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ABSTRACT 

Background: GAS5 is expressed in growth arrested cells as a result of 
nutrient deprivation or growth factor withdrawal. Besides its roles in 
metabolism, GAS5 has been studied in a variety of human cancers. The aim 
of the present work was to review the literature and report all recent 
findings of the roles of GAS5 in a variety of tumors. 

Methods: An electronic literature search was conducted by the authors 
using the keywords “GAS5” and “cancer”, and then individually searched 
for each type of cancer that was brought up by the first search. Original 
articles and systematic reviews were selected, and the titles and abstracts 
of the papers were screened to determine whether they met the eligibility 
criteria. In addition, we performed computer-based structural analysis on 
the human GAS5 RNA for extending our understanding on its biological 
and/or pathological actions. 

Results: We have found that the majority of studies, irrespectively of 
tumor types, confirm the role of GAS5 as a tumor suppressor gene. 
Especially, more recent findings have also highlighted GAS5 interaction 
with miRNAs contributing even more to its tumor inhibiting role. In 
particular, we could outline two miRNAs, which came up throughout our 
review; miR-222 and miR-21. GAS5, miR-222 and miR-21 could pose 
potential prognostic and diagnostic biomarkers for a variety of tumors, 
making them quite useful in cancer clinic. 

Conclusions: For certain, more studies are required in order to better 
understand the role of GAS5 in tumor biology, and in particular the 
signaling pathways in which the gene participates. 
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ABBREVIATIONS 

DBD, DNA-Binding Domain; GAS5, Growth Arrest-specific 5; GC, 
Glucocorticoid; GR, Glucocorticoid Receptor; GRE, Glucocorticoid 
Response Element; NC, Non-Coding; TGF, Transforming Growth Factor  

INTRODUCTION 

The environment together with the intrinsic state of the organism 
direct their cellular components to rest, grow, proliferate, differentiate or 
go into apoptosis [1]. One of the key regulators dictating cell phase 
maintenance or transition is the availability of nutrients and subsequent 
changes in cell growth, which globally alter the transcriptional profiles of 
certain sets of genes, including those for energy metabolism, stress and the 
immune response, through modulating the expression levels and/or 
activity of numerous upstream transcription factors and transcriptional 
regulatory molecules [2,3]. 

In consistent with this, expanding numbers of non-coding (nc) RNAs 
with transcriptional regulatory functions have been reported recently, 
along with the suggestion that they offer an additional level of regulatory 
complexity in the transcription of mammalian genes [4,5]. Sense and 
antisense sequences are transcribed from up to 80% of the coding and non-
coding (nc) RNA-producing genes expressed in mammalian cells [6,7]. 
Since the discovery of ncRNAs, four types of the biological mechanisms 
have been attributed to them in association with their partner protein 
molecules: (a) signals for transcription, (b) decoys for transcription factors, 
(c) guides of transcription factors/cofactors and (d) scaffolds for protein 
complexes that epigenetically modify chromatin [8]. Their unique actions 
on the regulation of other ncRNAs and genome DNA conformation have 
also highlighted that they participate in (a) ncRNA transcription-
dependent activation or repression of complementary genes, (b) inter-
chromosomal interactions, (c) formation of nuclear structures or R-loops, 
(d) ncRNAs acting as attractors of miRNAs, (e) regulating post-
transcriptional mRNA decay and (f) regulating the cellular localization of 
RNA-binding proteins or DNA-binding proteins. Further, recent reports 
indicate that they may act also as factors enhancing phase separation and 
participate in the assembly of nuclear bodies and the transcriptional 
complex formed on the regulatory elements [9,10]. 

Among such ncRNA, the growth arrest-specific 5 (GAS5) was originally 
found to be accumulated in growth-arrested cells [11]. Its encoding gene, 
GAS5 (Homo sapiens), is one of the 5′-terminal oligopyrimidine (5′TOP) 
class genes, characterized by an upstream oligopyrimidine tract sequence 
[12,13]. Growth arrest by serum starvation or treatment with inhibitors of 
protein translation is associated with attenuated translation of 5′TOP RNAs 
and the restraint of their degradation [14], resulting in marked 
accumulation of spliced, mature GAS5 RNA [13]. The function(s) of GAS5 
RNA is largely unknown and intense research is taking place in order to 
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unravel its role in eukaryotic cell physiology and homeostasis. Previous 
reports have highlighted that in yeast two-hybrid screening experiments, 
GAS5 was a strong interactant of the DNA-binding domain (DBD) of the 
glucocorticoid receptor (GR), another ubiquitous molecule with major 
functions in behavioral [15,16], cardiovascular [17], metabolic [18] and 
immune homeostasis [19–21]. Relative starvation produces a favorable 
metabolic profile and prolongs life in several organisms, while increased 
glucocorticoid secretion or activity is associated with an unfavorable 
metabolic profile and decreased life expectancy [19,22,23]. Thus, the GAS5-
GR interaction observed might be of physiologic and/or pathologic 
importance.  

