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ABSTRACT
Objective: Genetic, epigenetic, and environmental factors such as 
infections have been proposed as potential causes of autism spectrum 
disorder (ASD). Searching for the molecular mechanism by which 
infections might contribute to the etiopathogenesis of ASD, we analyze 
here the hypothesis that immune responses to infectious agents may 
cross-react with human proteins that, when altered, relate to autistic 
neurodevelopmental spectrum disorders. 

Methods: Viral and human proteins were analyzed for peptide sharing 
using the Pir Peptide Match resource. 

Results: We find that: (i) an intense peptide overlap occurs between 
ASD–related viruses and ASD–related human proteins, and might 
underlie cross-reactivity scenarios following viral infections; (ii) 
viral peptide sharing also occurs with Y-linked proteins, in this way 
highlighting an additional potential cross-reactivity burden that would 
involve male subjects only; (iii) many shared peptides are also part of 
epitopes experimentally validated as immunopositive in the human host. 

Conclusion: This study offers a cohesive set of data that suggests a 
contribution of immune cross-reactivity to the genesis of ASD.

Keywords: autism spectrum disorders; viral infections; peptide cross-
reactivity; autism-related proteins; Y-linked proteins

1 INTRODUCTION 
There is a clinical and epidemiological consensus that infections may 
be causally involved in the neurodevelopmental and behavioural 
disturbances that characterize ASD [1–6]. Specifically, a main role in 
the pathophysiology of ASD has been repeatedly suggested for the 
activation of the immune system against the infectious agents [7–21] 

rather than to viral/microbial activities per se, such as, for example, 

https://jpbs.hapres.com
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subversion of the host protein synthesis machinery [22], 
manipulation of membrane transport pathways [23], and 
up-regulation of HLA-E expression with, consequently, 
suppression of NK cell recognition [24–26].

However, how the immune system may be 
involved in ASD remains undetermined. The issue is 
further complicated by the fact that ASD are biased 
towards males, with ratios of 4:1 or higher [27–29], 
so that analyses of or hypotheses on ASD have to 
contemplate the male bias.

During last decades, in an attempt to further 
our understanding of infection-induced diseases, we 
analyzed sequence identities between viruses and 
humans [30,31]. We pursued the hypothesis that peptide 
commonality between microbial and human proteins 
might have the potential to trigger cross-reactions 
in the human host during infection, thus inducing 
autoimmune pathologic sequelae [30–37]. Here, we 
test such a hypothesis by analyzing viral pathogens 
that have been related to ASD [38–51]—namely Borna 
disease virus, Rubella virus, Measles virus, Influenza 
A virus, and Mumps virus—and searching for amino 
acid (aa) sequences common to (i) human proteins 
that, when altered, have been associated with 
autistic disorders, and (ii) proteins expressed by 
Y-linked genes.

2 MeThODS
The viral proteomes analyzed in the present study 
are as follows, in order of aa length and with 
abbreviations, Taxonomy ID, number of proteins, and 
number of aa in parentheses: Parvovirus B19 ( B19; 
10798, 3 proteins, 2006 aa); Borna disease virus 
(BDV; 928296; 6 proteins; 3014 aa); Rubella virus 
(RUBV; 11041; 2 proteins; 3179 aa); Measles virus 
(MeV; 11235; 7 proteins; 4680 aa); Influenza A virus, 
H1N1 (211044; 13 proteins; 4788 aa); Mumps virus 
(MuV; 11171; 8 proteins; 4977 aa). Proteomes are 
described in detail at http://www.uniprot.org [52]. 

The primary sequence of viral proteins was 
dissected into hexapeptides overlapped by five residues 
each other. For example, BDV Envelope glycoprotein 
p57 (UniProt: P52638; 503 aa) was sequentially 
dissected into MQPSMS, QPSMSF, PSMSFL, SMSFLI, 
and so forth until its last hexapeptide LGRWQE, for a 
total of 498 hexapeptides. Then, each viral hexamer 
was probed for occurrences within human proteins 
characterized by being related to ASD or encoded by 
Y-linked genes. 

A set of 138 ASD-related human proteins was 
randomly retrieved from UniProt database and 
NCBI (https://www.ncbi.nlm.nih.gov/gene) using 

‘autism’ and ‘autistic’ as keywords and consisted of 
138 proteins listed in Table S1. A set of 44 proteins 
expressed by Y-linked genes was assembled using 
data from Skaletsky et al. [53] and UniProt database, 
and are listed in Table S2. Proteins are indicated by 
UniProt entry and names.

