
FKBP5 gene

JPBS  2016,1(5);2 | Email:jpbs@qingres.com                                                                                                    December 25, 2016 1

JPBS

DOI: 10.20900/jpbs.20160020

Received: September 15, 2016

Accepted: November  12, 2016

Published: December 25, 2016

Copyright: ©2016 Cain et al. This is an 
open access article distributed under 
the terms of the Creative Commons 
Attribution License,which permits 
unrestricted use, distribution, and 
reproduction in any medium, provided 
the original author and source are 
credited.

A Possible Role for the FKBP5 
Gene in Schizophrenia

Qing Gao1, Zhe Li1, Paul Jones2, Guyu Zhang3*

1 The Mental Health Center and the Psychiatric Laboratory, West China 
Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; 
2 Department of Biology Products, American Informatics Consultant LLC, 
Rockville, MD, 20852, USA; 
3 Spark Energy LLC, Houston, TX 77253, USA.

First Author: Qing Gao, The Mental Health Center and the Psychiatric 
Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 
610041, China.

Joint First Author: Zhe Li, The Mental Health Center and the Psychiatric 
Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 
610041, China.

*Corresponding Author: Guyu Zhang, Spark Energy LLC, Houston, TX, 
77253, USA; gzhang@sparkenergy.com.  Tel:225-304-1636.

ABSTRACT
Background: Recently, several studies reported possible association 
between gene FKBP5 and schizophrenia (SCZ). Their results 
suggested that FKBP5 may link to stress and cognition in case of SCZ, 
which warranted further study in the field. 

Method: In this study, we performed a systematical literature review, 
focusing on FKBP5--brain region association studies and brain region--
SCZ relations, with the purpose of identifying potential FKBP5 → brain 
→ SCZ pathogenic pathways. 

Results: We identified over 1,500 references supporting the relation of 
four common brain regions that related to both FKBP5 and SCZ. These 
brain regions include hypothalamus, hippocampus, prefrontal cortex, 
amygdaloid. Analysis showed that FKBP5 affects the structure and 
function of these four brain regions with different mechanisms, which 
may in turn influence the pathogenesis of SCZ. 

Conclusion: Our results support the hypothesis that FKBP5 
present linkage to the development of SCZ, which help to gain 
better understanding of the underlying FKBP5 → SCZ association 
mechanism. 

Keywords: FKBP5; Schizophrenia; hypothalamus; hippocampus; 
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1 INTRODUCTION
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Schizophrenia (SCZ) is one of the most chronically 
disabling psychiatric illnesses with a global median 
lifetime morbid risk of 7.2/1000 persons [1]. Early 
manifestations of the illness often appear in mid 
to late adolescence, with clinical onset typically 
following 2-5 years later. In clinical settings the 
disorder is identified through the presence of 
impairments across several clusters of symptoms, 
namely positive, negative, and cognitive symptoms, 
disorganization, altered mood and motor symptoms. 
Although etiology of SCZ remains unclear, recent 
neuroimaging studies provide compelling evidence 
of abnormalities of cerebral structure and function 
in patients with SCZ [2-4]. For instance, reductions in 
the volume of the hippocampus and the amygdala 
are consistent findings in imaging studies of SCZ [5], 
while enlarged hypothalamic volumes in SCZ have 
also been identified [6]. Moreover, SCZ patients tend 
to present functional dysconnectivity within/between 
several brain regions, including prefrontal cortex, 
hypothalamus, hippocampus, and amygdaloid[6-10]. 
These studies suggest that the genes linked to 
functional or structural changes of these SCZ-related 
brain regions are worthy of further study.

