retrieval 
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is marked for possible refinement. Then the relevant and irrelevant items 
associated with each knowledge graph element can be analyzed for more 
precise representations that include the relevant items and exclude the 
irrelevant ones. Thus, the knowledge graph’s precision is improved over 
time by learning from examples, and IPMP’s ability to correctly retrieve 
relevant literature continually improves. Depending on the desired level 
of intelligence, IPMP could employ active learning strategies to target 
knowledge graph refinement [30]. 

The pipeline is then tasked with identifying the connecting concepts 
between these refined perspectives and deriving a common collaborative 
space of extracted concepts/knowledge. To do this, knowledge is extracted 
from the literature and converted to a knowledge representation 
(knowledge graph) with edges linking the concepts to each other. One 
challenge during knowledge extraction will be the recognition of 
synonyms and abbreviations. A variety of techniques can be used to 
address this. Where possible, IPMP can leverage existing resources that 
map terms to concepts (e.g., the Unified Medical Language System (UMLS) 
metathesaurus) [31]. Where that is not possible, IPMP can learn to map 
terms to each other either by being shown that a mapping exists through 
crowdsourcing or by using machine learning to discover such mappings 
[32]. For IPMP, this practice needs to be made explicit and represented in 
a machine readable format. A graph-based approach has shown some 
success in linking concepts across papers and finding complementary (i.e., 
cross-specialty) literature [33–35]. 

For our NAFLD example, the researchers can initiate this by listing 
keywords and subsets of publications relevant to their joint NAFLD 
interest. For example, the clinician would have keywords such as NAFLD, 
fibrosis, and BMI while the bench researcher would have keywords such 
as LC-MALDI, proteomics, collagen, and ECM. Figure 2 illustrates the 
creation of a knowledge representation, created using Protege/owlready 
[27,28], of the keywords for bench (Left) and clinical (Right) researchers.  

By using the python package owlready2 we constructed the word 
graphs in Figure 2 for words associated with bench researchers examining 
ECM remodeling and clinical researchers examining risk models of 
fibrosis progression in NAFLD. The list of keywords for each research area 
establishes a position in the conceptual space. For the purposes of 
explanation, we have made the space tightly related. The separate 
knowledge representations can be converted into a joint knowledge 
representation by running them simultaneously in owlready2 and 
visualizing the result with Protege (see Figure 3). 
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Figure 2. Example of using NAFLD research keywords provided by bench (Left) and clinical (right) 
researchers to generate knowledge representations.  

 

Figure 3. Example collaborative knowledge representation that combines the key words for both clinical 
and bench researchers with subset relations between the keywords.  
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The two graphs are connected through the concept of Cancer in the 
words used by each group. There are places in the example where the 
keywords could be different but related (e.g., bio_marker at the bench and 
risk_model at the bedside) and hence, may be important to link. In 
Figure 3, related concepts have been positioned close to each other. 
Proximity could be used by the researchers to communicate similarity to 
the AI while being visually informative to the human researchers. Another 
example is Fibrosis and Fibroblast since fibroblast cells generate 
connective tissue associated with fibrosis. The AI can map into related 
concepts to find a link between them with human assessed accuracy being 
a measure of the quality of the AI reasoning [36]. Existing terminologies 
and coding standards such as those in the UMLS [31] could be used to 
connect concepts through the AI graph search or reasoning algorithms. 
Bioinformatics ontologies such as the Gene Ontology could also be 
integrated into the reasoning process to connect and bridge concepts at 
the molecular and cellular scale [37]. Alternatively the researchers could 
construct it manually and feed it as input to the AI. For example, they 
might map predictive bio_marker and predictive risk_model to a bridge 
concept like predictive marker. Crowdsource participants could also 
provide links between concepts [8]. Approaches using machine learning 
and crowdsourcing on real time analysis of tweets during disaster 
recovery provides examples of the feasibility of supporting crowdsourced 
collaborative information retrieval using the python package pybossa [38]. 
The use of pybossa for this realtime task provides a template for 
supporting multidisciplinary teams performing collaborative information 
retrieval focused on specific research areas.  