The immunological potential of the peptide 
matching was analyzed using the Immune Epitope 
Database (IEDB; www.iedb.org) database [54]. Only 
epitopes that had been experimentally validated as 
immunopositive in the human host were considered. 
Data on brain protein expression were retrieved from 
https://www.proteinatlas.org/humanproteome [55,56].

3 ReSULTS AND DISCUSSION
We selected and analyzed five proteomes belonging 
to infectious agents that have been reported as 
related to or concomitant with ASD. That is, BDV 

[38–40], RUBV [41–46], MeV [41,47,48], Influenza A virus [49–51], 
MuV [41]. As a control, we used Parvovirus B19. B19 
is the etiological agent of the infantile fifth disease, 
preferentially targets the erythroblasts in the bone, 
and does not appear to be related to ASD [57]. 

Hexapeptides were used as operational minimal 
immune determinants in light of a vast scientific literature 
that documents the crucial roles exerted by peptides          
5–6 aa long in immunogenicity and antigenicity [58–85].

3.1 hexapeptide sharing between B19, 
BDV, RUBV, MeV, influenza A virus, and 
MuV proteomes, and human proteins 
related to ASD
Table 1 quantitatively describes the hexapeptide 
sharing between B19, BDV, RUBV, MeV, Influenza 
A virus, and MuV, and the set of the 138 human 
proteins related to autism (see Table S1). It can be 
seen that all of the analyzed viruses share hexamers 
with human proteins related to ASD. Even if at a 
lesser extent, the peptide commonality also involves 
the control B19 virus. 

Qualitatively, the viral hexapeptide distribution 
among the ASD-related proteins is described in 
Table 2. At first glance, space does not permit a 
match-by-match discussion of the vast peptide 
sharing illustrated in Tables 1 and 2. In synthesis, 
three main points emerge. Firstly, 96 hexapeptides 
belonging to the 6 analyzed viral pathogens also 
occur in 76 out of 138 human proteins associated 
with ASD, in this way indicating a non-stochastical 
clustering of peptide matches in 55% of the analyzed 
human proteins. 
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Table 1. Quantitation of the Hexapeptide Sharing between B19, BDV, RUBV, MeV, Influenza A Virus, 
and MuV Proteomes and ASD-Related Proteins.

Virus 1 Number of Shared hexapeptides Number of ASD-Related Proteins Involved 
in the Sharing

B19 12 10
BDV 19 16
RUBV 28 28

MeV 32 26

Influenza A virus 18 18

MuV 33 28
1 Viruses described under Methods and listed according to aa length.

Table 2. Hexapeptide Sharing between B19, BDV, RUBV, MeV, Influenza A Virus, and MuV Proteomes 
and ASD-Related human Proteins.

Virus Shared Peptides 1 human Protein Related to ASD 2

B19 LSSSSS ANK3. Ankyrin-3
ALSSSSS; GAGGGG ARI1B. AT-rich interactive domain-containing protein 1B
PGLNPR CTTB2. Cortactin-binding protein 2
GLQSFV HUWE1. E3 ubiquitin-protein ligase HUWE1
AGPPQS MAGA4. Melanoma-associated antigen 4

IQILKD NAC2. Sodium/calcium exchanger 2 

GESFVG NHS. Nance-Horan syndrome protein 
SSTPIP POGZ. Pogo transposable element with ZNF domain
GAGGGG PPR3F. Protein phosphatase 1 regulatory subunit 3F

SSVASKL SCN2A. Sodium channel protein type 2 subunit alpha

BDV VNVTFM AGRG2. Adhesion G-protein coupled receptor G2 

VELETP ANK3. Ankyrin-3
LEDEED ARX. Homeobox protein ARX
ADLDMD; SLLIGV CHD8. Chromodomain-helicase-DNA-binding protein 8

IQGLLD CUL3. Cullin-3

SVGVKP HDAC4. Histone deacetylase 4
HSYVEL HNRH2. Heterogeneous nuclear ribonucleoprotein H2
FHASLL K1210. Acrosomal protein KIAA1210

RLTVLVP KIRR3. Kin of IRRE-like protein 3 

DPDFND; LLKKLL MARK1. Serine/threonine-protein kinase MARK1
EVSFCL NPRL3. GATOR complex protein NPRL3
AKLVLL S12A5. Solute carrier family 12 member 5
TSSHSS SETD2. Histone-lysine N-methyltransferase SETD2
HLPALT; LKSSSL SHAN3. SH3 and multiple ankyrin repeat domains protein 3
LKSSSL TSC2. Tuberin