Besides its roles in metabolism, GAS5 has been studied in a variety of 
human cancers as a potential factor influencing their cell proliferation, 
metabolism and apoptosis, and further, as a potential diagnostic 
biomarker for evaluating prognosis/disease courses of cancer patients. In 
the present study, we attempted to review the literature for the role of 
GAS5 in human malignancies. 

THE STRUCTURE OF THE GAS5 RNA 

One important aspect towards the understanding of RNA function is the 
determination of RNA structure as it can be derived from its sequence. 
RNA structure has a two-level complexity. The first level concerns the 
prediction of its secondary structure, which is discrete in nature, since it 
concerns the pairing of nucleotides or not. The second level concerns the 
prediction of its tertiary structure, which gives more information about its 
function. The algorithm in use, was based on a previously developed 
dynamic programming algorithm proposed by Zuker (1989) [24,25]. The 
algorithm estimates the RNA molecule thermodynamically determined, 
free energy minimization. In general, thermodynamic parameters for the 
prediction of free energy of RNA folding are the backbone of many 
proposed algorithms [25–29]. Methods of implementation can be generally 
divided in two main categories; the first is based on the extrapolation of 
loop parameters through experimentally determined structure formation 
for RNA molecules and the second on knowledge-based approaches. 
Knowledge-based approaches mainly rely on motif frequencies 
occurrence. 

The RNA sequence was obtained from http://www.ncbi.nlm.nih.gov/ 
nuccore/NR_002578.2 and was downloaded as *.gb file. The sequence was 
as follows: 

tttcgaggtaggagtcgactcctgtgaggtatggtgctgggtgcggatgcagtgtggctctggatagcacctt
atggacagttgtgtcccaaggaaggatgagaatagctactgaagtcctaaagagcaagcctaactcaag
ccattggcacacaggcattagacagaaagctggaagttgaaatggtggagtccaacttgcctggaccagc
ttaatggttctgctcctggtaacgtttttatccatggatgacttgcttgggtaaggacatgaagacagttcctg
tcataccttttaaaggtatggagagtcggcttgactacactgtgtggagcaagttttaaagaagcaaagga
ctcagaattcatgattgaagaaatgcaggcagacctgttatcctaaactagggtttttaatgaccacaaca
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agcaagcatgcagcttactgcttgaaagggtcttgcctcacccaagctagagtgcagtggcctttgaagctt
actacagcctcaaacttctgggctcaagtgatcctcagcctcccagtggtctttgtagactgcctgatggagt
ctcatggcacaagaagattaaaacagtgtctccaattttaataaatttttgcaatccaaaaaaaaaaaaa
aaaaaaa 

Gene information is presented in Figure 1. The determination of the 
RNA secondary structure takes place through the interaction between its 
bases, including hydrogen bonding and base stacking. There are several 
methods for determining RNA secondary structure. One approach utilizes 
the nearest-neighbor model and minimizes the total free energy associated 
with an RNA structure [24]. The minimum free energy is estimated by 
summing individual energy contributions from base pair stacking, 
hairpins, bulges, internal loops and multi-branch loops. The energy 
contributions of these elements are sequence- and length-dependent and 
have been experimentally determined [24]. 

 

Figure 1. The human GAS5 gene with its exons, and its primary transcript sense and anti-sense open reading 
frames (grey shaded bars indicate the gene’s exons. ORF+1 through ORF+2 are read in a 5′→3′ direction, 
while ORF-2 through ORF-3 are read in a 3′→5′ direction). 