The protein encoded by gene FKBP5 is a 
member of the immunophilin protein family, playing 
roles in immunoregulation and basic cellular 
processes involving protein folding and trafficking. 
This gene is a key molecule in the stress response 
and the pathophysiology of psychiatric symptoms. 
Studies showed that FKBP5 plays a role as a 
glucocorticoid receptor (GR) regulator, influencing 
the GR binding and translocation by binding and 
initiating intracellular feedback on the GR system [11]. 
FKBP5 inhibits the function of GRs, which regulate 
adrenocortical secretion of glucocorticoids during 
stress-induced Hypothalamic pituitary adrenal 
(HPA) axis activity. The activation of the HPA axis is 
controlled through a negative feedback mechanism -- 
by the activation of GRs at different levels of FKBP5 
[12,13]. Under the pathological conditions, the function 
of the HPA axis is disrupted, and this may eventually 
lead to structural and functional changes in brain 
regions [14,15].

The HPA-axis-regulation function of FKBP5 has 
been confirmed later by other studies, which were 
observed within many brain regions [12]. It has been 
demonstrated that HPA axis is directly involved in 
inducing mood behavior after chronic social defeat 
stress [16]. These findings explain the results from 
some other genetic studies that linked FKBP5 
with posttraumatic stress disorder, depression an
d anxiety [17-19]. For instance, Yehuda et al. found 
that the single nucleotide polymorphisms (SNPs) in 
FKBP5 interacts with childhood trauma and could be 

used to predict severity of adult posttraumatic stress 
disorder (PTSD) [18]. 

On the other hand, HPA axis dysregulation is 
suggested as one of the possible mechanisms 
related to the vulnerability-stress model of SCZ [20], 
posing a functional linkage between FKBP5 and 
SCZ. As a matter of fact, several recently studies 
reported possible association between the genetic 
changes of FKBP5 with the stress and cognition in 
case of SCZ [20-22]. However, further studies are need 
on exploring the functional mechanisms of FKBP5 
that affect the pathogenic development of SCZ. 

In this study, we conducted a systematically 
review on the association between FKBP5 and the 
brain regions, abnormalities of which are related 
to SCZ. Our study identified four potential FKBP5 
→ brain regions → SCZ pathogenic pathways 
through which FKBP5 influence the symptoms and 
development of SCZ.

2 MATERIALS AND METHODS
The l i terature reference selection cri teria is 
described as follows. We searched the whole 
PubMed abstracts and approximately 4M+ Elsevier 
full journal papers, looking for two groups of papers: 
first, papers describing relationships between 
FKBP5 and its related brain regions; second, papers 
reporting SCZ related brain regions. There are 20 
brain regions demonstrated functionally relation 
with FKBP5, and 134 brain regions related to 
schizophrenia. Then, we further selected the ones 
from these references that contain brain regions 
associated with both FKBP5 and SCZ. We identified 
four brain regions that demonstrate upstream 
regulations with FKBP5 (FKBP5 →Brain Regions), 
meanwhile downstream regulation with SCZ (Brain 
Region → SCZ). After manually inspection, we 
finally picked up 1,561 references and present them 
in Supplementary Data, including the titles and 
related sentences where these FKBP5-gene or SCZ-
gene were identified. These references include 129 
papers reporting relationships between FKBP5 and 
4 brain regions (i.g., hypothalamus, Hippocampus, 
prefrontal cortex, amygdaloid). Also included are 
three references claim direct linkage between SCZ 
and FKBP5. The rest 1,428 references are these 
supported relationships between SCZ and the four 
brain regions mentioned above. Our study identified 
four gene → brain → disease pathogenic pathways, 
as shown in Fig 1 The detailed description of the 
construction of these pathways are presented in the 
following sections. 
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2.1 FKBP5 → brain region pathways 
regulating SCZ
In this section, we present the detailed discussion 
on four potential FKBP5 → brain → SCZ pathogenic 
pathways. These pathways may contribute to 
a better understanding of the mechanisms of 
how FKBP5 could play roles in the pathogenic 
development of SCZ. The four brain regions involved 
in the discussion are hypothalamus, hippocampus, 
prefrontal cortex, amygdaloid. All these brain regions 
demonstrated strong association with SCZ, both 
functionally and structurally. 