GPDAGP V1AR. Vasopressin V1a receptor
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Virus Shared Peptides 1 human Protein Related to ASD 2

RUBV DANAVT ANK3. Ankyrin-3
QQVALL ANR11. Ankyrin repeat domain-containing protein 11
QQPQPP ARI1B. AT-rich interactive domain-containing protein 1B
RPRPPR AUTS2. Autism susceptibility gene 2 protein
ASCPAG BICC1. Protein bicaudal C homolog 1
eDYRALR CCD22. Coiled-coil domain-containing protein 22
RGGSAP CTND2. Catenin delta-2
EALRAR CTTB2. Cortactin-binding protein 2
AVTAAV DEPD5. GATOR complex protein DEPDC5
AVGGGP DMPK. Myotonin-protein kinase
LRELGS ERBB2. Receptor tyrosine-protein kinase erbB-2
AEVRPP FOXP1. Forkhead box protein P1
AYGRAL GBRB1. Gamma-aminobutyric acid receptor subunit beta-1
PWLFAE IGSF1. Immunoglobulin superfamily member 1
PPPAPV MAP1B. Microtubule-associated protein 1B
AAGHTE MXRA5. Matrix-remodeling-associated protein 5
TCSPAS MYO16. Unconventional myosin-XVI
RCTLPI NPRL2. GATOR complex protein NPRL2
EPATLL NRX1A. Neurexin-1 
AVAPRR PPR3F. Protein phosphatase 1 regulatory subunit 3F
AVTAAV REEP3. Receptor expression-enhancing protein 3
ACICEI S12A5. Solute carrier family 12 member 5
QTPAPK SETD2. Histone-Lys N-methyltransferase SETD2
AALEEG SETD5. SET domain-containing protein 5
PPPPAP SHAN3. SH3 and multiple ankyrin repeat domains protein 3
LRGAIA SL9A9. Sodium/hydrogen exchanger 9
AAAPAP STK39. STE20/SPS1-related proline-alanine-rich protein kinase
SLSVPA TSC2. Tuberin

MeV SRGDIN ANK3. Ankyrin-3
RLhRAAI ANR11. Ankyrin repeat domain-containing protein 11
PGAPAG APCL. Adenomatous polyposis coli protein 2
LLGRVR CCD22. Coiled-coil domain-containing protein 22
ILSQGN CHD8. Chromodomain-helicase-DNA-binding protein 8
VELLIS CTTB2. Cortactin-binding protein 2
KGTGSR CUL3. Cullin-3
LKLAAL; RLLDRLVR DIA1. Deleted in autism protein 1 
LVPQVR DIA1R. Deleted in autism-related protein 1 
LVDVFL GLT13. Polypeptide N-acetylgalactosaminyltransferase 13
FIVSNI GPHRA. Golgi pH regulator A
LDLLLN HERC2. E3 ubiquitin-protein ligase HERC2
LLEVVQ; GRALAE HUWE1. E3 ubiquitin-protein ligase HUWE1
PTSSVG K1210. Acrosomal protein KIAA1210
TLVSGS MARK1. Serine/threonine-protein kinase MA RK1
SIQALS MXRA5. Matrix-remodeling-associated protein 5 
KEEDEG MYT1L. Myelin transcription factor 1-like protein
VSNAAL NHS. Nance-Horan syndrome protein
ELAPYP PQBP1. Polyglutamine-binding protein 1
TGSSVE SCN1A. Sodium channel protein type 1 subunit alpha
TGSSVE; ELLESS SCN3A. Sodium channel protein type 3 subunit alpha
PTLKKL SETD2. Histone-lysine N-methyltransferase SETD2
VYSPSR SETD5. SET domain-containing protein 5
ISIQAL T4S20. Transmembrane 4 L6 family member 20 
EVDGDV TBL1R. F-box-like/WD repeat-containing protein TBL1XR1
ELLRLQ; VYWLTI TEN1. Teneurin-1

Table 2. Cont. 
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Table 2. Cont. 

