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ABSTRACT 

Ac susceptometry and magnetic hysteresis studies are the two most used 
techniques for the basic characterization of magnetic relaxation 
properties of Single-Molecule Magnets. Nevertheless, the full quantitative 
treatment of such studies is rarely carried out, in particular as regards 
the absolute magnitudes of the in-phase (χʹ) and out-of-phase (χʺ) ac 
susceptibility signals, and the exact shapes of hysteresis loops. To 
facilitate such quantitative analyses, an SMM evaluator tool has been 
developed. It uses the dc magnetic susceptibility/magnetization 
properties of any SMM, and the parameters characteristic of the various 
relevant relaxation processes (Orbach, Raman, Direct, QTM) to calculate 
the exact ac susceptibility/magnetic hysteresis curves under any 
temperature, magnetic field and ac frequency or dc field scan rate. It also 
implements a model that calculates the actual fraction of molecules that 
contribute to the SMM effect, as well as models which account for 
distributions of the relaxation times. Indicative examples of a “strong”, a 
“medium” and a “weak” SMM are analysed with this tool, demonstrating 
the additional information that can be extracted by quantitative 
treatment of such data. 

KEYWORDS: Single-Molecule Magnets; ac susceptibility; magnetic 
hysteresis; modeling 

ABBREVIATIONS  

SMM, Single-Molecule Magnets; ac, alternating current; dc, direct current; 
QTM, Quantum Tunneling of the Magnetization; FC-ZFC, field-cooled 
zero-field-cooled 

INTRODUCTION  

It would be probably fair to say that from the moment Single-Molecule 
Magnets (SMMs) entered the field of molecular magnetism almost three 
decades ago, ac susceptometry has been the workhorse of this research, 
starting from its foundational paper [1]. Today, ac susceptometry is 
readily accessible from commercial magnetometers, it allows the 
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determination of kinetic parameters of the magnetic relaxation processes 
as a function of temperature and static magnetic fields and it can yield 
kinetic information much more conveniently that isothermal magnetic 
field sweeps or FC-ZFC studies, particularly in the case of fast processes. 

The most easily accessible piece of information derived from ac 
susceptometry is the out-of-phase magnetization (χʺ), which forms peaks 
whose positions are characteristic of the magnetic relaxation time. Peak 
maxima in the isothermal χʺ = f(ω) representation, or in the isofrequency 
χʺ = f(T) representation, are characteristic of the relaxation time at that 
particular temperature or frequency, respectively. Collecting several 
peak positions from isothermal χʺ = f(ω) experiments conducted at 
different temperatures (or isofrequency χʺ = f(T) experiments conducted 
at different frequencies), allows us to model the characteristic relaxation 
times to account for a series of relaxation mechanisms. 

The easy accessibility to this information, and the high attention that 
is given to peak positions, obscures another important parameter, i.e., 
their intensities. Moreover, as the appearance this out-of-phase component 
is associated with the decrease of the in-phase component, a quantitative 
assessment of the latter is also relevant, but not routinely carried out. 

At the same time, magnetic field sweeps are the second most 
diagnostic experiment, also used from the earliest studies in the field [2]. 
These reveal hysteresis loops when the relaxation is sufficiently slow, 
despite the fact that the timescales of this experiment are much longer 
than the ac experiment. Such experiments are also critical in determining 
magnetic field positions at which magnetic level crossings induce 
accelerated relaxation through Quantum Tunneling of the Magnetization 
(QTM). However, apart from the descriptive treatment of these 
experiments (remanent magnetization, coercive field, QTM-induced 
steps), quantitative analyses of experimental data are extremely 
rare [3–6]. Partly responsible for this paucity of analyses is the lack of 
analytical descriptions of these curves, whose reproduction requires the 
numerical solution of the associated differential equation. While the 
respective differential equations describing the ac experiment were 
analytically solved several decades ago, this is not the case with magnetic 
field sweep experiments. 

Herein, it will be shown that additional information on the relaxation 
processes of SMMs can be derived from the quantitative treatment of: 
(i) the magnitudes of the χʹ and χʺ ac signals and (ii) the shapes of 
hysteresis loops. This additional information does not only concern the 
kinetic parameters of the relaxation processes of unique molecules, but 
also the determination of the slowly relaxing fraction, i.e., the amount of 
molecules in the sample that do relax at the determined finite rates. Such 
subtle distinctions are becoming more important, as we are beginning to 
understand that the SMM phenomenon is not uniquely determined by 
the properties of the single molecule, as the name implies, but also by 
those of its surroundings [7,8]. 
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To facilitate such analyses an SMM evaluation tool has been developed 
and its functionalities will be presented through the analysis of SMMs 
previously reported in the literature. This analysis will also extend to the 
description of distribution mechanisms that are employed to interpret 
non-ideal relaxation processes, and it will compare the validity of such 
distributions with that of low fractions of slowly relaxing molecules. 

BASIC THEORY OF DYNAMIC MAGNETIZATION EXPERIMENTS 

The Ac Experiment 

During the ac susceptibility experiment, a weak (a few G) and 
harmonically oscillating magnetic field Hac(t) = H0sin(ωt) is applied to the 
sample, giving rise to a complex magnetic susceptibility response. This 
can be analyzed to a real component that follows the magnetic field’s 
frequency (in-phase) and to an imaginary one which lags behind 
(out-of-phase). A static (dc) magnetic field Hdc may also be applied on top 
of the oscillating field, but this is not mandatory. 

The magnetization of the sample will be time-dependent and can be 
written as a sum of time-independent dc component and a 
time-dependent ac component: 

M(t,T,H) = Meq,dc(T,Hdc) + Mac(T,Hac(t)) (1) 

Assuming a linear response, we can define: 

,d ( , ) ( , )( , )
d

eq dc dc T dc
T dc

dc dc

M T H M T HT H
H H

χ = =
 

(2) 

, 0 0 0
0

0

d ( , , ) ( , , ) ( , , )( , , )
d ( ) ( ) sin( )

eq ac dc S dc S dc
S dc

ac ac

M T H H M T H H M T H HT H H
H t H t H t

χ
ω

= = =
 

(3) 

Here, χT is the isothermal susceptibility, and corresponds to the static 
susceptibility, i.e., its equilibrium value under a static magnetic field (ω → 
0); experimentally, it is the value determined by a dc experiment. 
Moreover, χS is the adiabatic susceptibility, which follows the magnetic 
field without any lag and attains its equilibrium value instantaneously, it 
therefore corresponds to the magnetic susceptibility at the limit ω → ∞. 