2.2 FKBP5- Hippocampus-SCZ
Hippocampus is  a major  component  of  the 
brains regions of humans and other vertebrates, 
which is densely populated with glucocorticoid 
receptors (GRs) [23]. Studies showed that persistent 
dysregulation of GR subcellular distribution is 
predicted to damage the hippocampal formation [24]. 
Highly expressed in the hippocampus, FKBP5 has 
been shown to regulate the steroid receptor function, 
including progesterone, androgen, and GRs [11]. 
By altering GR sensitivities, FKBP5 influences 
the function and morphology of hippocampal [25]. 
It has been identified that FKBP5 expression in 
hippocampus is also linked to reduced short term 
memory [26], altered cortisol negative feedback [27] and 
chronic mild stress (CMS) [28]. 

On the other hand, studies indicated that 
functional abnormalities in the hippocampus, as 
well as hippocampal volume reductions may be 
a vulnerability marker for SCZ [10,29-32]. Therefore, 
structural deficits or dysfunction in the hippocampus 
resulted from the alteration of FKBP5 expression 
and GRs could build up a possible FKBP5 → 
Hippocampus → SCZ pathway linking FKBP5 to 
SCZ.

2.3 FKBP5-hypothalamus-SCZ pathway
Hypothalamus is a port ion of the brain that 
contains a number of small nuclei with a variety of 
functions. One of the most important functions is 
to link the nervous system to the endocrine system 
via the pituitary gland (hypophysis). FKBP5 has 
been suggested as one of the key modulators of 
hypothalamic pituitary adrenal axis (HPA axis) [33-

35], which controls reactions to stress and regulates 
many body processes,  inc luding d igest ion, 
the immune system, mood, emotions, sexuality, 
energy storage and expenditure. The activation 
of the HPA axis is controlled through a negative 
feedback mechanism, by the activation of GRs at 
different levels of FKBP5 [12,13]. For example, Albu et 
al. found that FKBP5 plays an important regulatory 
role in the HPA axis necessary for stress adaptation 
and recovery [33].  Fujii et al. also suggested that 
FKBP5 variant (rs1360780) regulates HPA axis 

Fig. 1 Possible FKBP5 → brain → SCZ pathogenic pathways identified through systematic literature review.
The four brain regions were highlighted in green.
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reactivity and expression levels of GR [34], which 
regulate adrenocortical secretion of glucocorticoids 
during stress-induced HPA axis activity. Other 
s tud ies  shown that  chron ic  t reatment  w i th 
corticosterone mediates behavioral changes caused 
by stress possible through increasing FKBP5 mRNA 
expression [36] and altering FKBP5 methylation in 
the hypothalamus [37]. Animal models of stress also 
highlighted a role for FKBP5 in mediating coping 
behaviors to stress and in the mediation of stress 
effects [38-40]. 

Both functional and structural changes of 
hypothalamic have been l inked to SCZ. For 
example, abnormalities in HPA axis has been found 
to play a role in the clinical manifestation of SCZ [41]. 
Enlarged hypothalamic volumes in schizophrenia 
were found SCZ patients compared to controls 
[6]. These findings suggest a HPA axis regulation 
based FKBP5 → hypothalamic → SCZ pathogenic 
pathway. 

2.4 FKBP5- prefrontal cortex-SCZ
Prefrontal cortex covers the front part of the frontal 
lobe. This brain region has been implicated in 
planning complex cognitive behavior, personality 
expression, decision making, and moderating 
social behavior[42]. Both functional and/or structural 
abnormality of prefrontal cortex could lead to 
SCZ like performance in neural networks, and 
may account for pathological working memory 
in the disorder. The aberrant changes within 
prefrontal cortex linked to SCZ include: alterations 
in information processing in prefrontal cortex[43], a 
reduction of prefrontal cortical hubs[44], abnormal 
dopamine release within the brain region [45,46], the 
neural circuitry abnormality [47], and reduced dendritic 
volume of prefrontal cortical neurons [5]. Moreover, 
many studies noted that connectivity of the prefrontal 
cortex is reduced in schizophrenia, particularly for 
intra-prefrontal cortex connectivity [8,9]. 