Virus Shared Peptides 1 human Protein Related to ASD 2

Influenza A virus VPLHQS ADNP2. Activity-dependent neuroprotector homeobox protein 2

RTLLAK APCL. Adenomatous polyposis coli protein 2
AGVESA BICC1. Protein bicaudal C homolog 1
AADADT; TGNLQT CADM1. Cell adhesion molecule 1 
ERELVR CUL3. Cullin-3
TATKRI DEPD5. GATOR complex protein DEPDC5
EEEVLT DMPK. Myotonin-protein kinase
GKVTKS EF1A2. Elongation factor 1-alpha 2
AGSSEQ HUWE1. E3 ubiquitin-protein ligase HUWE1
LKAEIA MYO16. Unconventional myosin-XVI
KLRTQI MYT1L. Myelin transcription factor 1-like protein
TRSGGN NRX1A. Neurexin-1 
TRSGGN NRX1B. Neurexin-1-beta 
EDFVRQ NSE3. Non-structural maintenance of chromosomes element 3 homolog
LASLLE SHAN3. SH3 and multiple ankyrin repeat domains protein 3
KNDLLE SLIK2. SLIT and NTRK-like protein 2 
LGKCNI TEN1. Teneurin-1
LLQNSQ ULK4. Serine/threonine-protein kinase ULK4

MuV TLMGAE AGRA2. Adhesion G protein-coupled receptor A2 
PSAGMQN ARI1B. AT-rich interactive domain-containing protein 1B
NLVARK CAC1H. Voltage-dependent T-type calcium channel subunit alpha-1H
ASNIVG; GEEGSI CADM1. Cell adhesion molecule 1 
KTLSNL CCD22. Coiled-coil domain-containing protein 22
LGELVR CYFP1. Cytoplasmic FMR1-interacting protein 1
ASAVGV DIA1R. Deleted in autism-related protein 1 
HIRLAD DMPK. Myotonin-protein kinase
DDLIRY FAN1. Fanconi-associated nuclease 1
DNRVAD GBRB1. Gamma-aminobutyric acid receptor subunit beta-1 
DNRVAD GBRB3. Gamma-aminobutyric acid receptor subunit beta-3 
LELSEA HECAM. Hepatocyte cell adhesion molecule 
SQSSSS; EIKAAS HUWE1. E3 ubiquitin-protein ligase HUWE1
KGASVS K1210. Acrosomal protein KIAA1210
LVTCLG MAGA4. Melanoma-associated antigen 4
RINNSQ MEF2C. Myocyte-specific enhancer factor 2C
HLYLAE MXRA5. Matrix-remodeling-associated protein 5 
ANNHGI; SLFNSG MYO16. Unconventional myosin-XVI
ASPSSG; AGNISA NHS. Nance-Horan syndrome protein
SLIPPE NPRL3. GATOR complex protein NPRL3
RTCFRI SCN1A. Sodium channel protein type 1 subunit alpha
EEEEEL SETD2. Histone-Lys N-methyltransferase SETD2
LSPLKK; SLPSAG SETD5. SET domain-containing protein 5
PLSLAA SHAN3. SH3 and multiple ankyrin repeat domains protein 3
ISIQAL T4S20. Transmembrane 4 L6 family member 20
TLSTSI TROP. Trophinin
SLLEME TSH3. Teashirt homolog 3
ERRVAS XPC. DNA repair protein complementing XP-C cells

1 Hepta- and octapeptides formed by overlapping hexapeptides given bold. 2 Details and references on human proteins at 
www.uniprot.org.
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Secondly, in light of the fact that the probability 
of a hexapeptide occurring once in a protein is 1 out 
of 206, the viral vs human peptide overlap reported 
in Table 2 largely exceeds mathematical expectation. 
As a note a latere, we observe that this unexpected 
high peptide matching may be explained by the 
evolutionary role played by viruses in the origin of 
the eukaryotic nucleus [86]. 

Then, as a third point, it was found that human 
proteins related to ASD and sharing peptides with the 
analyzed viruses are mostly expressed in the brain. 
Limiting our analysis to a few examples—i.e., ARI1B, 
CTTB2, HUWE1, SETD2, and SHAN3 proteins—we 
find that:

-  AT-rich interactive domain-containing protein 1B 
(ARI1B) shares the viral peptides ALSSSSS, 
G A G G G G ,  Q Q P Q P P,  a n d  P S A G M Q N 
(Table 1).  ARI1B has  been de tec ted  in 
embryonic stem cells [87] where it is involved 
in transcriptional repression [88]. ARI1B has 
essential roles in dendritic arborization and spine 
morphology of developing pyramidal neurons [89]. 
Haploinsufficiency of ARID1B has been related 
to corpus callosum abnormalities, intellectual 
disability, speech impairment, and autism [90,91].

- Cortactin-binding protein 2 (CTTB2) shares the 
viral peptides PGLNPR, EALRAR, and VELLIS 
(Table 2). CTTB2 regulates the dendritic spine 
distribution of cortactin in hippocampal neurons [92]. 
Of note, dendritic spines are the major locations 
of excitatory synapses in mammalian brains [93].