By replacing in the above equation it becomes: 

M(t,T,Hdc) = χT(T,Hdc)Hdc + χS(T,Hdc)H0sin(ωt) (4) 

The experiment is described by the following differential equation, 
where for simplicity we have replaced H = Hdc: 

0
d ( , , )( , ) ( , , ) ( , ) ( , ) sin( )

d T S
M t T HT H M t T H T H H T H H t

t
τ χ χ ω+ = +

 
(5) 

The solution to the equation has been given analytically by Casimir 
and du Pré, who proposed a model for spin-lattice relaxation [9]. 

21 ( )
T S

S
χ χχ χ

ωτ
−′ = +

+  
(6) 
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2( )
1 ( )T S

ωτχ χ χ
ωτ

′′ = −
+  

(7) 

These relations describe the behavior of an ideal sample, with a 
unique relaxation time τ, and whose molecules all relax slowly with that 
characteristic time. The basics of this theory have been explained in great 
detail elsewhere [10,11] and will not be covered here. It is interesting to 
note, however, that Bloch [12] undertook a similar treatment for an 
oscillating magnetic field H1 transversely superposed on a static field H0, 
deriving relaxation times for magnetic resonance. 

Assuming that all the molecules in the sample will eventually be 
blocked, i.e. will relax slowly, at some sufficiently large frequency it 
should hold that χS = 0 and the above relations will read: 

21 ( )
Tχχ
ωτ

′ =
+  

(8) 

21 ( )T
ωτχ χ
ωτ

′′ =
+  

(9) 

It is easily seen that at for a frequency such that ωτ = 1, χʺ is 
maximized at value χʺ = χT/2 and that for that frequency χʹ = χT/2, i.e. χʺ = 
χʹ. However, if only a fraction, ρ, undergoes slow magnetic relaxation the 
out-of-phase signal should be scaled according to that fraction, i.e.: 

21 ( )T
ωτχ ρχ
ωτ

′′ =
+  

(10) 

We may notice a correspondence of this relation to the previous, in 
which: 

1T S S
T T S

T T

χ χ χρχ χ χ ρ
χ χ
−

= − ⇒ = = −
 

(11) 

which indicates that the difference χΤ – χS corresponds to the number of 
slowly relaxing molecules. 

Through simple algebraic manipulation of the above relation we may 
rewrite the in-phase component as: 

2
1(1 )

1 ( )T Tχ ρ χ ρχ
ωτ

′ = − +
+  

(12) 

which points to a fraction 1 − ρ which behaves like in a dc experiment, 
while the rest of the molecules undergo slow relaxation. 

In standard presentations of the ac experiment it is pointed out that 
the maximum value of χʺ is (χΤ − χS)/2, which means that as χS approaches 
χΤ the out-of-phase signal decreases. In the extreme case of χΤ = χS (hence 
ρ = 0) the out-of-phase signal is entirely suppressed. This is in agreement 
with the conclusion of a zero slowly relaxing fraction. Stated this way, 
this description may imply for magnetochemists that χS is a property 
which equally characterizes each individual molecule. However, it 
should be noted that the above concepts derive from quantum statistical 
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considerations (for a rigorous discussion see ref. [13]) and care should be 
taken when they are extrapolated to single molecules. Thus, it is more 
appropriate to consider χS as a statistical parameter, meaningful only for 
large ensembles. As such, it introduces a sharp distinction between slow 
and fast relaxing molecules, but not in the context of two different but 
finite relaxation rates (monodisperse or distributed). Rather, it introduces 
a distinction between finitely and infinitely fast relaxations. 

It follows from the above discussion that an additional layer of 
information is hidden in the intensities of the out-of-phase signals, which 
are typically overlooked. This information pertains to the statistical 
behavior of the sample, and to the fraction of molecules which contribute 
to the SMM phenomenon. We had alluded to the above considerations 
several years ago in the context of our study of a NiII

5 ferromagnetic 
cluster exhibiting weak out-of-phase signals [14], also citing several 
indicative examples of SMMs with such weak signals. It may be added to 
those examples that members of the Mn12 family have often exhibited 
weaker than predicted out-of-phase signals [15–21], an observation not so 
easy to make when ac data are plotted as χʹΜΤ vs T for the in-phase 
component according to prevailing practice. Relevant remarks have been 
made by others [22–26] though such discussions do not constitute a 
routine part of the analysis of ac susceptometry experiments of SMMs. 

It should be stated that ρ may be a function of temperature or applied 
magnetic field, since these parameters may activate/block different 
relaxation pathways. However, the precise origins of those dependencies 
should be quite complicated to determine, and they should vary as a 
function of the SMM structure, or even the sample nature. Herein, 
absolutely no assumptions are made as to the mechanistic details of these 
dependencies. These are clearly beyond the scope of this general purpose 
tool, which only provides a phenomenological framework to quantify 
their net effect by calculating ρ. Indeed, in the following treatment, ρ will 
be considered as a purely phenomenological parameter, disregarding 
mechanistic considerations. 

