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ABSTRACT 

Natural products space includes at least 200,000 compounds and the 
structures of most of these compounds are available in digital format. 
Previous analyses showed (i) that although they were capable of taking 
up synthetic pharmaceutical drugs, such exogenous molecules were 
likely the chief ‘natural’ substrates in the evolution of the transporters 
used to gain cellular entry by pharmaceutical drugs, and (ii) that a 
relatively simple but rapid clustering algorithm could produce clusters 
from which individual elements might serve to form a representative 
library covering natural products space. This exploited the fact that the 
larger clusters were likely to be formed early in evolution (and hence to 
have been accompanied by suitable transporters), so that very small 
clusters, including singletons, could be ignored. In the latter work, we 
assumed that the molecule chosen might be that in the middle of the 
cluster. However, this ignored two other criteria, namely the commercial 
availability and the financial cost of the individual elements of these 
clusters. We here develop a small representative library in which we to 
seek to satisfy the somewhat competing criteria of coverage 
(‘representativeness’), availability and cost. It is intended that the library 
chosen might serve as a testbed of molecules that may or may not be 
substrates for known or orphan drug transporters. A supplementary 
spreadsheet provides details, and their availability via a particular 
supplier. 

KEYWORDS: drug transporters; cheminformatics; endogenites; 
metabolomics; clustering 

 Open Access 

Received: 02 July 2019 

Accepted: 08 August 2019 

Published: 09 August 2019 

Copyright © 2019 by the 

author(s). Licensee Hapres, 

London, United Kingdom. This is 

an open access article distributed 

under the terms and conditions 

of Creative Commons Attribution 

4.0 International License. 

https://pf.hapres.com/
https://doi.org/10.20900/pf20190005
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


 
Pharmaceutical Frontiers 2 of 15 

Pharm Front. 2019;1:e190005. https://doi.org/10.20900/pf20190005 

INTRODUCTION  

It is by now evident (e.g., [1–29]) that pharmaceutical drugs exploit 
endogenous transporters that normally transport biological metabolites 
(whether they are endogenous, or are represented by exogenous natural 
products). The possibly surprising quantitative consequence of these and 
other studies is that diffusion of such drugs through the phospholipid 
bilayer portions of undamaged biological membranes is in fact  
negligible [1,3,5–7,10,11,13,30].  

The principle of molecular similarity (e.g., [31]) implies that small 
molecules with similar structures will bind to the same kinds of proteins 
and exhibit similar kinds of activity. We [2,16,32–37] and others (e.g., 
[38–43]) have thus sought to assess the extent to which marketed drugs 
are similar in structural terms to endogenous human metabolites (that 
we sometimes refer to as “endogenites”). The criterion of being marketed 
was used because this implied that the drugs were efficacious and (since 
almost all were to be taken orally and/or required to interact with 
intracellular targets) capable of being transported across at least one 
biological membrane. It turned out [36] that when standard encodings 
were employed, and a Tanimoto similarity exceeding ~0.8 was used as a 
criterion of “similarity”, all drugs could be seen to be similar to either 
endogenites (~15%) or (more frequently) to natural products (commonly 
of plant and microbial origin), but that for similarities below this the 
various encodings often gave completely different rank orders.  

This latter finding, the importance of natural products in the natural 
selection of transporters, raises a more ecological kind of thinking 
[44–46], in which it becomes obvious that the ability to take up natural 
products (such as cocaine [47], ergothioneine [48,49], and many others) is 
indeed likely to improve the fitness of an organism with a protein 
transporter capable of transporting them.  