- The ubiquitin ligase HUWE1 shares the viral 
pept ides GLQSFV,  AGSSEQ, SQSSSS, 
EIKAAS, LLEVVQ, and GRALAE (Table 2). 
HUWE1 promotes neurogenesis [94,95]. HUWE1-
dependent degradation of the transcriptional 
regulator atonal homolog 1 (Atoh1) is required 
for normal differentiation of cerebellar granule 
neuron progenitor cells [96].

- Histone-Lys N-methyltransferase SETD2 shares 
the viral peptides TSSHSS, QTPAPK, EEEEEL, 
and PTLKKL (Table 2). SETD2 is the main 
enzyme generating histone H3 trimethylation 
at lysine 36, a specific tag for epigenetic 
transcriptional regulation. SETD2 mutation 
was detected in a child with autism, intellectual 
disabilities and epilepsy [97]. SETD2 alterations 
may lead to alterations of epigenetic mechanisms 
that are critical in neural development [98].

- SH3 and multiple ankyrin repeat domains 
protein 3 (SHAN3) shares the viral peptides 
HLPALT, LKSSSL, PPPPAP, LASLLE, and 
PLSLAA (Table2). SHAN3 is a postsynaptic 

density protein that contributes to orchestrate 
the dendritic spine and synapse formation, 
has a critical role in neuronal morphogenesis 
in placodal neurons [99], and participates in the 
regulation of developing neurons growth cone 
motility and the NMDA receptor-signaling [100].

3.2 hexapeptide sharing between 
B19, BDV, RUBV, MeV, influenza A 
virus, and MuV proteomes and human 
Y-chromosomal proteins  
The human Y chromosome contains a male-specific 
non-recombining region with 27 protein-coding genes 
(Table S2) [53]. The peptide sharing between the 
analyzed viruses and the Y-chromosomal proteins 
is shown in Table 3. It can be seen that 7 Y-linked 
proteins namely: KDM5D (SMCY), PC11Y, TBL1Y, 
TXNG2, USP9Y, UTY (KDM6C), and ZFY—share 
hexa-/heptapeptides with all of the potential viral 
pathogens analyzed here, B19 excluded (Table 3).

The 7 Y-linked proteins are widely expressed in 
the brain. Specifically:

- lysine-specific demethylase 5D (KDM5D aka 
protein SMCY aka H-Y antigen) specifically 
demethylates trimethylated histone H3 lysine 
4 (H3K4me3) [101] and is associated with gene 
activat ion [102].  H3K4me3 is expressed in 
neonatal male cortex/hippocampus at levels 
more than 3,000 times higher than in females as 
shown by reverse transcription with quantitative 
PCR (RT-qPCR) [103]. Male-specific KDM5D 
expression has been detected in post-mortem                                   
human brain [104];                                        

-  protocadherin-11 Y-linked protein (PC11Y) is 
involved in cell-cell interactions and is critical in 
the development of the central nervous system. 
PC11Y is expressed strongly in fetal brain and 
brain (cortex, amygdala, thalamus, substantia 
nigra, hippocampus, caudate nucleus and 
corpus callosum) [105,106];

-  transducin beta-like protein 1Y (TBL1Y) is 
expressed in fetal brain and prostate [53]. TBL1Y 
may contribute to the variation in male-specific 
phenotypes [107]. Recently, a role of TBL1Y during 
cardiac differentiation of human embryonic stem 
cells has been proposed. It was seen that a 
reduced TBL1Y cellular level influenced cardiac 
differentiation and increased the probability of 
impaired contractions [108]. Then, it is pertinent 
to recall that subjects with autism are at risk for 
heart problems [109–111];

-  putative gamma-taxilin 2 (TXNG2) is ubiquitously 
expressed [53];
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form (H3K27me3), is involved in gene silencing [115]. 
In the mouse brain, UTY has a male-specific 
high expression in the paraventricular nucleus of 
the hypothalamus [116]. UTY has been detected in 
post-mortem human brain [104];

-  the  t ranscr ip t ional  ac t iva tor  z inc  f inger 
Y-chromosomal protein (ZFY) is transcribed in 
hypothalamus, and frontal and temporal cortex 
of adult human brain [117].

- ubiquitin carboxyl-terminal hydrolase FAF-Y 
(USP9Y) might stabilize through de-ubiquitination 
a specific target protein that is important for male 
germ cell development [112,113]. USP9Y expression 
has been found in post-mortem human brain [104] 
and during neurodevelopment in mouse brain [113]; 

- histone demethylase UTY (also known as 
KDM6C) catalyzes demethylation of histone H3 
lysine 27 (H3K27) [114] that, in the trimethylated 

3.3 Immunologic potential of the viral 
peptides shared with human proteins related 
to ASD or expressed by Y-linked genes 
The viral vs human peptide overlap illustrated in 
Tables 1–3 also has an immunologic potential. 