In closing this short presentation, a key point needs to be made, whose 
importance will become clear in the following discussion. Considering a 
χʺ = f(ω) peak, its shape will be described by the condition under which at 
two frequencies ω1 and ω2 it holds that χʺ(ω1) = χʺ(ω2). Using the equation 
of the monodisperse system, it is easy to prove that this condition is 
fulfilled when ω1ω2τ = 1, which describes any pair of points on the two 
sides of the peak, and which are symmetric when plotted on a 
logarithmic x-axis. To calculate the linewidth as the full width at 
half-maximum (FWHM), we search the ω values for which χʺ(ω) = χʺmax/2 
= (χΤ ‒ χS)/4. The solution of the resulting quadratic equation yields ωτ = 
2± 3 , for which ΔωFWHM = 2 3 / τ , hence the peak width is only a function 
of τ. This observation explains the apparent widening of the out-of-phase 
peaks upon increasing frequency (or temperature), as the concomitant 
decrease of τ(T,H). 
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This is a key point to keep in mind, as it provides a simple yet 
powerful criterion in assessing deviations from a monodisperse system. 

The Field-Sweep Experiment 

The field-sweep experiment also involves a variable magnetic field, 
but in this case this is varied linearly between two opposite, and usually 
large, values ±Hmax (which may reach several T). Assuming a field scan 
rate κ = dH/dt, and an equilibrium magnetization Meq(T,H), then the 
magnetization function M(t,T,H) will obey: 

d ( , , ( ))( , ) ( , , ( )) ( , )
d eq

M t T H tT H M t T H t M T H
t

τ + =  (13) 

This may be rewritten as: 

( , , ( )) ( , )d ( , , ( )) d ( , , ( )) d
d d d ( , )

eqM t T H t M T HM t T H t M t T H t H
t H t T Hτ

−
= = −   

or 

( , , ( )) ( , )d ( , , ( ))
d ( , )

eqM t T H t M T HM t T H t
H T Hκτ

−
= −  (14) 

This differential equation assumes a monodisperse relaxation time 
τ(T,H) and a sample fully undergoing slow relaxation. If, however, only a 
fraction ρ undergoes slow magnetic relaxation, this equation becomes: 

( , , ( )) ( , )d ( , , ( ))
d ( , )

eqM t T H t M T HM t T H t
H T Hρκτ

−
= −  (15) 

This differential equation contains as parameters the equilibrium 
value of the magnetization Meq(T,H) and the relaxation time τ(T,H), both 
of which are functions of the magnetic field. Therefore, it needs to be 
solved at each different magnetic field of the field-sweep experiment 
using the parameter values at that specific field. Not only is an analytical 
solution not possible for such a problem, but the numerical solution 
requires specific considerations (see below). 

RESULTS 

Modeling the Ac Susceptibility Intensities and Magnetic Hysteresis 
Shapes of Real Molecules 

In describing the previous theoretical background, it may be noted 
that χʹ and χʺ are often presented as functions of the abstract 
susceptibilities χΤ and χS, and of an abstract time constant τ. In addition, 
in theoretical treatments of the ac experiment χʹ and χʺ are given as 
unitless fractions of χΤ, which is thus removed from the discussion. The 
fact that all these parameters are functions of T and H, and that they have 
specific forms and magnitudes depending on the spin Hamiltonian 
parameters (for χΤ and χS) and on the relative contributions of the various 
relaxation mechanisms (for τ) is not explicitly addressed. This precludes 
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the treatment of some quantitative aspects of the ac susceptometry 
experiment. 

Modeling of τ(T,H) 

This is the primary function that needs to be explicitly modeled for a 
quantitative treatment of relaxation data at various temperatures and 
magnetic fields. The SMM evaluation tool considers several processes 
which have been found to intervene in magnetic relaxation in SMMs. In 
the relevant literature, a popular parametrization scheme accounts for 
the Orbach, Raman, direct and QTM [27,28] processes, and is given as: 

1

2

/1
2

( )

( , )
1 ( )

eff BU k T QTMn m
Orbach Raman Direct

QTM QTM i

b
T H b e b T b H T

b H H
τ −− = + + +

+ −
 

(16) 

where m = 2 (or 4) for non-Kramers (or Kramers) systems, bOrbach is the 
inverse of the pre-exponential factor τ0 and HQTM(i) is the level-crossing 
field closest to H. This model reproduces the effects of QTM, the most 
obvious of which are steps in the M vs H hysteresis curves, at the 
magnetic fields of the level crossings. These level-crossing positions are 
not theoretically calculated, but manually introduced at previously 
determined values. 

A B 

 
 

Figure 1. (A) The τ(T,H) function for an indicative set of parameters: Ueff = 200 K, bOrbach = 109 s−1, n = 5, 
bRaman = 10−6 s−1 K−5, m = 4, bDirect = 10−2 s−1 K−1 T−4, bQTM1 = 20 s−1, bQTM2 = 106 T−2, HQTM = [0, 0.5 T]. (B) The τ(2 K, 
Η) curve shows the relaxation time decrease due to QTM at the level-crossing fields of 0 and 0.5 T. 

Each of the terms can be further refined depending on the technique 
used and the system studied, e.g., to include the Ueff

3 dependence in the 
Orbach process [29], the Brons-van Vleck field-dependent correction in 
the Raman process [30], the coth dependence in the direct process, etc. 
However, for the purposes of the present study the above scheme is a 
useful basis of comparison, as it has been used to describe a large 
number of systems. Thus, the SMM evaluation tool takes as inputs the 
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eight kinetic parameters of the above equation, plus any number of 
additional HQTM fields. The resulting τ(T,H) function can be visualized as a 
surface. An indicative plot is given in Figure 1. 

Modeling of χΤ(T,H) 

A good approximation of the χΤ(T,H) function can be obtained from dc 
experiments. If fits to the dc data have been possible, then the χΤ(T,H) 
function can be parametrically reproduced for any point in the (T,H) 
space using the spin Hamiltonian parameters and tools such as Easyspin 
[31], Phi [32], MAGPACK [33] or other. Thus, χΤ(T,H) can be calculated for 
the temperature and magnetic field domains of the ac experiment, even if 
these are different from those of the dc experiment, which is usually the 
case. 