Thus, secondary structure was predicted using the nearest-neighbor 
model with free-energy minimization as reported previously and 
implemented in Matlab® computing environment [24]; the result is 
presented in Figures 2–4. We have also predicted the three-dimensional 
and tertiary structures of GAS5, which is presented in Figure 5. The GAS5 
RNA has been reported that does not have conserved sequences, yet the 
introns of the GAS5 gene were found to have highly conserved sequences 
[30]. Several studies have highlighted the fact that the GR-DBD manifests a 
high affinity for GAS5 RNA [31]. In particular, the DNA GC response 
element (GRE) contains two half-sites such as AGAACA, whereas GAS5 
hairpin competes with DNA for binding to GR-DBD [31]. An interesting 
finding suggested that although DNA and RNA manifest nearly identical 
affinities for the GR-DBD, GR does not dimerize when it binds to RNA 
[31,32]. Further on, GR-DBD specifically recognizes the GAS5 RNA through 
the GRE-mimic sequence, which is a hairpin located in nucleotides 538–
576 [31,32] (Figure 4). 
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Figure 2. The tree structure of GAS5 RNA (In-house simulations, preliminary results and unpublished data). 

 

Figure 3. The secondary predicted structure of GAS5 RNA (In-house simulations, preliminary results and 
unpublished data). 

GAS5 IN TUMORS 

Cancer is considered to consist of the 21st century epidemic. It is 
estimated that within the next 30 years almost the incidence of new cancer 
cases will double, thus one out of three individuals will suffer from some 
kind of malignancy [33]. Therefore, it is imperative for modern research 
to investigate the causes and therapeutic approaches to them. Towards 
that end technology has allowed the identification of new target molecules, 
as well as new gene regulatory mechanisms. 

The omics era and the post-genomic era are considered to be the 
milestones of modern biological research. For example, microarray and 
high throughput sequencing methods have allowed us to identify new 
tumor markers, as well as novel molecules, such as long ncRNAs [34–38]. 
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Figure 4. Two-dimensional structure of the human GAS5 RNA supported in part by the Wobble base-pairing 
(non-Watson-Crick base pairs). Besides the Watson-Crick base pairs (A–U, G–C), virtually every class of 
functional RNA presents G–U wobble base pairs. G–U pairs have an array of distinctive chemical, structural 
and conformational properties: they have high affinity for metal ions, they are almost thermodynamically 
as stable as Watson-Crick base pairs, and they present conformational flexibility to different environments 
(In-house simulations, preliminary results and unpublished data). 

 

Figure 5. The 3D structure of GAS5 RNA is presented. The 3D structures of nucleotides 1–310 and 311–600 
are presented in (A) and (B), respectively, after secondary structure and energy minimization computations 
(In-house simulations, preliminary results and unpublished data). 

A B
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GAS5 is a tumor suppressor gene that has been thoroughly examined 
in malignancies [18]. However, there are several cancer research areas 
where GAS5 has not been studied as for example the case of diseases in 
the central nervous system [39]. GAS5 expression has been found to 
participate in the majority of human tumors, as it has been found to 
regulate apoptosis, proliferation, mesenchymal transition and metastasis 
[40]. Therefore, in the next sections we will discuss the role of GAS5 in 
various tumor types individually. 

GAS5 in Uterine Cervical Cancer 

Uterine cervical cancer is considered to be the second most common 
cancer and the fourth leading cause of deaths related to cancers in women 
[41]. It is a type of tumor that can be very aggressive with devastating 
effects on the suffering patient. Fortunately, early diagnosis of this cancer 
results in many cases to complete remission or cure. A recent report has 
found that GAS5 is down-regulated in cervical cancer tissues, which was 
in agreement with the initial postulation of GAS5 as a tumor suppressor 
gene [42]. In addition, in the same study in an in vitro model, over-
expression of GAS5 led to suppression of proliferation, invasion and 
migration [42]. Moreover, experiments in mice have confirmed the 
mechanism of action of GAS5 by inhibiting tumor growth and metastasis 
[42]. In addition, in another report, it has been found that hyper-
methylation of the GAS5 gene is related to tumor progression and 
metastasis, while GAS5 overexpression is related to tumor inhibition and 
cell cycle arrest [43]. Another interesting report showed that GAS5 was 
down-regulated in cervical tumors while it was up-regulated in the 
adjacent tissues, and it was also found that GAS5 down-regulation was 
connected to poor prognosis [44,45]. Finally, an interesting finding showed 
that GAS5 regulates miRNA expression, particularly miR-196a, miR-205 
and miR-21 [46,47]. Suppression of those miRNAs led to tumor suppression 
and was linked with better prognosis. In particular, it was found that GAS5 
functions as a molecular sponge for miRNAs and more specifically it was 
found that miR-205 and miR-196a are GAS5-targeting miRNAs [47]. Further 
on, in the case of miR-21, it was shown that GAS5 directly functions as a 
molecular sponge, suppressing its function and probably does not allow 
miR-21 to interact with other tumor suppressor genes, such as PDCD4, 
TPM1, RECK and TIMP3, which are all potential targets for miR-21 [46]. 