Indeed, Table 4 shows that many shared peptides are 
part of immunopositive epitopes cataloged at IEDB [54].

Table 3. Hexapeptide Sharing between B19, BDV, RUBV, MeV, Influenza A Virus, and MuV Proteomes 
and Y-Chromosomal Proteins.

Virus Shared Peptides 1 Y-Chromosomal Protein 2

B19 - -
BDV PSRGDS PC11Y. Protocadherin-11 Y-linked 

SLVDSL USP9Y. Probable ubiquitin carboxyl-terminal hydrolase FAF-Y
RUBV SPGLLR KDM5D. SMCY. Lysine-specific demethylase 5D. SMCX

IVAVIP TBL1Y. F-box-like/WD repeat-containing protein TBL1Y
RAIQKII USP9Y. Probable ubiquitin carboxyl-terminal hydrolase FAF-Y
DAAVAA ZFY. Zinc finger Y-chromosomal protein

MeV KLAALC TXNG2. Putative gamma-taxilin 2
DKKVDT USP9Y. Probable ubiquitin carboxyl-terminal hydrolase FAF-Y

Influenza A virus SSIGKV UTY. KDM6C. Histone demethylase UTY
MuV SKTFLKK KDM5D. SMCY. Lysine-specific demethylase 5D. 

LQHLEQ UTY. KDM6C. Histone demethylase UTY
1 Heptapeptides formed by 2 overlapping hexapeptides given bold. 2 Details on Y-chromosomal proteins at 
www.uniprot.org and in Ref. [53].

Table 4. Immunopositive epitopes Containing Sequences Shared between B19, BDV, RUBV, MeV, 
Influenza A Virus, and MuV Proteomes and ASD-Related or Y-Linked Proteins. 

IeDB ID 1 ePITOPeS 2 IeDB ID 1 ePITOPeS 2 IeDB ID 1 ePITOPeS 2

1848 aiakledakelless 87732 qtpapkpsrappqqpqpprmqtgr 437698 gpgripppppapy
4375 asdvetaeggeihellrlq 87776 ragltagasqsrrprppr 438262 iplppppapety
4376 asdvetaeggeihellrlqsr 97279 eqmagsseqaaeameia 442782 argaalalllfg
11286 edakellessdqilr 97289 etyvlsiipsgplkaeiaqkledvfagkn 451565 aaapapapa

12901 ekvtgtdleliqilkdhyni 97293 evltgnlqtlkirvhegyeeftmvgrratailr 451566 aaapappaa
13126 elklaalchgedsit 97452 lkndllenlq 452570 apaaapapa
14641 evdgdvklssnlvil 97554 plkaeiaqrledvfagk 461930 aevdgdvkl
19737 gggagaggagaggggr 97694 tlelrsgywairtrsggn 462034 grlvpqvrvid

20971 gllaccakclyylrgaiapr 97740 vlasttakameqmagsseqa 470109 rprpprpepppglm
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Table 4. Cont. 

IeDB ID 1 ePITOPeS 2 IeDB ID 1 ePITOPeS 2 IeDB ID 1 ePITOPeS 2

20972 gllacsakclyyLRGAIApr 97766 wairTRSGGNtnqqrasa 470110 RPRPPRpepppglma

21686 gpLKAEIAqrle 97779 ymlERELVRktrflpva 476328 atlpsSPGLLR

21912 gqlsdhphALSSSSShaepr 106084 rprspsSQSSSSgspprrp 489419 yLLKKLLql

22542 gstkscarTLVSGSf 119022 sSQSSSSgspprrpppgrrpffhpvge
adyfeyhqe 504031 prspsSQSSSSgspprr

ppp

35591 lelrsrywairTRSGGNtn
qqras 119788 cPLSLAAqld 507907 RPRPPRpldshl

36538 ligllaiagiRLHRAAIytaeihk 120221 ssssagggggGAGGGGggggsgg 508324 spKGASVSi

37232 LLEVVQsdqsqsgltfasr 127270 tyvlsivpsgpLKAEIAqrl 509573 eAAAPAPtv

37300 llfsllgLSSSSSis 127692 ifkiekGKVTKSielna 509875 lpLSSSSSv

39061 lrdpisaeISIQALS 128243 AGSSEQaaeamevasqa 517071 gPGAPAGaqpaqpp

40581 lvsgsfgnrfILSQGNli 128743 glKNDLLEnlqayqkrm 517072 gPGAPAGaqpaqpps

40826 lyksnhnnVYWLTIp 129032 kameqmAGSSEQaaeam 534817 yivtdqkPLSLAA

43219 nalypMSPLLQeclr 129920 sivpsgpLKAEIAqrle 534818 yivtdqkPLSLAAg

46150 ntlelrsrywairTRSGGNt 130187 vaymlERELVRktrflp 540558 ptILSQGNrfcapder
48376 pLKAEIAqrledv 131276 wheaqpSPGLLR 540650 yaiggsasptILSQGN