However, fits to the dc data may not have been possible, e.g., in the 
case of very large Hamiltonian matrices, or in the case of molecules with 
strong spin-orbit couplings that preclude the use of the spin Hamiltonian 
approach, thus complicating analysis. In that case, χΤ can be calculated 
for the T and H domains of the ac experiment by interpolation of the dc 
experimental data. This method is more restrictive than the parametric 
reproduction of the function; e.g., starting from χM vs T dc data, 
interpolations are valid, strictly speaking, for the H values under which 
these dc data were collected, and vice versa for the temperatures of the M 
vs H experiments. On the other hand it provides a useful and tractable 
alternative when parametric calculations are impossible (see below), or 
when they are possible but computationally expensive. 

Modeling of relaxation time distributions 

Several models have been developed to describe samples with 
distributions of their relaxation times, such as proposed by Cole and Cole 
[34] according to the generalised Debye model, by Davidson and Cole [35], 
and a more generalized form by Havriliak and Negami [36]. Although 
these were proposed to describe dielectric susceptibilities, they have 
found wide application in magnetic susceptibility studies. The current 
implementation of the tool considers the generalized Debye model 
proposed by Cole and Cole [34]:  

1

1 2(1 )
1 ( ( , )) sin( / 2)( , , ) ( ( , ) )

1 2( ( , )) sin( / 2) ( ( , ))S T S
T HT H T H

T H T H
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α α

ωτ παχ ω χ χ χ
ωτ πα ωτ

−

− −

+′ = + −
+ +  

(17) 

1

1 2(1 )
( ( , )) cos( / 2)( , , ) ( ( , ) )

1 2( ( , )) sin( / 2) ( ( , ))T S
T HT H T H

T H T H

α

α α

ωτ παχ ω χ χ
ωτ πα ωτ

−

− −
′′ = −

+ +  
(18) 

This distribution parametrization is very popular, especially as it 
allows for an analytical expression of the measurable quantities. 
However, the empirical parameter α is not directly related to any specific 
physical quantity or process. Thus, the more fundamental source of 
distributions in relaxation times is not addressed. 
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To do so, the tool implements distributions of the spin reversal barrier 
Ueff offering a choice between Gaussian, Lorentzian or Voigtian 
probability density functions. Indeed, it was shown by Weihe and 
coworkers [37], and subsequently by this author [38] and others [39] that 
the explicit consideration of distributions of fundamental spin 
Hamiltonian parameters is required to fully explain the shapes of 
Electron Paramagnetic Resonance spectra. With the Ueff barrier being the 
key parameter that defines whether a molecule functions as an SMM, and 
with enormous efforts having been made for its maximization over the 
past two decades [40–48], it is equally relevant to assess how distributions 
of its value are manifested in ac experiments. Indeed, the magnitude of 
Ueff is directly determined by structural parameters around metal ions 
through their effect on crystal-field or spin-Hamiltonian parameters. 
Since atomic positions of ligand atoms are subject to vibrational effects 
(quantified by the anisotropic displacement tensor elements Uij of the 
crystal structures), the resulting positional distributions should 
ultimately give rise to Ueff distributions. Since the SMM effect is 
essentially a relaxation over the Ueff barrier, it is critical to assess whether 
any distributions of that barrier have visible effects on the observed 
magnetic behaviours. Similar considerations are addressed by the 
CC-FIT2 program [49], which associates the Debye model distributions 
with a log-normal distribution of the relaxation times τ. 

For the hypothetical SMM whose τ(T,H) function is given in Figure 1, 
the distributions of the resulting relaxation times are shown in Figure 2 
under a magnetic field of 0.1 T. From that figure it is observed that 
normal distributions of Ueff result in lognormal distributions of τ, at the 
temperature ranges where the Orbach process is dominant. Indeed, in the 
plots on the left column, where τ is expressed in a linear scale, its 
distribution is non-symmetric, and becomes symmetric when it is plotted 
on a logarithmic scale (right column). Moreover, τ becomes distributed 
only at higher temperatures, where the Orbach process is dominant (see 
Figure 1A). At lower temperatures, where direct and Raman processes 
are dominant, τ is essentially monodisperse, as these processes are not 
influenced by Ueff (and its distributions). In other words, for the same σUeff, 
the width of resulting distribution of τ depends on the temperature (and 
magnetic field), as these parameters determine how dominant the 
Orbach process becomes. 

It is interesting to note that while the monodisperse curve τmono(T) 
closely follows the maxima (modes) of the distributions, the weighted 
average value τavg(T) diverges at higher temperatures (τavg(T) = 
Σ[τ(Ueff,T)⋅w(Ueff)], where w(Ueff) is the function of the weight distribution 
of Ueff, with Σw(Ueff) = 1). The effect becomes visible on the calculated ac 
susceptibility curves (see below).  

By implementing the generalized Debye model and actual Ueff 
distributions on the magnetic susceptibility curves calculated for the 
hypothetical SMM of our example, we can calculate the ac susceptibility 
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experiments at various temperatures, magnetic fields and frequencies 
and plot them as isothermal/isofield plots, either as χʹ,χʺ(f) or as χʺ(χʹ) (i.e., 
Argand or Cole-Cole plots). We can also plot them as isofrequency/isofield 
χʹ,χʺ(T) plots. In Figure 3 are shown all these alternative representations, 
for both distribution models and for two different sample types: a fully 
relaxing (χS/χT = 0) and one relaxing with 80% of its molecules (χS/χT = 0.2). 

 

Figure 2. Distribution of relaxation times of the hypothetical SMM at different temperatures 4–12 K, for a 
Gaussian distribution of Ueff (central value: 200 K). (A) For σUeff = 10 K (5% of Ueff) with a linear τ-axis.  
(B) For σUeff = 10 K (5% of Ueff) with a logarithmic τ-axis. (C) For σUeff = 50 K (25% of Ueff) with a linear τ-axis. 
(D) For σUeff = 50 K (25% of Ueff) with a logarithmic τ-axis. The black continuous line is the τ vs T curve of 
the monodisperse system. The black dashed line is the weighted average τ curve for the distributed system. 