GAS5 in Breast Cancer 

The case of breast cancer is one of the well-studied tumors, both with 
respect to its biology as well as with respect to GAS5. One of the most recent 
reports has shown that GAS5 is regulated by c-Myc, and in particular, Myc 
inhibition led to down-regulation of GAS5, indicating a tumor promoting 
mechanism [48]. In line with previous studies for the role of miRNAs, it is 
also reported that several miRNAs are regulated by GAS5 in breast cancer. 
In particular, miR221/222 promote tumor growth and inhibit apoptosis 
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[49,50]. On the other hand GAS5, interacts with miR-23a inducing 
autophagy [51], binds to miR-196a-5p suppressing proliferation and 
invasion [52] and finally interacts with miR-21, which in turn leads to 
tumor suppression [53]. At the same time, numerous recent studies agree 
on the fact that down-regulation of GAS5 is tightly connected to tumor 
progression, invasion, metastasis and cell cycle progression [54–58]. As in 
the case of cervical cancer, it was also shown for breast cancer that GAS5 
is direct mediator of miR-221/222, and in particular, miR-221/222 
suppresses GAS5 expression subsequently promoting tumor growth [49]. 
Interestingly, miR-222 regulates GAS5 over the PTEN/Akt/mTOR pathway 
conferring tumor growth and proliferation [59,60]. In addition, miR-21 
was also found in breast cancer to interact with GAS5 [53]. GAS5 binds to 
miR-21 and inhibits the miRNA to further silence tumor suppressor genes 
such as PTEN, and PI3K as a consequence activate Akt-mediated cell 
growth and proliferation [53]. Further on, in the same study it was shown 
that TPM1, PDCD4 and TIMP3 are also direct targets of miR-21 [53]. 

In addition to the suppression of miRNA expression/functional 
inhibition by GAS5 as explained above, several reports have shed some 
biological insight into another explanation of GAS5 as a tumor suppressor. 
In particular, it has been found that Notch-1 expression promotes tumor 
cell proliferation through down-regulation of GAS5 [61]. Also, several 
other ncRNAs, such as SNORD44 [62] and RT2 [63], were found to be 
regulated by Notch-1, along with GAS5, indicating their mutual 
cooperation in suppressing tumor growth. 

GAS5 in Ovarian Cancer 

As in the case of cervical and breast cancer, ovarian cancer is a 
significant malignancy of the female reproductive system, as it is the 
seventh most frequent cancer in women [64]. Several studies have 
investigated the biological role of GAS5 in ovarian cancer. It has been 
found that GAS5 stimulates apoptosis in ovarian tumor cells, through the 
mitochondrial apoptosis pathway [65]. In particular, GAS5 stimulates BAX 
and BAK expression, and down-stream caspase expression [65]. Similarly 
to aforementioned gynecological cancers, GAS5 down-regulation is 
associated with tumor cell proliferation, invasion, metastasis and poor 
prognosis in ovarian cancer [66,67]. In particular, in a recent report it has 
been found that GAS5 acts as a decoy of CEBPB, leading to GDF15 down-
regulation, which in ovarian cancer functions in the exact opposite way, 
meaning that GAS5 down-regulation fails to decoy CEBPB followed by 
GDF15 over-expression and ultimately allows tumor growth and 
proliferation [68]. On the other hand, GAS5 overexpression leads to down-
regulation of IL18-inducing apoptosis of tumor cells [69]. Finally, in the 
case of GAS5-regulaterd miRNAs, there is one report suggesting that miR-
21 has been found to be overexpressed in ovarian cancer, with a 
simultaneous down-regulation of GAS5. miR-21 expression is reversed 
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when GAS5 is overexpressed, Thus GAS5 causes tumor suppression by 
inhibiting their proliferation through suppression of miR-21 [70]. 