Meanwhile, studies showed that FKBP5 is 
associated with both functional changes and 
physical alterations of prefrontal cortex. For example, 
decreased FKBP5 expression[48] and disrupted GR-
mediated signaling pathway along with HPA axis 
hyperactivity resulted in neuronal atrophy in the 
dorsolateral (dl) - and dorsomedial (dm) - prefrontal 
cortex and subsequent mood-related behavior 
alterations[49]. Wei et al. found that exposure to 
chronic mild stress led to a markedly upregulated 
FKBP5 protein expression in the prefrontal cortex 
[50]. Further, deletion of FKBP51 has been suggested 
to play a role in preventing stress-induced prefrontal 
cortical synapsin loss [21]. All these studies provided 

evidence for the functional and structural regulation 
relationship between FKBP5 and prefrontal cortex, 
supporting a potential FKBP5 → prefrontal cortex 
→ SCZ pathogenic pathway. As a matter of fact, 
Basta-Kaim et al. confirmed that decreased activity 
of FKBP5 in the frontal cortex result in the HPA axis 
hyperactivity via altering GR function in SCZ [51].

2.5 FKBP5- Amygdala-SCZ

The amygdala are two almond-shaped groups of 
nuclei located deep and medially within the temporal 
lobes of the brain, the primary role of which is in 
the processing of memory, decision-making, and 
emotional reactions. Functional and structural 
abnormalities of amygdala have been linked to SCZ 
emotion related symptoms. Some studies concluded 
that reduced amygdala activation[52] or implicate 
aberrant amygdala activity[53,54] may underlie deficits 
in emotion recognition in schizophrenia, which 
support the involvement of amygdala activation in 
the positive symptoms of schizophrenia. In addition, 
patients suffering from SCZ present reduced 
volumes of the amygdala, which is partially caused 
by the decreases in the number of synapses[55].

FKBP5 has been linked to emotional, memorial 
and learning behaviors via regulation within 
amygdala. For example, Attwood et al. observed that 
overexpressed FKBP5 in the amygdala has a direct 
anxiogenic effects [56]. Hadamitzky et al. showed in an 
animal model that, increased neuronal activities as 
well as overexpression of FKBP51 in the amygdala 
seem to trigger anxiety-like behavior in naive rats[57]. 
Moreover, in a drug treatment study, Sawamura 
et al. reported that dexamethasone treatment was 
associated with reduced FKBP5 mRNA expression 
in the amygdala after extinction learning and 
retention[58]. Considering the pivotal role of the 
amygdala in mood regulation, associative learning, 
and modulation of cognitive functions, alteration 
of FKBP5 gene expression in the amygdala may 
contribute differentially to these abnormalities. 
Integrating these discussions, a FKBP5 → Amygdala 
→ SCZ pathogenic pathway seems reasonable. 

3 CONCLUSION

SCZ is a complex mental health disorder, whose 
pathophysiology is linked to structural abnormalities 
and functional deficits of many brain regions. Results 
from this systematic review showed that, FKBP5, 
a protein of the immunophilin family, plays roles 
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within multiple brain regions that are linked to SCZ. 
Dysfunction of FKBP5 could lead to functional and/
or structural changes of these brain regions, namely 
hypothalamus, Hippocampus, prefrontal cortex, 
Amygdaloid. The variance of these brain regions 
in turn will influence SCZ relation brain functions, 
including GR-responsive pathways and HPA axis 
activities, mood, emotion, memory and learning 
related behavioral alterations. Our study built up 
multiple potential FKBP5 → brain → SZC pathways 
as possible causal regulating tunnels, through which 
FKBP5 influence the pathogenesis of SCZ. Results 
from this study help to understand the mechanisms 
underlying FKBP5 → SCZ association. 
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