It may be seen that for roughly comparable distributions, the Debye 
model yields far broader, but also more symmetrical, lognormal χʺ(f) 
peaks. The Gaussian Ueff distribution yields narrower peaks, but whose 
maximum is more shifted with respect to that of the monodisperse 
system. Similarly, the Argand plots are more compressed and symmetrical 
for the former model and more skewed for the latter, reminiscent of the 
respective plots according to the Cole-Davidson model [11].  

 

A B 

C D 
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A B 

  
C D 

  
E F 

  

Figure 3. Different representations of the effect of different distribution models on the hypothetical SMM 
for a fully and partially relaxing fraction (80%). (A, B) χMʹ (blue) and χMʺ (red) vs f plots for χS/χT = 0 (A) and 
χS/χT = 0.2 (B). (C, D) χMʺ vs χMʹ plots for χS/χT = 0 (C) and χS/χT = 0.2 (D). The black dashed semicircle indicates 
the fully-relaxing monodispersed system. (E, F) χMʹ (blue) and χMʺ (red) vs f plots for χS/χT = 0 (E) and χS/χT = 
0.2 (F). The very thick lines in A and E indicate the situation of an ideal, fully relaxing (ρ = 1), monodisperse 
system. Approximately comparable distributions were used, i.e., σUeff = 0.4·Ueff for the Gaussian 
distributions and α = 0.4 for the Debye distribution. The isothermal simulations are at 10 K and the 
isofrequency ones are at 100 Hz. The low-T tail in the out-of-phase signal due to the QTM contribution 
which is quenched in a 0.1 T field (see Supplementary Materials). 
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Similar observations may be made for the χʹ,χʺ(T) representation, 
though in this case an additional source of asymmetry is introduced: 
since τ = f(T), the temperature scan will modify the relaxation time at 
each point of the experiment leading to non-ideal out-of-phase peaks as the 
sample relaxes with the fastest process (smallest τ) at each temperature. 
For the above example, at zero field the Orbach process is dominant 
down to 17 K, but upon further cooling QTM takes over. Since τQTM is 
temperature-independent, τ remains constant below that temperature 
and relaxation is not blocked any further. However, the magnitudes of χʹ 
and χʺ are also a function of χT(T), which increases upon cooling. These 
tails are precisely due to that low-T increase of χT(T). 

If, however, QTM is suppressed, e.g., by the application of a magnetic 
field which lifts the degeneracy of the sublevels, τ may continue to grow 
as it will be dominated by other processes before QTM becomes 
dominant. In our example, a 0.1 T field causes the 
temperature-dependent Raman and Orbach processes to remain 
dominant down to 3 K, causing an increase of τ just as χT(T) increases 
upon cooling. Thus the effect of χT(T) is not observed and the low-T tails 
are suppressed (see Supplementary Materials). 

As may be observed, the decrease of the χʺ signal can be modeled with 
two assumptions: one of a low fraction of slowly relaxing molecules, and 
another which assumes a distribution of relaxation times. Indeed, both 
mechanisms predict a decrease of the maximum χʺ value, which raises 
the question as to which is the most relevant in a given case. As may be 
seen from the above simulations, any of the considered distribution 
schemes is associated with broadenings of the χʺ(f) and χʺ(T) peaks. On 
the contrary, a slowly relaxing fraction (χS/χT > 0) causes no such 
broadening and the line width in the χʺ(f) representation remains ΔfFWHM 
= 3 / πτ  (see above), e.g., a χʺ signal of half the ideal intensity could be 
explained either by assuming a ρ = 0.5 slowly relaxing fraction, or by a 
distribution parameter α ~ 0.41. In the former case the FWHM would be 
exactly that of a fully relaxing sample, whereas in the latter it would be 
almost 4 times larger. 

This observation provides a useful heuristic in selecting a model that 
reproduces weak χʺ signals: if such signals are broader than in the 
monodisperse system, a generalized distribution may be considered, 
whereas if they are only weaker in magnitude, only a low relaxing 
fraction (χS/χT > 0) is necessary. 

Modeling of M(H(t)) 

As mentioned above, Equation (15) needs to be solved at each point of 
the field-sweep experiment using the relevant Meq(T, H) and τ(T, H) 
parameters for that specific magnetic field. For any magnetic field 
increment ΔH = H(t + Δt) − H(t), the final magnetization M(T, H(t + Δt)) can 
be calculated by using the magnetization M(T, H(t)) as the initial 
condition of the differential equation. It is also considered that at time t = 
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0, at the initial magnetic field H(t = 0) = −Hmax, it holds that M(T, H(t = 0)) = 
−Meq(T, Hmax), i.e., at the beginning of the experiment the sample is at its 
equilibrium magnetization for the corresponding field and temperature. 

A numerical solution based on Euler’s method was tested by 
considering that the change in magnetization over the magnetic field 
increment ΔH will be ΔM = −(1/τ(T, H))⋅[M(T, H(t)) − Meq(T, H)]⋅Δt, where Δt 
= ΔH/κ, and that the magnetization after time Δt would be M(t + Δt) = M(t) 
+ ΔM. While this method yielded overall correct results, it was prone to 
produce discontinuities which, as previously noted [4], require additional 
treatment, such as smoothing. 

On the contrary, numerical solution using the Runger-Kutta method 
implemented by Matlab’s embedded solvers (ode45 in particular), 
consistently produced realistic curves without additional treatment. 
Although this adds a slightly higher computational overhead with respect 
to the previous method, the higher stability and accuracy it affords make 
it an uncontested choice for this application. 

Up till now, it is assumed that each interval ΔH of the ascending 
magnetic field is swept a rate κ = dH/dt common for all intervals, which is 
equivalent with assuming a constant field-sweep rate. It has been 
commented [50] that this numerical solution is applicable to methods 
that measure the magnetization continuously as the field is swept, such 
as with micro-SQUID or VSM magnetometers, in which case the 
experimental sweep rate coincides with the numerical one. The situation 
is distinctly different from conventional SQUID magnetometers, which 
require a field stabilization before a measurement is carried out. 