In creating the small knowledge graphs integrated in Figure 3, a paper 
was identified that could be used to pursue future research entitled, 
“Identifying Nonalcoholic Fatty Liver Disease Patients with Active Fibrosis 
by Measuring Extracellular Matrix Remodeling Rates in Tissue and Blood” 
[21]. The ability to use blood measurement on EMC in liver disease creates 
a potential translational bridge concept for less invasive measures of liver 
fibrosis progression in NAFLD, a current active topic of research. Having 
IPMP further investigate other potentially related papers would provide 
value to the ongoing research. IPMP could also be used to mark areas of 
research to follow or flag when related discoveries are identified. 

IPMP’S COLLABORATIVE SEARCH 

Once the process is initiated by entering the initial keyword knowledge 
graph(s), the volume of information that IPMP needs to process and search 
requires the power and speed of AI, but the nature and complexity of the 
task might also necessitate human input, review, and interpretation. Thus, 
the success of IPMP depends on effective human/AI collaboration, as 
envisioned in the following steps for an IPMP search:  
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1. The researchers’ specify their questions and/or areas of interest in the 
form of connected keywords (i.e., simple knowledge graphs) along with 
other (optional) relevant material (e.g., research papers, guidelines, or 
datasets). The AI could provide assistance in this step by capturing this 
information through an interactive dialog that guides the researchers 
through the specification of their interest. 

2. IPMP extracts knowledge from that input and uses it as a seed to 
identify other sources of knowledge that it uses to grow its knowledge 
base. 

3. IPMP uses feedback regarding selected retrieved items to learn 
improved understandings of the researchers’ areas of interest and to 
improve the precision of its knowledge base. 

4. As it grows its knowledge base, IPMP is continually searching for 
bridges that connect the questions/areas of interest. Any identified 
bridges are ranked using estimates of confidence and interest (e.g., 
relevance scores or path length).  

5. If crowdsourcing is enabled, IPMP is sharing its discovered knowledge 
with interested members of appropriate communities. Through a 
process that incorporates credentialing and trustworthy measures, 
discoveries can be confirmed or refuted by human experts and 
directions of potential interest can be suggested to IPMP through 
manually added links and through the submission of additional 
knowledge graphs, papers, or other material.  

6. The current status of the search can be observed by any of the 
contributing researchers, and likewise the researchers can interact 
with IPMP at anytime during the search. In addition to any of the 
actions described above with crowdsourcing, the initiating researchers 
can review and redirect IPMP based on their interests and priorities. 
For example, they could indicate that one of the connections identified 
as promising by IPMP is not of interest to them. IPMP would then quit 
searching for additional information surrounding that connection.  

7. IPMP would also seek to learn through the process. As it extracts 
knowledge and interacts with researchers, it builds a better 
understanding of areas of interest and of the researchers’ intentions 
and can, in turn, become better at identifying and extracting relevant 
knowledge and at finding interesting bridges the connect key concepts. 

A summary of the steps is visualized in Figure 4. 
Thus, collaboration is integrated throughout IPMP, which is intended 

to provide both human-support of AI (e.g., crowdsourced or researcher-
provided feedback) and AI-support of humans (e.g., automated 
exploration of area of interest for relevant papers, datasets, and 
guidelines). 
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Figure 4. Visualization of IPMP activities. Note the continuous nature of the search with multiple 
opportunities for interactions with the researchers and (if desired) a larger research community through 
crowdsourcing. 

IPMP’s AI would work as autonomously as it is able. It is human experts, 
however, who drive the information flow in the pipeline, and thus the 
inputs to and outputs from the AI are visible and can be reviewed, 
manipulated, and critiqued by human experts. This feedback is an 
important component in the AI’s learning process and is similar to the 
human feedback component in Mitchell’s NELL project [11]. Additionally, 
IPMP will learn from the crowdsourced content that humans input, and 
just as they can help out the AI, human interactions with the system (e.g., 
entering keywords and constructing knowledge graphs) are supported 
and mediated by the AI.  