GAS5 in Prostate Cancer 

In prostate cancer, miR-145 inhibits proliferation and induces 
apoptosis by up-regulating GAS5, while GAS5 down-regulates miR-18a 
[71,72], as well as miR-103 [73], and is related to better prognosis [74]. At 
the same time, a gene expression meta-analysis study has shown that GAS5 
is targeted by miR-940, leading to its down-regulation and tumor 
progression [74]. A very interesting recent report has shown that 
mutations in the GAS5 gene is linked to the transition of benign prostate 
to aggressive prostate cancer, thus indicating its role in tumor 
differentiation and progression [75]. All studies referring to prostate 
cancer, all agree that GAS5 up-regulation is tightly linked to tumor 
suppression, inhibition of proliferation and good prognosis [76–80]. More 
in-depth studies have reported that a possible mechanism of GAS5 action 
in prostate cancer is through targeting of p27Kip1 [81] and AKT/mTOR 
pathway [73,82]. 

GAS5 in Lung Cancer  

Lung cancer remains the leading cause of cancer-related death 
worldwide and is expected to account for 28% of all male cancer deaths 
and 26% of all female cancer deaths in 2013 [83]. GAS5 has been found to 
play a significant role in lung cancer biology, as many studies have 
reported their results on this phenomenon. In particular, all studies agree 
that GAS5 plays a significant tumor suppressing and pro-apoptotic role in 
lung cancer both in small cell [84–92], non-small cell lung cancer [83–92], 
lung adenocarcinoma [93,94] and malignant pleural mesothelioma [95]. In 
addition, it has been reported that circulating levels of GAS5 could be 
possible biomarkers for diagnosis and prognosis for lung cancer [86]. 

GAS5 in Gastric Cancer 

Gastric cancer is the fifth leading type of cancer and the third leading 
cause of death from cancer, making up 7% of cases and 9% of deaths [96]. 
As in the previous cases GAS5 down-regulation leads to gastric tumor 
progression and invasion [97,98], while GAS5 overexpression plays a role 
as a tumor suppressor and pro-apoptotic agent [58,59,99–101]. Several 
miRNAs have been shown to interact with GAS5 and regulate tumor 
growth in gastric cancer. Interestingly, as in the case of breast cancer, miR-
222 regulates GAS5 over the PTEN/Akt/mTOR pathway conferring tumor 
growth and proliferation [59]. Finally, in a very recent report it has been 
found that a GAS5 variant regulates p27Kip1 conferring high risk for gastric 
cancer [102]. This variant consists of a functional five-base pair (AGGCA/-) 
insertion/deletion polymorphism (rs145204276). The variant is located in 
the promoter region of the GAS5 gene and the deletion brings about an 
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elevation in gene transcription as compared to the promoter variant with 
the insertion [102]. 

GAS5 in Colorectal Cancer 

Colorectal cancer is one of the most common tumors and the third 
deadliest from all cancers [103]. Although it can be very aggressive, early 
diagnosis can lead to complete remission/cure. It is a well-studied tumor 
with respect to GAS5. One interesting finding is that, as in the cases of 
gastric and breast cancer, GAS5 down-regulates miR-222 through the PTEN 
pathway conferring tumor suppression and pro-apoptosis [104]. Another 
novel finding is that GAS5 functions as a tumor suppressor through the 
miR-182-5p/FOXO3a axis in colorectal cancer [105]. Also, some studies 
have shown that GAS5 expression can be a predictive biomarker for 
metastasis [106,107] and tumor progression of this cancer [104,108–110]. 
The properties of GAS5 as a biomarker have been studied more 
extensively in colorectal cancers as compared to other tumor types. 