To simulate conventional SQUID experiments, still available in many 
labs, an experimental delay time δ is also considered, which corresponds 
to the duration of the process entailing magnetic field stabilization at its 
final value and the actual measurement. Thus, the initial condition to 
calculate the magnetization at M(T, H + ΔΗ) becomes Meq(T, H) + [M(T, 
H(t)) − Meq(T, H)]e−δ/τ(T,H), which accounts for an additional relaxation of 
the magnetization with a relaxation time τ(T,H) over time δ. Moreover, 
since such experiments are often carried out over inhomogeneous 
domains (more concentrated data appoints at low fields), to better 
account for real experimental protocols, SMM-ET can also consider field 
sweeps with non-equidistant data points. 

Simulations of the hypothetical SMM presented above reveal, as 
expected, steps at the level-crossing fields and a coalescence of the 
hysteresis loops to the equilibrium curve as ρ → 0 (Figure 4). Also, the 
increase of the delay time δ is clearly manifested as a narrowing of the 
hysteresis and a smoothening of the QTM-induced steps. 

The usefulness of this functionality extends to revealing relaxation 
characteristics that are not usually obvious from isothermal/isofrequency 
ac susceptibility experiments carried out at zero magnetic field, or at only 
a few magnetic fields (see below). 
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Figure 4. Magnetic hysteresis loops of the hypothetical DyIII SMM at 1.5 K, with the magnetic relaxation 
parameters of Figure 1 and an additional level crossing at 0.5 T. The loops are calculated for 150 points per 
branch at a scan rate of 0.1 T s−1. (A) Assuming an “on the fly” experiment typical of VSM or micro-SQUID 
devices. (B) Assuming a “stop and measure” experiment typical of conventional SQUID devices, with a 
measuring delay of 60 s per point. The various curves correspond to different slowly relaxing fractions. 

Examples of Real Systems 

In this section we will consider three SMM examples, characterized as 
“strong”, “medium” and “weak”, depending on the intensity of their 
out-of-phase signals. For the two former a parametric reproduction of the 
χT(T,H) curves was possible based on bibliographic crystal-field 
parameters (CFPs), whereas for the latter, the size of the system 
precluded any such calculation, allowing the demonstration of the 
interpolation method. 

Example 1: a “strong” DyIII SMM 

For this example we consider complex [(η5-Cp*)Dy(η5-CpiPr5)][B(C6F5)4] 
(1) [48], an organometallic double-decker SMM, characterized by a record 
magnetization reversal barrier of 2217 K. This complex exhibits 
discernible magnetic hysteresis up to ~80 K and strong out-of-phase 
signals. Fits to dc magnetization relaxation (2–82 K) and ac-susceptibility 
(83–138 K) experiments yielded magnetic relaxation parameters: Ueff = 
1541 cm−1 (2217 K), bOrbach = 1/4.2 × 10−12 s−1 = 2.4 × 1011 s−1, n = 3, bRaman = 
3.1 × 10−8 s−1 K−3, bDirect = 0, bQTM1 = 1/2.5 × 104 s−1 = 4.0 × 10−5 s−1, bQTM2 = 0. 
These reproduce very well the ac susceptibility experimental data in 
simulations carried out with the SMM evaluation tool, and are presented 
without further processing or refitting, unless otherwise stated. 

In Figure 5 are shown indicative simulations of the isofrequency data 
at 31.50 Hz, assuming fully (ρ = 1) and partially relaxing samples. These 
simulations confirm that this is a “strong” but not perfect SMM, with 
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~96.5% of the sample undergoing slow magnetic relaxation. As such they 
serve as control simulations of the SMM evaluation tool. 

 

Figure 5. χMʹ, χMʺ vs T experimental data for 1 at zero magnetic field and at a frequency of 31.50 Hz (red, 
blue open circles) and simulations (red, blue lines) based on the literature relaxation parameters. The 
black line is a parametrically calculated curve based on the CFPs, properly scaled to agree with the ac data. 
Black circles represent DC experimental data. The consideration of a 96.5% slowly relaxing fraction (χS/χT = 
0.035) accounts for the small tail of the in-phase signal below 100 K and is consistent with the values 
derived from fits to Argand plots. 

We also use this SMM to test the possibility to refine the magnetic 
relaxation parameters from field-sweep experiments. Field sweep “on the 
fly” experiments have been reported for this complex at 2 K and at 
various scan rates using a VSM magnetometer. Due to the large number 
of data points of that data set which preclude a full-matrix calculation of 
the equilibrium magnetization at each point, this study is ideal to present 
the use of interpolated such curves. Since M vs H dc studies were not 
reported for this complex [48], to illustrate this point, the respective data 
of a similar complex (complex 2 in that work) were used to create the 
interpolated curve.  

Using the above mentioned parameters in the simulation of the 
hysteresis curves, it is observed that the predicted loops are narrower 
that the experimental ones, whereas the step near zero field is not 
reproduced. Adding terms that are associated with field-dependent 
processes, it is possible to better approach the form of the hysteresis 
loops, in particular using bDirect 3.6 × 10−9 s−1 K−1 T−4 and bQTM2 = 106 T−2 
(Figure 6, see Equation (16) for the meaning of the terms). This 
improvement in the simulation of variable-field experiments is to be 
expected, since the originally reported kinetic parameters are extracted 
from static-field experiments (zero-field ac susceptibility), which contain 
less information regarding field-dependent processes. 
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Figure 6. Hysteresis loop of 1 at a scan rate of 100 G s−1 and simulations based on the literature relaxation 
parameters derived from ac susceptibility and magnetization relaxation data (red line) and on the 
additional consideration of bDirect = 3.5 × 10−9 s−1 K−1 T−4, bQTM2 = 106 T−2, HQTM = 0 (blue line). In the absence of 
M vs H dc data for this complex, the equilibrium magnetization curve Meq (○) was calculated from 
interpolation of a similar complex from the same work (complex 2 of reference [48]) to the domain of the 
field-sweep data (black line). 