The strength of IPMP will be to organize a large volume of information 
relevant to the researchers’ questions and make the connection 
understandable to them. The extent to which IPMP succeeds in providing 
relevant information will increase the chances of facilitating a 
collaboration among the researchers involved. Achieving this ambitious 
goal will require not only collaboration between biomedical researchers 
and IPMP, but also collaboration between biomedical researchers and AI 
researchers. 

From the above description, it is clear that clinical and bench 
researchers are integral to the success of IPMP’s search. They need to be 
able to clearly specify their questions and must be able to logically critique 
IPMP’s outputs and provide timely, meaningful, and insightful feedback to 
shape the system’s understanding of their needs and to contribute to 
IPMP’s continual learning process. In contrast, AI researchers take no 
active role in the actual search. Their role is the design and 
implementation, in concert with bench and clinical researchers, of a 
collaborative AI that can (A) capture and extract information through 
dialog with human experts; (B) extract and organize knowledge from 
natural language narratives, structured guidelines, datasets, and 
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terminologies; (C) understand, search, and connect concepts across the 
different scales in precision medicine (i.e., genes and proteins to organ 
systems and patients) in ways that make sense to human experts; and (D) 
continually learn how to get better at doing (A–C).  

Available and Needed Technologies 

Many of the identified capabilities and gaps are, at least partially, 
addressed by existing technologies. Details of these technologies are 
beyond the scope of this paper. There are many approaches to extracting 
knowledge from free text, including named-entity extraction [39–41], topic 
modeling [42–44], and automatic text summarization [45–47]. Techniques 
such as clustering [48,49], frequent pattern identification [50,51], and rule 
extraction [52–54] have been used to extract knowledge from data. IPMP 
could build additional knowledge representations such as ontologies [55–58], 
knowledge graphs [12,59,60] and word embeddings [61–63]. Once 
knowledge is extracted and represented, a variety of search and 
information retrieval techniques can be adapted to help find relevant 
connections [64–67]. The python module pybossa keeps track of user 
contributions and can provide statistics on the activities of the 
authenticated and anonymous users on the project: top contributors, time 
to completion of tasks and other metrics. It potentially could be used in 
conjunction with a version control system to manage provenance of 
knowledge graph contributions [38]. Highlighting the existence of these 
technologies is not meant to trivialize the development of the IPMP. On the 
contrary, we anticipate that significant work will be needed to realize this 
AI pipeline. The work highlighted here does, however, suggest that AI 
researchers have a strong foundation on which to build when developing 
this AI pipeline. 

CONCLUSION 

A key component of precision medicine informatics is knowledge 
generation using learning systems applied to larger data sets [68]. 
Repositories of biological information have been growing at exponential 
rates since the rate of cost reduction for genomic data is faster than 
Moore’s Law [7]. To manage the accumulation of data that has 
discoverable patterns, we propose IPMP, a human and AI collaboration, 
that creates hybrid knowledge structures that benefit from combined 
knowledge generation intrinsic to human and AI learners. Collaborations 
between bioinformatics and clinical researchers are complex and difficult 
to achieve given the differences in the nature and use of information in 
the two communities. In bioinformatics research, large sets of highly 
complex multi-omic data are often used to better understand the 
mechanistic behavior of model systems. Clinicians tend to use highly 
defined measures (e.g., images, labs) to answer specific questions 
pertaining to the health and survival of patients. The different emphases 
and risks involved in both fields result in different training regimes and 
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different perspectives when collecting and analyzing information that 
affect the systems of interest.  

Given the gap that exists between the two fields there is a need for 
approaches that identify knowledge that is relevant to both communities 
to increase the productivity of collaborations. Such an approach will need 
to be able to start from the perspective of either community and build 
bridges that link the disparate perspectives into a unified whole that 
motivates each researcher to invest resources in building a collective 
understanding that advances both fields. To achieve this desirable 
outcome there is a role for AI researchers to adapt or invent approaches 
and methodologies that spur on the enterprise of discovery at a faster rate 
with more successful outcomes for all communities involved. It is our goal 
in the paper to advocate for a crowdsourced multidisciplinary 
collaborative information retrieval framework based on AI that would 
enable a true collaboration involving clinical, bench, and AI researchers 
all working together to improve the efficacy and precision of medical care. 
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