As with the products of many other genes uncovered by the systematic 
genomic sequencing programmes (e.g., [50]), many transporters remain 
“orphans” [12], with no known substrates. Clearly one strategy to 
“de-orphanise” them would be to try all kinds of substrates in parallel 
and use the methods of ‘untargeted metabolomics’ to assess their uptake 
differentially in cells expressing different amounts of the transporter of 
interest (e.g., [48]). Another method is to try many drugs serially, but this 
would be prohibitively expensive for large libraries. Consequently one 
strategy (e.g., [37,51]) that we have chosen is to develop a small and 
‘representative’ library that might reasonably cover natural products 
space efficiently and inexpensively, and that might then be used to assess 
which of its members were substrates for particular transporters. Having 
established the greatest activities, those small molecule structures could 
then be used as “seeds” for the acquisition and analysis of other 
molecules with which to establish a suitable QSAR. Armed with that, and 
the concentrations of the transporters themselves, one would then have 
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the information necessary to permit the calculation of the activity of that 
transporter for any drugs in different cells.  

The only “missing piece” in the generation of this kind of library 
hinged on the commercial availability and cost of the molecules 
themselves. As with other programs of this type (e.g., [52–56]), the desire 
is for a library that is both diverse yet accessible. In collaboration with a 
commercial partner, we have now developed a library that is at once 
small, suitably comprehensive, and with a price that is accessible to most 
reasonably funded laboratories. It is this that we here describe. 

MATERIALS AND METHODS 

As in our related projects (e.g., [15,32–35]), we developed and ran our 
cheminformatics routines in the KNIME environment [57,58], including 
on occasion two nodes available from the Molport website at 
https://www.molport.com/shop/knime-nodes. We made considerable use 
of the RDKit package [59], especially the most recent “patterned” 
fingerprint encoding. Other software used is referenced in the Results 
section. 

RESULTS 

Our previous work [37] separated the large UNPD (Universal Natural 
Products Database [60] http://pkuxxj.pku.edu.cn/UNPD/)(and the 
commercial Dictionary of Natural Products (DNP) library) of natural 
products into appropriate clusters, ranked by cluster size. To create a 
small and suitably priced library that might nonetheless give good 
coverage of it, we used the following general algorithm (given as 
pseudocode): 

• Rank each cluster according to its size 
• Filter out duplicate molecules  
• Pick a subset of each cluster proportional to the square root of the 

cluster size and such that the total number of subset compounds 
selected over all clusters is equal to some maximum library size (we 
initially chose 1920) 

• Pick the molecules within the MolPort database closest to each of the 
cluster subset members 

• Continue for any cluster subset containing more than five molecules, 
stop when no further cluster subsets pass these criteria 

Figure 1A shows a PCA plot of 504 molecules that met these criteria. 
Clearly some molecules are very expensive and fail our criterion of 
affordability. We also show five representative structures, indicating a 
variation in complexity over the first PC. Exact matches between Molport 
molecules and those in the databases are also more common towards the 
left-hand side of the first PC.  
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Figure 1. Initial coverage of natural products space as described in the text. Exact matches to cluster 
centres (blue) or nearby isomers (green) available in the Molport collection are labelled accordingly. Price 
is encoded via symbol size from $10 to $5713. (A) Full set of 504 molecules. (B) Reduced set of 167 
molecules costing $100 or less. 

Figure 1B shows the same data when they were subject to a price 
ceiling of $100 per molecule (regardless of quantity). We then added two 
more criteria. 
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• Filter out any molecules with SLogP > 5.0 
• Keep only molecules that pass chosen price and availability criteria 

(usually this was at least 25 mg for less than $100) 

The final filtered list of 167 library compounds, taken either at or near 
167 unique cluster centres out of the total of 7363 clusters represents 
2.27% of clusters. Taking cluster membership into account, these 167 
clusters represent approx. 8200 compounds out of a total of 195,000 
compounds (~4.2%). Whilst these figures seem small, they give no clear 
indication of how well the library covers natural product chemical space 
because most clusters are in fact tiny. 

 

Figure 2. (A) Visualisation of the coverage of natural product(-like) space when molecules are selected 
from individual clusters. Principal components analysis was performed after normalizing to unit variance 
using a standard KNIME workflow. 5000 molecules are shown for purposes of visualization, and the 118 
molecules closest to cluster centres that fulfilled our other criteria are indicated with triangles. (B) A t-SNE 
plot of the same data as in Figure 2A. 