GAS5 in Liver Cancer 

Liver cancer is the sixth most frequently diagnosed cancer and the 
fourth leading cause of cancer-related death globally in 2018, with 
approximately 841,000 new cases and an estimated 782,000 deaths 
annually [111]. There are not many studies on the role of GAS5 in liver 
cancer whereas most studies are occupied with the biology of GAS5 in 
Hepatocellular Carcinoma (HCC). One of the main findings in the role of 
GAS5 in HCC is that its over-expression is tightly linked to tumor invasion 
inhibition, through interaction with miR-135b [112], as well as through 
interaction with miR-21 [113]. On the other hand, down-regulation of GAS5 
has been reported to lead to poor prognosis, tumor invasion enhancement 
and promotion of tumor cell proliferation [57,114,115]. One of the recent 
biological mechanisms detected was that GAS5 mediates the interaction of 
corylin and inhibits epithelial mesenchymal transition thus suppressing 
HCC progression and metastasis [116]. Finally, in a recent study it has been 
reported that treatment of HCC cells with sorafenib, a protein kinase 
inhibitor, resulted in GAS5 up-regulation along with miR-126-3p [117]. The 
interesting finding was that silencing of GAS5 in HCC cells resulted in up-
regulation of miR-126-3p, indicating a regulatory relation between those 
two genes. In this study, the simultaneous sensitivity of HCC cells to 
sorafenib and GAS5 up-regulation confirmed the role of GAS5 as a tumor 
suppressor genes, as well as it indicated a negative regulation between 
GAS5 and miR-126-3p [117]. A similar mechanism was also recently 
reported between GAS5 and miR-1323 [118]. In that study, it has been 
found that silencing of GAS5 lead to increased HCC cell proliferation, while 
miR-1323 inhibition restricted proliferation. The simultaneous inhibition 
of GAS5 and miR-1323 balanced those effects and manifested similar 
results as in the reference samples [118]. Both studies, agree that GAS5 
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plays a significant role as a tumor suppressor gene in hepatic cancer, 
which is in agreement with previous studies. 

GAS5 in Brain Cancer/Tumors 

Brain tumors are considered to be the most notorious type of tumors, 
mainly due to the anatomical characteristics of brain and its unique 
biology without replication. Brain tumors, no matter if they are benign or 
malignant can pose a serious threat to life because they affect brain tissue, 
which is vital for survival. Similarly, as in previous cases, GAS5 down-
regulation is linked to poor prognosis in glioblastomas and gliomas 
[119,120]. Thus, up-regulation of GAS5 functions potentially as a tumor 
suppressor and anti-proliferative agent in gliomas [121–123]. Interestingly, 
as in discussed for breast and gastric cancer, GAS5 interacts with miR-222 
also in glioma causing tumor growth arrest and apoptosis [124]. Another 
interesting report showed that GAS5 suppresses tumor growth in glioma 
through the miR-196a-5p/FOXO1 pathway [125]. Finally, GAS5 suppresses 
proliferation, migration and invasion of glioma cells by negative 
regulation of miR-18a-5p [126]. There are fewer studies for other brain 
tumors, yet all agree that GAS5 functions as a tumor suppressor and in 
particular, this has been reported for glioblastoma [119,121,127]. There 
are no studies up to date for the role of GAS5 in medulloblastoma, 
astrocytoma, ependymoma, meningioma and other rarer brain tumor 
types. In summary, brain tumors are the least studied types of cancer with 
respect to GAS5. In that sense, it is apparent that many more studies are 
required in order to gain more knowledge in the biology of brain tumors. 

GAS5 in Bladder Cancer 

There are not many studies concerning the role of GAS5 in bladder 
cancer. Yet, as in the previous cases it is unanimously accepted that GAS5 
down-regulation is linked to bladder tumor cells progression and growth 
[128–130], while GAS5 expression functions as a tumor suppressor and 
activator of apoptosis [131–133]. Finally, in a very recent report it has been 
shown that a single nucleotide polymorphism (SNP) in GAS5 is suspected 
for increased risk of bladder cancer [134]. 

CONCLUSIONS 

GAS5 is a long ncRNA discovered in the early 90s’ [11–13]. From that 
time and on, several studies have shed light on its role in different 
functions of human and animal physiology and at the same time in human 
malignancies. From our review, we have found that almost all studies, 
irrespectively of tumor types, confirm the role of GAS5 as a tumor 
suppressor. Especially, more recent findings have also highlighted GAS5 
interaction with various miRNAs, contributing even more to its tumor 
inhibiting role. In particular, we could outline two miRNAs, which came 
up throughout our review; miR-222 and miR-21. More specifically 
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bioinformatics and experimental analyses have shown that miR-222 has a 
possible binding site within the GAS5-3′ UTR (3′-untranslated regions) 
[135], while similarly GAS5 has a binding site for miR-21 sharing a 
common binding site with PTEN for miR-21 [84]. It is possible that these 
molecules could play an important role in tumor biology as well as tumor 
growth, invasion and metastasis. Thus, it is not an exaggeration to say that 
GAS5, miR-222 and miR-21 could pose potential prognostic and diagnostic 
biomarkers for a variety of tumors. For certain, more studies are required 
in order to better understand the role of GAS5 in tumors and in particular 
in brain tumors, which have been the least studied types of tumors with 
respect to GAS5. 
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