Example 2: a “medium” DyIII SMM 

Complex [FeII
2DyIII

2(mepao)6(mepaoH)2(NCS)4] (2) [51] is a tetranuclear 
3d-4f SMM, containing two low-spin (S = 0) FeIII ions, leaving the DyIII ions 
as the only magnetic moment carriers of the complex. Analysis of its ac 
data has yielded kinetic parameters Ueff = 40 K, bOrbach = 1/2.6 × 10−8 s−1 = 
3.8 × 107 s−1, n = 3.03, bRaman = 0.05748 s−1 K−3.03, bDirect = 0, bQTM1 = 1/5.6 × 10−4 
s−1 = 1.8 × 103 s−1, bQTM2 = 0. 

This SMM is characterized by weak out-of-phase signals, which do not 
cross with the in-phase ones (Figure 7), an attribute characteristic of χS > 
0 (ρ < 1). Moreover, they exhibit a characteristic low-temperature tail, 
indicative of QTM becoming dominant at low temperatures (see above). 
An initial attempt to reproduce these data gave improved agreement 
when considering a value of χS/χT = 0.4 (ρ = 0.6), indicating a 60% of 
slowly relaxing fraction. Additional improvement was achieved by 
slightly modifying the value of the bQTM1 parameter from 5.6 × 10−4 to 4.0 × 
10−4 s−1. Of course, this may not be the only combination of kinetic 
parameters that similarly improves the agreement, but it was deemed 
preferable not to introduce additional relaxation mechanisms to the 
model. 
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Figure 7. Experimental ac data of 2 at 1 and 1488 Hz and simulations: 1 Hz, blue points/lines; 1488 Hz, red 
points/lines. The continuous lines correspond to a fully relaxing sample and the thin dashed lines to a 60% 
relaxing sample (χS/χT = 0.4). The thick dashed lines correspond to an optimized relaxation time assuming 
bQTM1 = 4.0 × 10−4 instead of 5.6 × 10−4 s−1. 

Example 3: a “weak” FeII
9 SMM 

Complex [Fe9(NCO)2(O2CMe)8{(2-py)2CO2}4] (3) is a ferromagnetic 
ferrous cluster previously reported by this author as one of the first 
ferrous SMMs [52]. It may be noted that the out-of-phase signals are weak, 
although they are quite sharp and distinctive. This strongly points toward 
a low fraction of slowly relaxing molecules rather than a distribution of 
relaxation times. Thus, this molecule is an excellent candidate for a 
quantitative treatment of its ac susceptibility data. 

In implementing the previously outlined methodology, it quickly 
becomes clear that the mere size of the full spin Hamiltonian matrix of 3 
[(2 × 2 + 1)9 = 1,953,125] precludes any possibility for a parametric 
calculation of its dc magnetic susceptibility curve. For the high-T 
susceptibility of the azido analogue of 3 the Kambe vector coupling 
scheme has been used, facilitated by the fortuitous symmetry of the 
molecule [53]. However, this calculation fails to account for the low-T 
region, governed by single-ion zfs, and at which slow magnetic relaxation 
occurs. Thus, this system is doubly instructive, as its treatment illustrates 
the interpolative reproduction of the dc susceptibility curve for the 
quantitative calculation of ac susceptibilities. 

For this calculation, the 1 kG dc data were used to construct an 
approximation of the low-T χT(T) function. Actually, this curve agrees 
quite well with the high-T part of the zero-field χʹM signal (Figure 8) 
lending credence to the subsequent treatment. Using the parameters 
from the Orbach relaxation mechanism, the position of the χʺM peak is 
nicely reproduced, whereas its magnitude is seriously overestimated. At 
the same time, the calculated magnitude of χʹM (shown in the figure as 
χʹMT) predicts a sharp drop not observed in the experimental data. By 
introducing an adiabatic susceptibility such that χS/χT = 0.8 (20% slowly 
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relaxing fraction) the magnitudes of the calculated in- and out-of-phase 
components nicely reproduce those of the experimental ones. Some 
additional improvement is also possible by assuming a weak distribution 
of the relaxation times, either as an empirical Debye parameter (α = 0.1) 
or as a Gaussian distribution of the magnetic reversal barried (σUeff = 
0.1Ueff). In either case, attempts to entirely account for the weak 
out-of-phase signal using a distribution model produce unrealistically 
broad curves. As the signal is weak but also quite narrow, a low slowly 
relaxing fraction is suited to account for its small magnitude, without 
introducing extreme broadenings. 

A B 

  

Figure 8. Experimental χMʹT vs T (top) and χMʺ vs T (bottom) ac data of 3 under a 1000 Hz oscillating field 
and their simulations according to different models. (A,B) Dashed green line (– –): fully relaxing sample 
with a unique relaxation time. Dashed blue line (– –): low relaxing fraction (20%) with a unique relaxation 
time. (A) Dashed red line (– –): fully relaxing sample with a large Debye distribution (α = 0.8) to account for 
the low χMʺ signal. Thick blue line (––): low relaxing fraction (20%) with is a small Debye distribution (α = 
0.1). (B) Dashed red line (– –): fully relaxing sample with a large Ueff distribution (σUeff = Ueff = 44 Κ) to 
account for the low χMʺ signal. Thick blue line (––): low relaxing fraction (20%) with is a small Ueff 
distribution (σUeff = Ueff/10 = 4.4 Κ). The insets are enlargements of the out-of-phase signals. 

IMPLEMENTATION 

In order to benefit from additional functionality, the tool has been 
written in Matlab and can make use of Easyspin’s curry function to 
parametrically calculate dc susceptibilities and magnetizations. However, 
any experimental dataset or any calculated curve generated by Phi or 
any other program can also be used instead. In that case though, care 
must be taken in defining the T and H domains so that they overlap with 
those of the ac/hysteresis data to be simulated by the tool. SMM-ET will 
then create new dc datasets through interpolation with Matlab’s cubic 
spline function. This capability may also be useful when a parametric 
calculation is possible but computationally expensive. 
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In its current version, SMM-ET is available as a Matlab executable 
(SMM_ET.p) which requires a Matlab working environment to run, as 
well as Easyspin if curry is to be invoked. The parameters of the SMM and 
of the experiments to be simulated are given in a required text file 
(SMM_params.dat) that must be present in the executable’s path. If the dc 
properties of the SMM are to be parametrically simulated, the spin 
system has to be defined in Easyspin format using “Sys” as structure 
name (Sys.g, Sys.D, etc.), with the structure saved as a Matlab file 
(SMM_Sys.mat). 