For purposes of visualization, we extracted a random subset of 5000 
molecules from the UNPD dataset studied previously [37]. We used the 
full set of RDKit’s numerical scalar descriptors, except that correlated 
descriptors were filtered out with a correlation threshold of 0.98, and 
z-score normalized (descriptors as available in KNIME were used, see 
https://www.rdkit.org/docs/GettingStartedInPython.html#list-of-available-
descriptors). 

Figure 2A shows a Principal Components Analysis of those 5000 
molecules (dots) together with the 117 molecules chosen (triangles) with 
filter criteria on SLogP, price and availability. It is clear that apart from the 
more sparsely populated part of chemical space to the right we do indeed 
have good coverage of the whole natural products (and 
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natural-product-like) space. A more principled way of performing and 
visualizing dimensionality reduction is represented by the 
now-well-known variant of Stochastic Neighbor Embedding known as 
t-SNE [61]. In contrast to PCA, t-SNE is a nonlinear algorithm that does not 
admit projection of new data. To get round this, we first calculated the 
t-SNE coordinates in the normal way; we used Python Scikit-learn TSNE 
with default parameters and pre-computed distance matrix whose 
elements were (1.0—RDKit Pattern Fingerprint Tanimoto similarity) with 
t-SNE parameters: n_components = 2, perplexity = 30.0, early_exaggeration 
= 12.0, learning_rate = 200.0, n_iter = 1000, n_iter_without_progress = 300, 
min_grad_norm = 1e−07, metric = “precomputed”, init = “random”,  
method = “barnes_hut”, angle = 0.5). We trained a random forest  
model [62] using RDKit Pattern fingerprints as the input and the two 
t-SNE values as the output. We could then project in the new compounds 
of interest (cluster representatives) by passing them through the trained 
RF model in the same way. Thus Figure 2B shows a t-SNE plot of the same 
data, indicating that indeed this library covers the great majority of the 
chemical space. Those parts least covered (in orange) were not in fact 
from clusters that had only a very few members (and thus unable to 
provide sufficient members for a sensible QSAR analysis), but mainly 
from clusters containing compounds that did not meet our price or 
availability criteria. 

96% of library compounds were exact matches to their target (TS = 1.0), 
most of the rest were either close isomers, tautomers or alternate charge 
states. The worst Tanimoto similarity between target and library 
compound found was 0.858 for the charged and non-charged versions of 
Chlorin e6.  

Because of issues related to the same compound being represented by 
different tautomeric forms and charge states, etc., we have not been able 
to find a foolproof procedure to standardize compound representations 
into a truly ‘canonical’ form, hence Tanimoto similarities somewhat less 
than 1.0 can nevertheless correspond to identical molecules. 

To assess the extent to which our clustering and subsetting has 
provided a much more widely separated set of molecules, we again 
encoded the molecules using the RDKit Pattern fingerprint. Figure 3A 
shows a heat map [63] of the 5000 subsample molecules as judged by 
their Tanimoto similarities, with a mode value being around 0.7. Figure 
3B shows a similar analysis for the cluster representatives in the Molport 
library, where it is clear that far fewer have a mutual Tanimoto similarity 
exceeding 0.8, i.e., we have covered the available space much more 
sparsely, as intended. Figure 3C shows the heat map for library samples 
vs. the 5000 subsample. 

In a similar vein, Figure 4A,B show the similarities to each other of the 
5k and cluster representatives when the fingerprint Euclidean distances 
(rather than Tanimoto similarities) are used. In this case the abscissa 
represents the square root of the number of different bits and blue 
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represents more similar. Again the extraction of cluster representatives 
has pulled the average similarities away from each other.  