48856 ppppeerqetrsQTPAPKps 143551 stlelrsrywairTRSGGNt 540949 agglggGAGGGGdhad

52333 qshgqlsdhphALSSSSSha 145868 lelrsrywairTRSGGNt 544452 ppgapsapAAAPAPaa
52523 qtgRGGSAPrpelgpptn 150995 hLGKCNIagwilgnp 549187 llqEEEEEL

52588 QTPAPKpsrappQQPQPP
rmqtgrg 164390 sstglKNDLLEnlqayqk 552594 htkLSSSSSitltlp

53963 rgrgrgekrprspsSQSSSS 170345 anptILSQGNrf 562078 aLLEVVQsggkniel

54638 RLLDRLVRl 173446 tILSQGNrfhap 569127 grLKAEIAr

54946 rmqtgRGGSAPrpelgpptnp
fqaava 179908 smDAAVAAl 571902 eELLRLQql

55937 rsQTPAPKpsrappQQPQP
Prmqt 181520 ynpytrsIQILKD 574167 kLLEVVQpcl

56752 saeISIQALSyalgg 182182 irlradTLMGAElaarpeyr 592219 gdpeeeeEEEEELvd

58175 sgplkaeiaqkledvfagkn 188697 klcklrgvaplhlgkcniag 593877 aagaalalalw

58176 sgplkaeiaqrle 202816 ataavtaavk 594430 assppagpppppapalvg

58177 sgplkaeiaqrledv 227311 krprspssqssssgs 599581 Ltvlvprvw

59546 slvgidpfkllqnsqvyslirp 227587 ssqssssgspprrpp 601005 rlrelgslvw

59548 slvgidpfrllqnsqvfsli 239959 lagaggggaavtv 601256 rsvssqssssvs

60889 ssaglkndllenlqayqkrm 245808 aakapapkaaapapk 614836 dsssvaskv

63973 tgtdleliqilkdhynisld 252233 akapapkaaapapka 620205 kslligvfk

67496 tyvlsiipsgplkaeiaqrl 255133 apapkaaapapkaaa 621015 lelseavlptmta

72315 wdleatgaciceipt 255442 apkaaapapkaaaaa 629659 avppppapl

79398 srappppeerqesrsqtpapkpsr
app 316384 kapapkaaapapkaa 632869 islippeerw

79399 srappqqpqpprmqtgrggsap
rpelg 348636 papkaaapapkaaaa 638702 vpvavtaav

79544 fapwdleatgaciceiptdv 419951 margaalal 641923 dyfkdlcgpdagpig
79784 dpfrllqnsqvys 434859 argaalalllf 645191 iqriplppppapety

79844 gplkaeiaqrled 434943 artllaknl 650955 tpkdqfiiaygglrgaia
1 Epitopes listed according to the IEDB ID number. 2 Peptide sequences shared between viruses and human proteins in 
capital letters.
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Again, the high number of epitopes containing 
the shared peptide sequences precludes a detailed 
epitope-by-epitope discussion. However, a special 
attention has to be drawn to the peptide RLLDRLVR 
shared between MeV and the human Deleted in Autism 
protein 1 (DIA1). In fact, the peptide RLLDRLVR 
corresponds to the epitope IEDB ID 54638 (Table 
4) that was shown to be responsive in 80% of 5 
HLA-A2–positive adults revaccinated with measles-
mumps-rubella vaccine [118].

Another point call ing for attention is that 
hexapeptide analyses underestimate by one order of 
magnitude the potential cross-reactivity that may be 
evoked by immune responses following infections. As 
a matter of fact, also a pentapeptide can represent a 
minimal immune unit endowed with immunogenicity 
and antigenicity [58–86]. And, in addition, discontinuous 
pentapeptide epitopes have been reported in IEDB 
database such as the Influenza A hemagglutinin 
conformational epitope P134S137K177Y180T183 (IEDB ID: 
164481). Hence, expanding the similarity analyses 
to (dis)continuous pentapeptides would generate a 
viral vs human cross-reactivity scenario even more 
massive than that displayed in Tables 1-4. 