Experimental dc data (or curves calculated with other software, e.g., 
Phi) need to be provided as ascii files (chi_vs_T_dc.dat and 
M_vs_H_dc.dat). These are optional, but if they are present in the 
executable path they will override the Easyspin calculation. It should be 
noted that just one of those may be provided and only the respective 
calculation (χM vs T or M vs H) will be overridden. In addition, magnetic 
hysteresis simulations can be carried out for experiments with 
non-equidistant data points. In that case, and assuming that the 
ascending and descending branches are symmetrical, an ascii file with 
the experimental field positions of only the ascending branch, i.e., from 
−Hmax to +Hmax can be supplied (M_vs_H_sweep.dat). This file only needs 
to contain the magnetic field positions (not the magnetizations). If 
present, it will override the magnetic field domain given in 
SMM_params.dat. 

In its current version, SMM-ET outputs the calculated curves in a 
series of self-explanatory figures. The data of each curve will appear on 
the workspace under self-explanatory names. However, users can also 
extract the data from the figures using the Matlab command line. 

More detailed instructions and the tool executable (along with a 
sample parameter file) are provided at http://chiralqubit.eu/ 
SMM-evaluator-tool. Alongside, are included indicative files of χM vs T 
and M vs H experimental data [48] of DyIII SMMs. 

DISCUSSION 

The quantitative analysis of the ac susceptibilities presented above 
illustrates the additional amount of information available from 
isothermal and isofrequency ac experiments. In particular, an important 
parameter that is rarely addressed is the absolute intensity of the 
out-of-phase signals and its relation to the slowly relaxing fraction of the 
sample. Even if distributions of the relaxation times have been properly 
considered for the slowly relaxing fraction, they cannot by themselves 
account for very weak out-of-phase signals. Indeed, the characteristic 
examples of a “medium” SMM (complex 2, 60% slowly relaxing fraction) 
and a “weak” SMM (complex 3, 20% slowly relaxing fraction) oblige us to 
address the fundamental reasons behind such low fractions of slowly 
relaxing samples. 

Quantum Mater Res. 2020;1:e200004. https://doi.org/10.20900/qmr20200004 

https://doi.org/10.20900/qmr20200004
http://chiralqubit.eu/%0bSMM-evaluator-tool
http://chiralqubit.eu/%0bSMM-evaluator-tool


 
Quantum Materials Research 20 of 25 

Looking toward an intramolecular mechanism to account for this, in 
particular Orbach relaxation over the spin reversal barrier Ueff, models 
assuming even unrealistically broad distributions were clearly shown to 
be inadequate in explaining such experimental signatures. Also staying 
within the intramolecular context, QTM cannot fully account for such a 
situation either. Indeed, low out-of-phase signals can still be the case even 
under dc magnetic fields aimed at suppressing QTM [54–58].  

It is therefore clear that we need to look beyond the Orbach and QTM 
processes. Indeed, it has been pointed out that when any process 
becomes too slow at a particular temperature and magnetic field, 
relaxation will simply occur through another mechanism which is faster 
at these conditions. Intermolecular pathways involving vibronic degrees 
of freedom and coupling to the environment through the phonon bath 
(and eventually the conducting electron bath of metallic substrates) need 
to be accounted for to reproduce the full relaxation profiles of SMMs [59].  

To obtain information on such processes based on bulk ac 
susceptometry data of pure samples, it is noted here that χS should be 
viewed as a statistical parameter which characterizes the sample as a 
whole. In the context of pure bulk samples, it so happens that the 
molecule is also its own environment, in the sense that each molecule 
neighbors identical, or almost identical molecules; so χS could be loosely 
considered to characterize the molecule, but only for a particular crystal 
form. However, when we consider SMM samples in drastically different 
environments, e.g., surface-deposited molecules, this analogy would be 
more tenuous. In such a case, χS might eventually be used to describe the 
system of a single molecule and its environment, although it is more 
probable that the development of another theoretical framework would 
be required. 

Recently, it was discovered that the magnetization of SMMs is better 
stabilized when they are deposited on insulating substrates with low 
phonon density of states (e.g., MgO) than when deposited on metallic 
surfaces; actually, such samples are better stabilized even with respect to 
the pure bulk samples. It was found that this stabilization is related to the 
more efficient blocking of phonon-induced relaxation pathways [4,60]. 
Such realizations reinforce the understanding that the environment of 
SMMs is not innocent in determining their magnetic relaxation, which 
means that molecular engineering needs to address this reality, in 
addition to targeting the maximization of the magnetization reversal 
barrier. 

The quantitative study of ac magnetic data such as described here 
could provide us with additional information on such processes, in a way 
which is simple, cost effective, and easy to apply routinely on a large 
number of samples. Of course, this information would need to be 
complemented by theoretical calculations and dedicated studies for a 
better understanding of the behavior of specific molecules. However, 
taken over large sample numbers it could provide just as valuable 
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conclusions as these more laborious and costly studies, in the way that 
large datasets of magnetic exchange couplings helped magnetochemists 
set the basis for an empirical understanding of magnetostructural 
correlations. 

SUPPLEMENTARY MATERIALS 

The following supplementary materials are available online at 
https://doi.org/10.20900/qmr20200004, Figure S1: Distributions of 
relaxation times under a 0.1 T magnetic field which suppresses QTM, 
Figure S2: Effect of different distribution models on the hypothetical 
SMM for a fully and partially relaxing fraction (80%) under a 0.1 T field 
which suppresses QTM; and a Zip file with program executable and 
sample parameter files. 
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