A B 

  
C  

 

 

Figure 3. Heat map analyses of (A) The 5000-molecule subset and (B) The 117-molecule subset, based on 
their Tanimoto similarities. The analyses used the same workflows as those described in [32]. (C) The 
5000-molecule subset versus the 117-molecule subset, based on their Tanimoto similarities. The analyses 
used the same workflows as those described in [32]. 
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Figure 4. Heat map analyses of (A) The 5000-molecule subset, based on their Euclidean distances, as 
described in the text. Analyses and displays were otherwise as per Figures 2 and 3. (B) The 117-molecule 
subset, based on their Euclidean distances, as described in the text. Analyses and displays were otherwise 
as per Figures 2 and 3. 

 

Figure 5. PCA plot of the 117-molecule subset, showing 5 representative molecules.  
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Finally, Figure 5 shows a PCA plot of the 117 molecules that passed our 
criteria; the amounts are encoded by colour and the cost by size, while 
the shape encodes whether their partial charge at neutral pH ≥ 0.5 and 
thus whether they are likely to be observed in positive ionization mode in 
a mass spectrometer. Again, notwithstanding some outliers to the right, 
there is a reasonable coverage of the available chemical space. The set of 
molecules is given in the supplementary spreadsheet. In practice, 
molecules go in and out of availability, and at the time of finalizing this 
manuscript only 116 of the 117 were in fact available. Consequently, we 
have not extended our analyses beyond this. 

For those with larger budgets, we have also listed other representative 
quantities and guide prices in different tabs in the attached 
Supplementary Excel sheet. Both guide prices were optimized 
considering the total cost of compounds and shipping combinations. 

DISCUSSION 

Our aim in the present work, as part of a programme aimed at 
deorphanising (i.e., finding the substrates for) membrane transporters, 
was to build on the recognition that many evolved and were selected to 
take up (or to efflux, or both) exogenous natural products (e.g., [36,48]). 
Although natural products space is occupied by far fewer known 
molecules (e.g., [60,64–68]) than either those possible [69] or the set of 
~230 million mainly synthetic molecules collated e.g., at  
ZINC [70](http://zinc.docking.org/), it is still very large. Purchasing every 
possible molecule is prohibitively expensive, even for the subset of 
known (~200,000) natural products, and even if it were not many are 
either commercially unavailable or just singletons unsuited to our 
purposes (which aims to build a QSAR based on an initial hit followed by 
possible candidates that bear at least some chemical similarity to it). This 
is a simple extrapolation of the principle of molecular similarity, and the 
finding that molecules close in structure to a molecule with a certain 
activity are substantially enriched for that activity. In the landscape 
metaphor (e.g., [71,72]), this is equivalent to the assumption that a 
“starting” hit should at least be in the foothills of a more or less isolated 
mountain range that one would wish to explore (noting that in 
phenotypic sceening the objective function may involve or even favour 
polypharmacology). 

A standard activity in cheminformatics is thus the production of 
reduced chemical libraries that cover the chemical space of interest [51], 
and that should still contain molecules that are (i) commercially available, 
and (ii) reasonably cheap. Cost provides a particularly clear filter [73]. 
Obviously this latter is a function of a laboratory’s budget, so we focused 
on the smallest library of this type that one might purchase in reasonable 
quantities for a somewhat arbitrary $5000 or so. 

Plate-based screens are well known to be rather prone to edge effects 
[74,75], so while one might have suggested that we specify a number of 
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molecules that might have a multiple of 90 wells or so (to allow for 
controls), we do not feel bound by this as numbers such as 117 allow 
arraying in a manner that easily avoids them. 

CONCLUSIONS 

Conventional cheminformatics based on a prior cluster analysis of 
natural products space has allowed us to provide a set of small and 
relatively inexpensive libraries that may be useful in drug discovery and 
other assays (such as those seeking the substrates of orphan 
transporters). 

SUPPLEMENTARY MATERIALS 

The supplementary materials listing molecules discussed in the text 
are available online at https://doi.org/10.20900/pf20190005.  
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