3.4 ASD-related and Y-chromosomal 
proteins involved in the viral peptide 

overlap: expression in the human brain
Taken together, Tables 1-4 factually support the 
hypothesis that, following active infections by the 
viral pathogens analyzed here, the consequent anti-
viral immune responses might cross-react with ASD-
related and/or Y-linked proteins expressed in the 
human brain. However, it is incumbent to observe 
that the brain expression data reported above have 
been mainly obtained in animal models, and using 
microarray analyses, quantitative real-time PCR, 
and in situ hybridization technologies. Actually, it is 
well-known that transcript abundances only partially 
predict protein abundances [119,120]. Consequently, 
since a conditio sine qua non for a cross-reaction to 
occur is a sufficient level of antigenemia, the Human 
Protein Atlas resource (https://www.proteinatlas.org/) [55,56] 
was searched for data on the expression level in the 
brain of the proteins discussed above. Results are 
reported in Fig. 1 that shows that the ASD-related 
proteins ARI1B, CTTB2, HUWE1, and SHAN3 have 
an expression level from medium to high in the 
nervous system cells (panel A) and that, among the 
Y-chromosomal proteins, TBL1Y has a high protein 
expression level in almost all nervous system cells 
(panel B). Expression in peripheral nerve cells was 
low or absent. Data on KDM5D, USP9Y, and TXNG2 
proteins were pending or not available at the time of 
the present study.

Fig. 1 expression in the human brain of (A) ASD-related proteins ARI1B, CTTB2, hUWe1, SeTD2, and ShAN3, 
and (B) Y-chromosomal proteins PC11Y, TBL1Y, UTY, and ZFY. estimates of the protein expression are—n: not 
detected; l: low; m: medium; h: high. Grey bars refer to expression in peripheral nerve/ganglion. Antibodies 
are described at www.proteinatlas.org. Images and data from www.proteinatlas.org [55,56]. Further details at 
www.proteinatlas.org.
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4 CONCLUSIONS
ASD is of unknown etiology. Genetic components such 
as mutations [121], epigenetic disorders such as altered 
methylaton [122], abnormal cytokine profile where 
inflammatory signals dominate [15], and environmental 
factors such as pollutants [123] or immune responses to 
infections [7–21] appear to contribute to ASD. However, 
whichever it may be the invoked causal factor, the 
mechanism(s) at the basis of ASD remain unsettled. 

Here, we hypothesized that immune responses 
against infectious viral agents might have the potential 
to cross-react with proteins that, when altered, are 
related to autism. Actually, Tables 1, 2 and 4, and Fig. 
1A document an ample and potentially immunologic 
peptide matching of B19, BDV, RUBV, MeV, Influenza 
A virus, and MuV with ASD-related proteins, thus 
supporting the possibility of a causal connection 
between infection and neurodevelopmental diseases 
through cross-reactivity. Very much the same 
consideration applies to data from Tables 3 and 4, 
and Fig. 1B that highlight peptide overlaps between 
viral and Y-chromosomal proteins. In this case, 
the potential cross-reactivity burden specifically 
involves male subjects, so determining a higher male 
susceptibility to neurodevelopmental disorders. 

It has to be underlined that ASD comprehends 
autism, childhood disintegrative disorder and 
Asperger syndrome that are characterized, in different 
combinations and at various level of intensity, by 
symptoms such as impaired capacity for interactions, 
a restricted repertoire of interests, stereotyped 
repetitive activities, and decreased intellectual 
ability [1]. Hence, the here described numerous brain 

proteins involved in the peptide matching and in the 
consequent potential cross-reactions might explain 
the multitude of symptoms that characterize ASD. In 
addition, the ASD symptomatology and severity may 
have spatial-temporal patterns, with, for example, 
in utero infections involving the maternal immune 
system. In this regard, as a final caveat, it has to 
be kept in the due account the observation that the 
maternal immune response in the absence of virus 
and obtained by using the synthetic double-stranded 
RNA poly (I:C) is sufficient to cause behavioral 
changes in the offspring [124]. Moreover, the infection 
outcome in children and adults may depend on 
previous immune responses following previous 
encounters with the pathogens [125,126]. 

In sum, the data support our previous studies [30–37], 
offer the immune cross-reactivity paradigm as a possible 
approach for studying autism and neuropsychiatric 
disorders, and strongly warrant further collaborative 
research efforts to determine the impact of viral vs 
human cross-reactivity in the etiology of ASD. 
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